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Abstract. We propose a new model for forming beliefs and learning
about unknown probabilities (such as the probability of picking a red
marble from a bag with an unknown distribution of colored marbles). The
most widespread model for such situations of ‘radical uncertainty’ is in
terms of imprecise probabilities, i.e. representing the agent’s knowledge
as a set of probability measures. We add to this model a plausibility
map, associating to each measure a plausibility number, as a way to go
beyond what is known with certainty and represent the agent’s beliefs
about probability. There are a number of standard examples: Shannon
Entropy, Center of Mass etc. We then consider learning of two types
of information: (1) learning by repeated sampling from the unknown
distribution (e.g. picking marbles from the bag); and (2) learning higher-
order information about the distribution (in the shape of linear inequalities,
e.g. we are told there are more red marbles than green marbles). The
first changes only the plausibility map (via a ‘plausibilistic’ version of
Bayes’ Rule), but leaves the given set of measures unchanged; the second
shrinks the set of measures, without changing their plausibility. Beliefs
are defined as in Belief Revision Theory, in terms of truth in the most
plausible worlds. But our belief change does not comply with standard
AGM axioms, since the revision induced by (1) is of a non-AGM type.
This is essential, as it allows our agents to learn the true probability:
we prove that the beliefs obtained by repeated sampling converge almost
surely to the correct belief (in the true probability). We end by sketching
the contours of a dynamic doxastic logic for statistical learning.

Keywords: Radical uncertainty . Imprecise probabilities . Plausibility
models . Statistical Learning . Belief Revision Theory

1 Introduction

Our goal in this paper is to propose a new model for learning a probabilistic
distribution, in cases that are commonly characterized as those of “radical uncertainty”
[22]. As an example, consider an urn full of marbles, coloured red, green and
black, but with an unknown distribution. What is then the probability of drawing
a red marble? In such cases, when the agent’s information is not enough to
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determine the probability distribution, she is typically left with a huge (usually
infinite) set of probability assignments. If she never goes beyond what she
knows, then her only ‘rational’ answer should be “I don’t know”: she in a
state of ambiguity, and she should simply consider possible all distributions
that are consistent with her background knowledge and observed evidence. Such
a “Buridan’s ass” type of rationality will not help our agent much in her decision
problems.

Our model allows the agent to go beyond what she knows with certainty, by
forming rational qualitative beliefs about the unknown distribution, beliefs based
on the inherent plausibility of each possible distribution. For this, we assume
the agent is endowed with an initial plausibility map, assigning real numbers
to the possible distributions. To form beliefs, the agent uses an AGM-type
of plausibility maximization: she believes the most plausible distribution(s). So
‘belief’ is defined in our setting in the way that is standard in Logic and Belief
Revision Theory: as “truth in all the most plausible worlds”. The plausibility
map encodes the agent’s background knowledge and a priori assumptions about
the world. For instance, an agent whose a priori assumptions include the Principle
of Indifference will use Shannon entropy as her plausibility function, thus initially
believing the most non-informative distribution(s). An agent who assumes some
form of Ockham’s Razor will use as plausibility some measure of simplicity,
thus her initial belief will focus on the simplest distribution(s), etc. Note that,
although our plausibility map assigns real values to probability distributions,
this account is essentially different from the ones using so-called “second-order
probabilities”(i.e. probabilities distributions defined on the set of probability
distributions). Plausibility values are only relevant in so far as they induce a
qualitative order on distributions. In contrast to probability, plausibility is not
cumulative (in the sense that the low-plausibility alternatives do not add up to
form more plausible sets of alternatives), and as a result only the distributions
with the highest plausibility play a role in defining beliefs.

Our model is not just a way to “rationally” select a Bayesian prior, but it also
comes with a rational method for revising beliefs in the face of new evidence.
In fact, it can deal with two types of new information: first-order evidence
gathered by repeated sampling from the (unknown) distribution; and higher-
order information about the distribution itself, coming in the form of linear
inequality constraints on that distribution. To see the differrence between the
two types of new evidence, take for instance the example of a coin. As it
is well known any finite sequence of Heads and Tails is consistent with all
possible biases of the coin. As such, any number of finite repeated samples
will not shrink the set of possible biases, though they may make increase the
plausibility of some biases. Thus this type of information changes only the
plausibility map but leaves the given set of measures unchanged. The second
type of information, on the other hand, shrinks the set of measures, without
changing their plausibility. As for instance learning that the coin has a bias
towards Tail (e.g. by weighing the coin, or receiving a communication in this
sense from the coin’s manufacturer) eliminates all distributions that assign a
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higher probability to Heads. It is important to notice, however, that even with
higher order information it is hardly ever the case that the distribution under
consideration is fully specified. In our coin example, a known bias towards
Tails will still leave a infinite set of possible biases consistent. Even a good
measurement by weighting will leave open a whole interval of possible biases.
In this sense a combination of observations and higher order information will
not in general allow the agent to come to know the correct distribution in the
standards sense in which the term knowledge is used in doxastic and epistemic
logics. Instead, it may eventually allow her to come to believe the true probability
(at least, with a high degree of accuracy). This “convergence in belief” is what
we aim to capture in this paper.

Our belief revision mechanism after sampling is non-Bayesian (and also different
from the AGM belief revision). It is essential that the agent does not keep
only the ‘prior’ (i.e., the initially believed distribution), forgetting about the
other possible distributions. Instead, after sampling she keeps all possibilities in
store, but revises her plausibility map in the view of the new evidence, using
a “plausibilistic analogue” of Bayes’ Rule. Her new belief will be formed in
a similar way to her initial belief: by maximizing her (new) plausibility. The
outcome is different from simply performing a Bayesian update on the ‘prior’:
qualitative jumps are possible, leading to abandoning “wrong” conjectures in
a non-monotonic way. This results in a faster convergence-in-belief to the true
probability in less restrictive conditions than the usual Savage-style convergence
through repeated Bayesian updating.1 Note also that the belief update induced
by sampling does not satisfy all the standard AGM axioms. This is essential
for learning the true probability from repeated sampling: since every sample is
logically consistent with every distribution, an AGM learner would never change
her initial belief!

The second type of evidence (higher-order information about the distribution)
induces a more familiar kind of update: the distributions that do not satisfy the
new information (typically given in the former of linear inequalities) are simply
eliminated, then beliefs are formed as before by focusing on the most plausible
remaining distributions. This form of revision is known as AGM conditioning
in Belief Revision Theory (and as update, or “public announcement”, in Logic),
and satisfies all the standard AGM axioms.

The fact that in our setting there are two types of updates should not be
so surprising. It is related to the fact that our static framework consists of
two different semantic ingredients, capturing two different attitudes: the set of
possible distributions (encoding the agent’s knowledge about the correct distribution),
and the plausibility map (encoding the agent’s beliefs). The second type of
(higher-order) information directly affects the agent’s knowledge (by reducing

1 In contrast to Savage’s theorem, our update ensures convergence even in the case
that the initial set of possible distributions is infinite (indeed, even in the case we
start with the uncountable set of all distributions). Moreover, in the finite case
(where Savage’s result does apply), our update is guaranteed to converge in finitely
many steps, while Savage’s theorem only ensures convergence in the limit.
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the set of possibilities), and only indirectly her beliefs (by restricting the plausibility
map to the new set, so beliefs are only updated with fit the new knowledge).
Dually, the first type of (sampling) evidence acts directly affects the agent’s
beliefs (by changing the plausibility in the view of the sampling results), and
only indirectly her knowledge (since e.g. she knows her new beliefs).
The plan of this paper follows. We start by reviewing some basic notions, results
and examples on probability distributions (Section 2). Then in Section 3, we
define our main setting (probabilistic plausibility frames), consider a number
of standard examples (Shannon Entropy, Center of Mass etc), then formalize
the updates induced by the two types of new information, and prove our main
result on convergence-in-belief. In Section 4, we sketch the contours of a dynamic
doxastic logic for statistical learning and in Section 5 we investigate unifying
the two types of learning. We end with some concluding remarks and a brief
comparison with other approaches to the same problem (Section 6).

2 Preliminaries and Notation

Take a finite set O = {o1, . . . , on} and let MO = {µ ∈ [0, 1]O :
∑
o∈O µ(o) =

1} be the set of probability mass functions on O, which we identify with the
corresponding probability functions on P(O). Let Ω = O∞ = ON be the set of
infinite sequences from O, which we shall refer to as observation streams. For any
ω ∈ Ω and i ∈ N, we write ωi for the i-th component of ω, and ωi for its initial
segment of length i, that is ω1, . . . , ωi. For each o ∈ O we define the sets oj to
be the cylinders oj = {ω ∈ Ω; ωj = o} ⊆ Ω. Let A ⊆ P(Ω) be the σ-algebra of
subsets of Ω generated by the cylinders. Every probability distribution µ ∈MO

induces a unique probability function, µ̂ over (Ω,A) by setting µ̂(oj) = µ(o)
which extends to all of A using independence. Let E be the subalgebra of A
that is closed under complementation and finite unions and intersections of the
cylinder sets. Then E will capture the set of events generated by finite sequences
of observations.

Example 1 Let O = {H,T} be the possible outcomes of a coin toss. Then Ω
will be streams of Heads and Tails representing infinite tosses of the coin, e.g.
HTTHHH.... And Hj (res. T j) will be the set of streams of observations in which
the j-th toss of the coin has landed Heads (res. Tails). The set MO will be the
set of possible biases of the coin.

Example 2 Let O = {R,B,G} be the possible outcomes for a draw from an urn
filled with marbles, coloured Red, blue and Green. Then the set MO will be the
set of different distribution of coloured marbles in the urn, Ω will be streams of
R, B and G representing infinite draws from the urn, and Rj (res. Bj or Gj)
will be the set of streams of draws in which the j-th draw is a Red (res. Blue or
Green) marble.

Topology on MO Notice that a probability function µ ∈MO, defined over the
setO = {o1, . . . , on}, can be identified with an n-dimensional vector (µ(o1), . . . , µ(on)),
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corresponding to the probabilities assigned to each oi respectively. Let DO :=
{x ∈ [0, 1]n |

∑
xi = 1}, then every µ ∈ MO can be identified with the point

µ ∈ DO ⊂ [0, 1]n. Thus probability functions in MO live in the space Rn (or
more precisely [0, 1]n). In the other direction every x ∈ DO defines a probability
function x on O by setting x(oi) = xi. This gives a one to one correspondence
between MO and DO. There are various metric distances that can be defined on
the space of probability measures over a (finite) set O many of which are known
to induce the same topology. Here we will consider the standard topology of
Rn,induced by the Euclidean metric: for x,y ∈ Rn, put d(x,y) :=

∑n
i=1

√
(xi − yi)2;

a basis for the standard topology is given by the family of all open balls Bε(x)
centered at some point x ∈ Rn with radius ε > 0; where

Bε(x) = {y ∈ Rn : d(x,y) < ε}.

Proposition 1. For a finite set O, the set of probability mass functions on O,
MO, is compact in the standard topology.

Proof. Check that the set {X ∈ [0, 1]n |
∑n
i=1 xi = 1} is compact in Rn.

We will make use of the following well known facts:

Proposition 2. Let X,Y be compact topological spaces, Z ⊆ X and f : X ⊆ Y
(1) Every closed subset of X is compact.
(2) If f is continuous, then f(X) is compact.
(3) If Z is compact then it is closed and bounded.

Proof. See [10], Theorem 1.40 and Proposition 1.41.

Proposition 3. Let X be a compact topological space and f : X → R a continuous
function on X. Then f is bounded and attains its supremum.

Proof. See [10], Theorem 7.35.

Theorem 1 (Hein-Cantor). Let M,N be two metric spaces and f : M → N
be continuous. If M is compact then f is uniformly continuous.

Proof. See [29].

3 Probabilistic Plausibility Frames

A probabilistic plausibility frame over a finite set O is a structure F = (M,pla)
where M is a subset of MO, called the set of “possible worlds”, and pla : MO →
[0,∞) is a continuous function s.t. (1) the derivative pla′ is also continuous, and
(2) pla(µ) = 0 implies µ(o) = 0 for some o ∈ O.
So our possible worlds are just mass functions on O. Here are some canonical
examples of probabilistic plausibility frames:
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– (a) Shannon Entropy as plausibility: Let pla : MO → [0,∞) be given by the
Shannon Entropy, pla(µ) = Ent(µ) = −

∑
o∈O µ(o) log(µ(o)).

Then (MO, Ent) is a probabilistic plausibility frame. Here the most plausible
distribution will be the one with highest Shannon entropy.

– (b) Centre of Mass as plausibility: Let pla : MO → [0,∞) be given by the
Centre of Mass, pla(µ) = CM(µ) =

∑
o∈O log(µ(o)).

Then (MO, CM) is a probabilistic plausibility frame. Here the plausibility
ranking will be given in terms of typicality, and higher plausibility will be
given to those probability functions that are closer to the average of MO.

Example 1. (continued). In the absence of any information about the coin the
set of possible biases will be the set MO of all probability mass functions on
{H,T}. Then (MO, Ent) is a probabilistic plausibility frame, where the highest
plausibility will be given to the distribution with highest entropy: the fair-coin
distribution µeq (since for every ν 6= µeq we have Ent(ν) < Ent(µeq)).

One of the main motivations for developing the setting that we investigate here
is to capture the learning process as iterated revision that results from receiving
new information. As was pointed out earlier one type of information essentially
trims the space of possible probability measures by deleting certain candidates.
There is however, a softer notion of revision, imposed by observations, that
does not eliminate any candidate but rather changes the plausibility ordering
over them. With this in mind, the next question we need to clarify is how the
plausibility order is to be revised in light of new observations.

Definition 1 (Conditionalization). Let pla : MO → [0,∞), and define pla(.|.) :
E ×MO → [0,∞), by pla(µ|e) := pla(µ)µ̂(e). When e ∈ E is fixed, this yields
a conditional probability function plae : MO → [0,∞) given by plae(µ) :=
pla(µ | e).

Conditionalising thus allows us to update the plausibility ranking of the set of
probability distributions according to the new observations, and thus captures
the notion learning through sampling pointed out above. The next three results
in Lemma 1, and Propositions 5 and 4 ensure that the conditionalisation of
the plausibility function given by Definition 1 behaves correctly. In particular,
Lemma 1 and Corollary 4 show that the properties of a plausibility function in
our frames is preserved by the conditionalisation and Proposition 5 guarantees
that the result of repeated conditionalisation is independent of the order. This
is important as it ensures that what the agents come to believe is the result of
what they learn and not the order in which they learn them.

Lemma 1. For each e ∈ E, the mapping Fe : MO → [0, 1] defined as Fe(µ) :=
µ̂(e), is continuous with respect to µ.

Proposition 4. If pla is a plausibility function on MO and e ∈ E, then plae is
a plausibility function.

Proof. Follows from the definition using Lemma 1.



Learning Probabilities 7

Proposition 5. For MO as above and pla : MO → [0,∞) and e, e′ ∈ E:
(plae)e′ = plae∩e′ .

Proof. Let µ ∈M , then

(plaoj )o′k(µ) = plaoj (µ)µ̂(o′k) = pla(µ)µ̂(oj).µ̂(o′k) = pla(µ)µ̂(oj ∩ o′k)

where the last equality follows from the independence assumption in iid case.

Example 1. (continued) Take the frame (MO, Ent) as before where MO is the
set of all biases of the coin and Ent is the Shannon Entropy. Remember that
µeq is the unique maximiser of Ent on MO. Let e ∈ E, be the event that “the
first three tosses of the coin have landed on Heads”. After observing e, the new
plausibility function is given by plae(µ) = pla(µ)µ̂(e) = Ent(µ)µ̂(e).
Thus the most plausible probability function will no more be µeq and one with a
bias towards Heads will become more plausible. Let µ1, µ2 and µ3 be such that
µ1(Heads) = 3/4, µ2(Heads) = 0.8 and µ3(Heads) = 0.9 then it is easy to
check that plae(µ1) < plae(µ2) > plae(µ3).

Our rule for updating plausibility relation weights the plausibility of each world
with how much it respects the obtained evidence. In this way worlds that better
correspond to the evidence are promoted in plausibility.

Proposition 6. Let M ⊆ MO be closed. Then for all e ∈ E, there exists some
µ ∈M with highest plausible (i.e. s.t. plae(µ) ≥ plae(µ′) for all µ′ ∈M).

Proof. Using Lemma 1, the result follows as corollary of Proposition 3.

Definition 2 (Knowledge and Belief). Let P ⊆M be a “proposition” (set of
worlds) in a frame (M,pla). We say that P is known, and write K(P ), if all M -
worlds are in P ; i.e. M ⊆ P . We say that P is believed in frame F = (M,pla),
and write B(P ), if and only if all “plausible enough” M -worlds are in P ; i.e.
{ν ∈M : pla(ν) ≥ pla(µ)} ⊆ P for some µ ∈M .

Definition 3 (Two Forms of Conditionalization). Let P ⊆MO be a “proposition”
(set of distributions). For an event e ∈ E, we say that P is believed conditional
on e in frame (M,pla), and write B(P |e), if and only if all M -worlds that are
“plausible enough given e” are in P ; i.e. {ν ∈ M : plae(ν) ≥e pla(µ)} ⊆ P for
some µ ∈ M . For a proposition Q ⊆ M , we say that P is believed conditional
on Q in frame (M,pla), and write B(P |Q), if and only if all plausible enough
Q-worlds are in P ; i.e. {ν ∈ Q : pla(ν) ≥ pla(µ)} ⊆ P for some µ ∈ Q.

It should be clear that B(P ) is equivalent to B(P |Ω) and to B(P |M), where the
set Ω of all observation streams represents the tautological event (corresponding
to “no observation”) and the set of M of all worlds represents the tautological
proposition (corresponding to “no further higher-order information”).
Belief is always consistent, and in fact it satisfies all the standard KD45 axioms
of doxastic logic. Conditional belief is consistent whenever the evidence is (i.e. if
e 6= ∅, then B(P |e) implies P 6= ∅, and similarly for B(P |Q)). In fact, when the
set of worlds is closed, our definition is equivalent to the standard definition of
belief (and conditional belief) as “truth in all the most plausible worlds”:
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Proposition 7. If M ⊆MO is closed, then B(P |e) holds if {µ ∈M : plae(µ) ≥
plae(µ

′) for all µ′ ∈M} ⊆ P .

Proof. LetM ⊆MO be closed. Since plae is a continuous function, by Propositions
1, 2-1 and 3, there exists µ ∈M such that for all µ′ 6= µ ∈M , plae(µ) ≥ plae(µ′).
Let Uplae = {µ ∈ M | ∀µ′ ∈ M plae(µ) ≥ plae(µ

′)}. Thus Uplae 6= ∅. Let
µ ∈ Uplae and assume Uplae ⊆ P . Then we have {ν ∈ M |plae(ν) ≥e plae(µ)} =
Uplae ⊆ P and thus by definition B(P |e).

We are now in the position to look into the learnability of the correct probability
distribution via plausibility-revision induced by repeated sampling.

Theorem 2. Take a finite set O of outcomes and consider a frameM = (M,pla)
with M ⊆ MO. Suppose that the correct probability is µ ∈ M and that µ(oi) 6=
0 for all i. Then, with µ-probability 1, the agent’s belief will eventually stay
arbitrarily close to the correct probability distribution after enough many observations.
More precisely, for every ε > 0, we have

µ({ω ∈ Ω | ∃K ∀m ≥ K : B(Bε(µ) |ωm) holds in M}) = 1

(where recall that Bε(µ) = {ν ∈M |d(µ, ν) < ε}).

To prove Theorem, we need a few well-known notions and facts:

Definition 4. For µ ∈ M , we define the set of µ-normal observations as the
set of infinite sequences from O for which the limiting frequencies of each oi
correspond to µ(oi) and we will denote this set by Ωµ:

Ωµ = {ω ∈ Ω | ∀oi ∈ O lim
n→∞

|{i ≤ n |ωi = oi}|
n

= µ(oi)}.

Proposition 8. For every probability function µ, µ(Ωµ) = 1.
Hence, if µ is the true probability distribution over O, then almost all observable
infinite sequence from O will be µ-normal.

Lemma 2. For 0 < p1, . . . , pn < 1 with
∑
pi = 1, the function f(x) = Πn

i=1x
pi
i

on domain x ∈ {z ∈ (0, 1)n |
∑
zi = 1} has x = p as its unique maximizer on

MO.

Proof. First we notice that f(x) ≥ 0 on MO = {z ∈ [0, 1]n |
∑
zi = 1} and by

Propositions 1 and 3 f has a maximum on MO. For any point z ∈MO with any
zi = 0 (or zi = 1) f(z) = 0 thus f reaches its maximum on {z ∈ (0, 1)n |

∑
zi =

1}.
To show the result, we will show that log(f(x)) has x = p as its unique
maximizer on this domain. The result then follows from noticing that f(x) ≥ 0
and the monotonicity of log function on R+. To maximise log(f(x)) subject to
condition

∑
i xi = 1 we use Lagrange multiplier methods: let

G(x) = log(f(x))− λ(

n∑
i=1

xi − 1) =

n∑
i=1

pi log(xi)− λ(

n∑
i=1

xi − 1).
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Setting partial derivatives of G equal to zero we get,

∂G(x)

∂xi
=
pi
xi
− λ = 0

which gives pi = λxi. Inserting this in the condition
∑
i pi = 1 we get λ

∑
i xi = 1

and using
∑
i xi = 1 we get λ = 1 and thus xi = pi. Since f has a maximum

on this domain and the Lagrange multiplier method gives a necessary condition
for the maximum, any point x that maximises f should satisfy the condition
xi = pi and thus p is the unique maximiser for f .

Proof (Theorem 2). Since µ(Ωµ) = 1 (by the Strong Law of Large Numbers), it
is enough to show that

∀ε > 0∀ω ∈ Ωµ ∃K ∀m ≥ K : B({ν|d(µ, ν) < ε} |ωm) holds in M .

Let us fix some ε > 0 and some ω ∈ Ωµ. We need to show that, there exists ν ∈M
such that for all large enough m, for any ξ ∈M if pla(ξ |ωm) ≥ pla(ν |ωm), then
d(ξ, µ) < ε. To show this, we will prove a stronger claim, namely that:

∃K ∀m ≥ K ∀ν ∈MO (d(ν, µ) ≥ ε ⇒ pla(µ |ωm) > pla(ν |ωm)) .

(Note that the desired conclusion follows immediately from this claim: since we
can then take µ itself to be the desired ν ∈ M . Then by the above claim, no
measures ξ in MO with d(µ, ξ) ≥ ε satisfies pla(ξ |ωm) ≥ pla(µ |ωm) and thus all
measures, ν that satisfy this inequality have to satisfy d(µ, ν) < ε.) By definition,
for all ν ∈MO we have pla(ν |ωm) = pla(ν) · ν̂(ωm). By independence, we obtain
that pla(ν |ωm) = pla(ν) ·Πn

i=1ν(oi)
mi = pla(ν) ·Πn

i=1ν
m·αi,m
i , were we have put

νi := ν(oi) and αi,m = mi
m , for all 1 ≤ i ≤ n and all m ∈ N . Note that, since

ω ∈ Ωµ, we have that limm→∞ αi,m = pi, for all 1 ≤ i ≤ n, where we had put
pi := µ(oi), for 1 ≤ i ≤ n. In particular, for ν = µ (so νi = µ(oi) = pi), we
obtain that pla(µ |ωm) = pla(µ) ·Πn

i=1p
m·αi,m
i .

To prove the desired conclusion, it is enough (by the above representations of
pla(ν |ωm) and pla(µ |ωm)) to show that, for all big enough m and all ν ∈
MO \Bε(µ), we have

pla(ν) ·Πn
i=1ν

m·αi,m
i < pla(µ) ·Πn

i=1p
m·αi,m
i (1)

Since limm→∞ αi,m = pi, there must exist some N1 such that pi
2 ≤ αi,m ≤ 2 · pi

for all m ≥ N1 and all 1 ≤ i ≤ n. Let ∆ = {ν ∈MO | ν(oi) = 0 for some 1 ≤ i ≤
n}, and similarly for any δ > 0, put ∆δ = {ν ∈MO | ν(oi) < δ for some 1 ≤ i ≤
n}, and so ∆δ = {ν ∈ MO | ν(oi) ≤ δ for some 1 ≤ i ≤ n} is its closure. Choose

some δ > 0 small enough such that we have Πn
i=1ν

2·pi
i < Πn

i=1p
pi
2
i for all ν ∈ ∆δ

(-this is possible, since Πn
i=1ν

2·pi
i = 0 < Πn

i=1p
pi
2
i for all ν ∈ ∆, so the continuity

of Πn
i=1ν

2·pi
i gives us the existence of δ). Hence, we have

0 ≤ Πn
i=1ν

2·pi
i

Πn
i=1p

pi
2
i

< 1 for all ν ∈ ∆δ.
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Notice that by assumption pi = µ(oi) 6= 0 for all i = 1, . . . , n. The set ∆δ is

closed, hence the continuous functions pla(ν) and
Πni=1ν

2·pi
i

Πni=1p
pi
2
i

attain their supremum

(maximum) on ∆δ. Let K < ∞ be the maximum of pla(ν), and Q < 1 be

the maximum of
Πni=1ν

2·pi
i

Πni=1p
pi
2
i

on this set (-the fact that Q < 1 follows from the

inequality above). Then there exists some N2 > N1, s.t. we have Qm < pla(µ)
K

for all m > N2. Hence, for all ν ∈ ∆δ, we have:

pla(ν) · Πn
i=1ν

m·αi,m
i ≤ K · Πn

i=1ν
m·2·pi
i ≤ K · (Q · Πn

i=1p
pi
2
i )m = K · Qm ·

Πn
i=1p

m· pi2
i < K · pla(µ)K ·Πn

i=1p
m·αi,m
i = pla(µ) ·Πn

i=1p
m·αi,m
i

So we proved that the inequality (1) holds on ∆δ. It thus remains only to prove
it for all ν ∈M ′ := MO − (Bε(µ) ∪∆δ), where Bε(µ) = {ν ∈MO | d(µ, ν) < ε}.
For this, note that M ′ := MO − (Bε(µ)∪∆δ) is closed and that νi 6= 0 over this
set (for all i) and thus by definition pla(ν) 6= 0. Hence, (1) is equivalent over this
set with: (

pla(µ)

pla(ν)

)
·
(
Πn
i=1p

m·αi,m
i

Πn
i=1ν

m·αi,m
i

)
> 1. (2)

Applying logarithm (and using its monotonicity, and its other properties), this
in turn is equivalent to

log(pla(µ))− log(pla(ν)) +

n∑
i=1

m · αi,m · (log pi − log νi) > 0. (3)

So we see that it is enough to show that, for all large m and for ν ∈M ′, we have

m >
log(pla(ν))− log(pla(µ))∑n
i=1 αi,m · (log pi − log νi)

(4)

Recall that αi,m ≥ pi
2 for all m > N2 > N1 and all 1 ≤ i ≤ n. Thus, to prove

(4), it is enough to show that, for large m and for all ν ∈M ′, we have

m >
f(ν)

g(ν)
, (5)

where we introduced the auxiliary continuous functions f, g : M ′ → R, defined by
putting f(ν) = 2 ·(log(pla(ν))− log(pla(µ))) and g(ν) =

∑n
i=1 pi ·(log pi− log νi)

for all ν ∈MO.
To show (5), note first that

g(ν) =

n∑
i=1

pi · (log pi − log νi) = log

(
Πn
i=1p

pi
i

Πn
i=1ν

pi
i

)
> log1 = 0

(where at the end we used the fact, proved in Lemma 2, that the measure µ,
with values µ(oi) = pi, is the unique maximizer of the function Πn

i=1ν
pi
i on MO).

Since g is continuous and M ′ is closed, g is bounded and attains its infimum
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A = minM ′(g) on M ′. But since g is non-zero on M ′, this minimum cannot be
zero: A = minM ′(g) 6= 0. Similarly, since f is continuous and M ′ is closed, g is
bounded and attains its supremum B = maxM ′(f) < ∞ (which thus has to be
finite). Take now some N ≥ max(N2,

B
A ). For all m > N , we have

m >
B

A
≥ f(ν)

g(ν)

for all ν ∈M ′, as desired.

Corollary 1. Suppose that M ⊆ MO is finite, and the correct probability is
µ ∈M , with µ(oi) 6= 0 for all i. Then, with µ-probability 1, the agent’s belief will
settle on the correct probability distribution µ after finitely many observations:

µ({ω ∈ Ω | ∃K ∀m ≥ K : B({µ} |ωm) holds in M}) = 1.

Proof. Apply the previous Theorem to some ε > 0 small enough so that {ν | d(µ, ν) <
ε} ∩M = {µ}.

It is important to note the differences between our convergence result and the
Savage style convergence results in the Bayesian literature that we mentioned
in the Introduction. Savage’s theorem only works for a finite set of hypotheses
(corresponding to finite or countable M), so that the prior can assume a non-
zero probability for each. Ours does not need this assumption and indeed,
it works on the whole MO, since we don’t put a probability over hypothesis
(probability measures), but rather a plausibility. Also, in the case of a finite
set of hypotheses/distributions, our approach converges in finitely many steps
(while Savage’s still converges only in the limit).

4 Towards a Logic of Statistical Learning

In this section we will develop the logical setting that can capture the dynamics
of learning described above. As was originally intended our logical language will
be designed as to accommodate both type of information, i.e. finite observations
and higher order information expressed in terms of linear inequalities. As we
pointed out at the start there is a fundamental distinction between these two
types of information which is reflected in the way that ingredients of our logical
language are interpreted. The observations are interpreted in a σ-algebra E ⊆
P(Ω) and are not themselves formulas in our logical language as they do not
correspond to properties over the set of probability measures. The reason, as
described before, lies in the fact that no finite sequence of observations can
rule out any possible probability distribution and as such do not single out
any subset of the domain. The formulas of our logical language will instead be
statements concerning the probabilities of observations given in terms of linear
inequalities and logical combinations thereof as well as the statements concerning
the dynamics arising from such finite observations.
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Our set of propositional variables is the set of outcomes O = {o1, . . . , on}. The
set of formulas, in our language, FLLS , is inductively defined as

φ ::= > |
m∑
i=1

aiw(oi) ≥ c |φ ∧ φ | | ¬φ |Kφ |B(φ|o) |B(φ|φ) | [o]φ | [φ]φ

where oi ∈ O, ai’s and c in Q. The propositional connectives>,¬,∧ are standard.
Letters K and B stand for knowledge and (conditional) belief operators, and [o]
and [φ] capture the dynamics of learning by an observation, o and by higher
order information, φ respectively, and stand for “after observing o”, and “after
learning φ”. Simple belief Bφ is taken to be an abbreviation for B(φ|>).

Definition 5 (Probabilistic Plausibility Models). A probabilistic plausibility
model over a finite set O is a structure M = (M,pla, v) where M ⊆ MO,
(M,pla) is a probabilistic plausibility frame and an evaluation function v : O → E
that assigns to each propositional variable o a cylinder set oj. 2

Definition 6 (Two types of update). Let M = (M,pla, v) be a probabilistic
plausibility model, let e ∈ E be a sampling event, and let P ⊆M be a higher-order
“proposition” (set of possible worlds, expressing some higher-order information
about the world). The result of updating the model with sampling evidence e is
the modelMe = (M,plae, v). In contrast, the result of updating the model with
proposition P is the model MP = (P, pla, v).

Let M = (M,pla, v) be a probabilistic plausibility model. The semantics for
formulas is given by inductively defining a satisfaction relation � between worlds
and formulas. In the definition, we use the notation ‖φ‖M := {µ ∈ M :M, µ �
φ}:

M, µ �
n∑
i=1

aiw(oi) ≥ c ⇐⇒
n∑
i=1

aiµ̂(v(oi)) ≥ c

M, µ � φ1 ∧ φ2 ⇐⇒M, µ � φ1 and M, µ � φ2
M, µ � φ1 ∧ φ2 ⇐⇒M, µ � φ1 or M, µ � φ2
M, µ � ¬φ ⇐⇒M, µ 2 φ
M, µ � Kφ ⇐⇒M, ν � φ for all ν ∈M
M, µ � B(φ |θ) ⇐⇒ B(‖φ‖M | ‖θ‖M) holds in (M,pla)

M, µ � B(φ | o) ⇐⇒ B(‖φ‖M | o) holds in (M,pla)

M, µ � [o]φ ⇐⇒Mo, µ � φ

M, µ � [θ]φ ⇐⇒
(
M, µ � θ =⇒ Mθ, µ � φ

)
As is standard, for a model M = (M,pla, v), let ‖φ‖M = {ν ∈ M |M, ν � φ}
and we shall say that a formula φ is valid in M if and only if M, µ � φ for all
µ ∈M . Formula φ ∈ FLSL is valid (in the logic LSL) if it is valid in every model
M = (M,pla, v).

2 Notice that since we deal with i.i.d distributions the choice of j does not matter.
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Proposition 9. LetM be a probabilistic plausibility model. The set BM = {φ ∈
FLPU |M � Bφ} is consistent.

Proof. Take a probabilistic plausibility model M = (M,pla, v). Let φ ∈ BM.
We show that for any ξ ∈ M there is some member of M that is at least as
plausible as ξ but does not belong to ¬φ and thus by definition ¬φ 6∈ BM.
Since φ ∈ BM, by definition there exits µ ∈ M such that for all ν ∈ M with
pla(ν) ≥ pla(µ), ν ∈ ‖φ‖. Then if pla(ξ) ≥ pla(µ), then ξ ∈ ‖φ‖ and thus
ξ /∈ M \ ‖φ‖ = ‖¬φ‖. Thus there exists some elements of M , namely, ξ itself
that is at least as plausible of ξ but does not belong to ‖¬φ‖. If pla(ζ) < pla(µ)
and since µ ∈ ‖φ‖, µ /∈ M \ ‖φ‖ = ‖¬φ‖. Then again there is some member of
M , namely µ that is more plausible than ξ but does not belong to ‖¬φ‖.

Proposition 10. Let o ∈ O and φ, θ, ξ ∈ FLSL. Then the following are valid
formulas in LSL

– w(o) ≥ 0
–
∑
o∈O w(o) = 1

– K(φ→ θ)→ (Kφ→ Kθ)
– Kφ→ φ
– Kφ→ KKφ
– ¬Kφ→ K¬Kφ
– B(φ→ θ)→ (Bφ→ Bθ)
– Kφ→ Bφ
– Bφ→ BBφ
– ¬Bφ→ B¬Bφ

Proof. Notice that at each model M and each world µ, w is interpreted as
a probability mass function, namely µ itself. The rest follow easily from the
definition.

The dynamic operator in our logic that correspond to learning of higher order
information, [φ], is essentially an AGM type update and satisfies the corresponding
axioms, that is:

Proposition 11. Let φ, θ, ξ ∈ FLSL. Then the following are valid formulas in
LSL

– B(φ |φ)
– B(θ |φ)→ (B(ξ |φ ∧ θ)↔ B(ξ |φ))
– ¬B(¬θ |φ)→ (B(ξ |φ ∧ θ)↔ B(θ → ξ |φ))
– If φ↔ θ is valid in M then so is B(ξ |φ)↔ B(ξ | θ).

Proof. Notice that the plausibility function induces a complete pre-order on the
set of worlds. The validity of the above formulas over such frames as well as
the correspondence between these formulas and the AGM axioms are given by
Board in [1].
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Finally, we give without proofs some validities regarding the interaction of the
dynamic modalities with knowledge modality and (conditional) belief.

Proposition 12. Let φ, θ, ξ ∈ FLSL. Then the following are valid formulas in
LSL

– [φ]q ↔ (φ→ q) for atomic q
– [o]q ↔→ q for atomic q
– [φ]¬θ ↔ (φ→ ¬[φ]θ)
– [o]¬θ ↔ (¬[o]θ)
– [φ](θ ∧ ξ)↔ ([φ]θ ∧ [φ]ξ)
– [o](θ ∧ ξ)↔ ([o]θ ∧ [o]ξ)
– [φ]Kθ ↔ (φ→ K[φ]θ)
– [o]Kφ ⇐⇒ K[o]φ
– [φ]B(θ | ξ) ⇐⇒ (φ→ B([φ]θ |φ ∧ [φ]ξ))
– [o]B(φ |o′) ⇐⇒ B([o]φ | o, o′)

5 Unifying the Two Types of Learning

In this section we will extend the setting in Section ?? and unify the two
types of learning. We will generalise our setting in two ways. First we extend
our mathematical setting in a way that allows us to treat observation and
propositions on par and hence unify the two types of learning that have been
treated separately so far. Second, we extend our language to be able to express
observations in the language. This increases the expressibility of the language by
allowing the linear inequalities to express information concerning more complex
events rather than only single observations.
As before take a set (of outcomes) O, Ω = O∞ and let E ⊂ P(Ω) be a σ-algebra
generated by the set of cylinders oji = {ω ∈ Ω |ωj = oi} and let MO be a set of
probability mass function on O.

Definition 7. (Generalised Frame) A generalised probabilistic plausibility frame
over O is a structure FO = (Σ, pla) where Σ ⊆MO ×Ω and pla : MO → [0,∞)
is a continuous function, such that pla(µ) = 0 if and only if µ(o) = 1 for some
o ∈ O. The elements σ = (µσ, ωσ) ∈ Σ are called possible worlds.

Example 3 Let O = {H,T}, Ω be the set of infinite sequences from O, E a
σ-algebra of subsets of Ω and Ent : MO → [0,∞) the Shannon Entropy function
with respect to the partition {H,T}. Then (MO×Ω,Ent) is a generalised probabilistic
plausibility frame. A possible world is a pair consisting of a probability function
over O and an infinite sequence of H and T.

Definition 8. Let A ⊆ Σ and Aµ = {o ∈ Ω | (µ, o) ∈ A}. Define

AE = {A ⊆ Σ | ∀µ ∈M (Aµ ∈ E) }

as the set of subsets of Σ that are globally measurable in M .
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Proposition 13. AE is a σ-algebra.

Proof.

– Σ and ∅ are obviously in AE .
– Let A ∈ AE and Ac = Σ − A. For all µ ∈ MO, (µ, o) ∈ Σ for all o ∈ Ω, so
Aµ ∪ (Ac)µ = Ω and Aµ ∈ E and since E is a σ-algebra (Ac)µ ∈ E and so
Ac ∈ AE .

– Let A1, . . . , An ∈ AE then Aµ1 , . . . , A
µ
n ∈ AE . Thus (A1 ∪ . . . ,∪An)µ =

Aµ1 ∪ . . . ∪Aµn ∈ E and so A1 ∪ . . . ,∪An ∈ AE .

Given a generalised frame (Σ, pla), we can define the conditional plausibility
functions, pla(. | .) : MO × E → [0,∞), as before, by

pla(µ | e) = pla(µ)µ̂(e).

The plausibility function pla (and more generally the conditional plausibility
function) impose a pre-order on the set of probability functions in MO. In the
previous setting this was a pre-order on the set of worlds and hence induced
a notion of belief. To achieve the same in this setting the plausibility ranking
need to be lifted from the set of probability functions to a ranking over the
set of worlds Σ. With slight abuse of notation we will denote the lifting of the
plausibility function from MO to Σ also by pla.

Definition 9. Let (Σ, pla) be a generalised probabilistic plausibility frame and
σ = (µσ, ωσ) ∈ Σ. Define pla : Σ → [0,∞),

pla(σ) = pla(µσ),

and pla(. | .) : Σ ×AE → [0,∞),

pla(σ |A) = pla(µσ)µ̂σ(Aµσ )

where as before µ̂ is the unique extension of µ to E ⊆ P(Ω).

Example 4 1. (continued) Let

A = Σ1 ∪Σ2 ∪Σ3,

where Σ1 = {(µ1, ω) |ωi = H,ω2 = T} similarly let Σ2 = {(µ1, ω) |ω1 = T, ω2 =
H}and Σ3 = {(µ2, ω) |ω1 = H,ω2 = T, ω3 = H}. Then Then Aµ1

, for example,
is the event that exactly one of the first two tosses lands Heads.

Aµ1 = {< H,T, . . . >} ∪ {< T,H, . . . >}, and

Aµ2 = {< H,T,H, . . . >}.

Next, let σ1 ∈ Σ1 and σ3 ∈ Σ3. Then

pla(σ1 |A) = pla(µ1)µ̂1(Aµ1).
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Let µ1 be the probability measure given by µ1(Heads) = 0.8 and µ2 be the one
for which µ2(H) = 2µ2(T ). Then before learning A, pla(σ1) < pla(σ3) as the
Shannon entropy of µ2 is higher than µ1. However, after learning A,

pla(σ1 |A) = Ent(µ1).µ̂1(Aµ1) ≈ 0.71, and

pla(σ3 |A) = Ent(µ2)µ̂2(Aµ2) ≈ 0.4

and we have pla(σ1 |A) > pla(σ3 |A).

We can now consider an extended logical language LPU∗ that can express both
the final observations and the higher order information given bt inequalities.

5.1 The Syntax of LPU∗

Fix a finite set O = {o1, . . . , on} of outcomes and let Prop = {oj | o ∈ O, j ∈
N} be a set of atomic propositional variables. The set of formulas of LPU∗ , is
inductively defined as

φ ::= oj |> |
m∑
i=1

aiw(φi) ≥ c |φ1 ∧ φ2 | ¬φ |Kφ |Bφ | [φ1]φ2

where oj ∈ Prop, ai’s and c in Q, K and B stand for knowledge and belief
operators and [φ]ψ stands for “after learning φ, ψ is true”.

5.2 The Semantics of LSL∗

Definition 10. A generalised, probabilistic plausibility model MO = (Σ, pla, v)
where (Σ, pla) is a generalised probabilistic plausibility frame and v : Prop→ E
a valuation of atomic propositions in E defined by

v(oj) = {σ ∈ Σ |ωσ(j) = o}.

Given a probabilistic plausibility model MO = (Σ, pla, v) the semantics for
FLSL is given by the function ‖.‖ : FLPU∗ → AE defined by,

σ ∈ ‖φ‖ ⇐⇒ M, σ � φ

where

– M, σ � oj iff σ ∈M × v(oj),
– M, σ �

∑n
i=1 aiw(ψi) ≥ c iff σ ∈ {µ ∈M |

∑n
i=1 aiµ̂(‖ψi‖µ) ≥ c } ×Ω

– M, σ � φ1 ∧ φ2 iff M, σ � φ1 and M, σ � φ2
– M, σ � ¬φ iff M, σ 2 φ
– M, σ � Kφ iff M, δ � φ for all δ ∈ Σ.
– M, σ � Bφ if ∃δ ∈ Σ,∀γ ∈ Σs.t.pla(γ) ≥ pla(δ), M, γ � φ.
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– M, σ � [φ1]φ2 iffM, σ � φ1 andMφ1 , σ � φ2 whereMφ1 = (‖φ1‖ , pla(. | ‖φ1‖), v).

Proposition 14. The function ‖.‖ is well defined, i.e, for all φ ∈ FLPU , ‖φ‖ ∈
AE .

Proof. By induction on the φ.

– For φ = p a propositional variable, ‖p‖ = M × v(p). Thus for each µ ∈ M ,
‖p‖µ = v(p) ∈ E thus, ‖p‖ ∈ AE .

– For φ =
∑n
i=1 aiw(ψi) ≥ c, ‖φ‖ = N × Ω for some N ⊆ M then. Thus for

each µ ∈M , ‖φ‖µ = Ω or ‖φ‖µ = ∅, thus, ‖φ‖ ∈ AE .
– For φ = φ1 ∧ φ2, with ‖φ1‖ , ‖φ2‖ ∈ AE . But AE is a σ-algebra thus ‖φ1‖ ∩
‖φ2‖ ∈ AE .

– For φ = ¬φ1, with ‖φ1‖ ∈ AE since AE is a σ-algebra we have (Σ −‖φ1‖) ∈
AE .

– For φ = Bφ1, ‖φ‖ = Σ ∈ AE or ‖φ‖ = ∅ ∈ AE .
– For φ = [φ1]φ2, with ‖φ1‖ , ‖φ2‖ ∈ AE , ∀µ ∈M , ‖φ2‖µ ∈ AE , thus {µ | (µ, ω) ∈
‖φ1‖} ⊆M . Thus for all σ ∈ Σφ1 = ‖φ1‖, and all ν ∈ {µ | (µ, ω) ∈ ‖φ1‖} we
have ‖φ2‖ν ∈ AE .

Proposition 15. For a formula φ :=
∑n
i=1 aiw(ψi) ≥ c, pla(. | ‖φ‖) = pla.

Definition 11 (Regular Worlds). In a model MO = (Σ, pla, V ), we shall
call a world σ = (µ, ω) ∈ Σ regular if for all o ∈ O

lim
n→∞

|{i ≤ n |ω(i) = o}|
n

= µ(o),

we denote the set of regular worlds in Σ by Reg(Σ).

Let Φµ and Φεµ be the propositions asserting that the correct probability function
is µ and that the correct probability function is in an ε-neighbourhood of µ
respectively.

Φµ = {(ν, ω) ∈ Σ | ν = µ}, and

Φεµ = {(ν, ω) ∈ Σ | d(ν, µ) ≤ ε}.

We can now give an analogous of Proposition 8 that is a slight variation of the
strong law of large numbers.

Proposition 16. For every probability function µ,

µ(Reg(Σ) ∩ Φµ) = 1

that is, almost all worlds in Σ are regular.

We are now in the position to state the analogous of the learning results of
Theorem 2 for the extended setting.
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Theorem 3. Consider a model MO = (Σ, pla, v) with O = {o1, . . . , on}, M ⊆
MO and Σ = M ×Ω.

– (i) If M is finite then

µ({σ ∈ Φµ | ∃N ∀m ≥ N B(Φµ |ωmσ )}) = 1.

– (ii) If M is infinite then

µ({σ ∈ φµ | ∀ε > 0 ∃Nε ∀m ≥ Nε B(Φεµ |ωmσ )}) = 1.

Proof. Using Proposition 16, to show (i), it would be enough to show that for
every regular σ ∈ φµ, there existsN such that for allm ≥ N , [ωσ(1), . . . , ωσ(m)]B(φµ).
Notice that for a regular σ = (µσ, ωσ), ωσ is µσ-normal. The proof then follows
by slight modification of the proof of Theorem 2.

Definition 12. Let M = (Σ, pla) and let c ∈ (0, 1),

– ∆ ⊂ Σ is called convex if for every σ = (µσ, ωσ), δ = (µδ, ωδ) ∈ ∆ and
ν = cµσ + (1− c)µδ

(ν, ω) ∈ Σ =⇒ (ν, ω) ∈ ∆.
– A sentence φ is called convex if ||φ|| is a convex subset of Σ.

Proposition 17. Let M = (Σ, pla, v) be a probabilistic plausibility model. Then
every φ ∈ FL+ is convex.

Proof. By induction on the structure of the formula.

– φ := p. Then ‖φ‖ = M × v(p).
– φ := θ ∧ ψ with ψ, θ convex. Then ‖φ‖ = ‖ψ‖ ∩ ‖θ‖ and the intersection of

two convex sets is convex
– φ :=

∑n
i=1 aiw(φi) ≥ c. Then if σ1, σ2 ∈ ‖φ‖ we have

∑n
i=1 aiµσ1

(φi) ≥ c and∑n
i=1 aiµσ2

(φi) ≥ c then for every d ∈ (0 , 1) and µ = dµσ1
+ (1 − d)µσ2

),∑n
i=1 aiw(φi) ≥ c and so for every σ = (µ, ω) ∈ Σ, σ ∈ ‖φ‖ and so φ is

convex.
– φ := Kψ. Then ‖φ‖ = Σ or ‖φ‖ = ∅.
– φ := Bθψ with θ convex. Then ‖φ‖ = Σ or ‖φ‖ = ∅.
– φ := [θ]ψ. Let σ = (µσ, ωσ), δ = (µδ, ωδ) ∈ ‖[θ]ψ‖ ⊆ Σ. Then M,σ � θ and
M, δ � θ. For d ∈ [0, 1] let µ = dµσ + (1− d)µδ) then since ‖θ‖ is convex

(µ, ω) ∈ Σ =⇒ (µ, ω) ∈ ‖θ‖

Thus if Σθ be the set of state of Mθ then Σθ is convex. Then since ‖ψ‖ is
also convex in Σθ we have

σ, δ ∈ Σθ ∩ ‖ψ‖ → (µ, ω) ∈ Σθ ∩ ‖ψ‖ .
We will then hve the analogus of ?? for the extended setting as well.

Proposition 18. Let M = (M,pla, v) be a generalised probabilistic plausibility
model where pla is a convex function. Then for any φ ∈ FL+ we have

M � B

(
m∑
i=1

aiw(oi) ≥ c |φ

)
∨B

(
m∑
i=1

aiw(oi) < c |φ

)
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6 Conclusion and Comparison with Other Work

We studied forming beliefs about unknown probabilities in the situations that
are commonly described as the those of radical uncertainty. The most widespread
approach to model such situations of ‘radical uncertainty’ is in terms of imprecise
probabilities, i.e. representing the agent’s knowledge as a set of probability
measures. There is extensive literature on the study of imprecise probabilities [2,
4, 9, 12, 23–25] and on different approaches for decision making based on them
[3, 11, 18, 26–28, 31, 32] or to collapse the state of radical uncertainty by settling
on some specific probability assignment as the most rational among all that is
consistent with the agent’s information. The latter giving rise to the area of
investigation known as the Objective Bayesian account [14–17, 20, 21].
Another approach to deal with these scenarios in the Bayesian literature come
from the series of convergence results collectively referred to as “washing out of
the prior”. The idea, which traces back to Savage, see [6, 30], is that as long as one
repeatedly updates a prior probability for an event through conditionalisation on
new evidence, then in the limit one would surely converge to the true probability,
independent of the initial choice of the prior.3 Bayesians use these results to
argue that an agent’s choice of a probability distribution in scenarios such as
our urn example is unimportant as long as she repeatedly updates that choice
(via conditionalisation) by acquiring further evidence, for example by repeated
sampling from the urn. However, it is clear that the efficiency of the agent’s
choice for the probability distribution, put in the context of a decision problem,
depends strongly on how closely the chosen distribution tracks the actual. This
choice is most relevant when the agents are facing a one-off decision problem,
where their approximation of the true probability distribution at a given a point
ultimately determines their actions at that point.
Our approach, based on forming rational qualitative beliefs about probability
(based on the agent’s assessment of each distribution plausibility), does not
seem prone to these objections. The agent does “the best she can” at each
moment, given her evidence, her higher-order information and her background
assumptions (captured by her plausibility map). Thus, she can solve one-off
decision problems to the best of her ability. And, by updating her plausibility
with new evidence, her beliefs are still guaranteed to converge to the true
distribution (if given enough evidence) in essentially all conditions (-including in
the cases that evade Savage-type theorems). We end by sketching the contours
of a dynamic doxastic logic for statistical learning. Our belief operator satisfies

3 To be more precise, if one starts with a prior probability for an event A, and
keeps updating this probability by conditionalizing on new evidence, then almost
surely, the conditional probability of A converges to the indicative function of A
(i.e. to 1 if A is true, and to 0 otherwise). This form is called Levy’s 0-1 law.
Savage’s results use IID trials and objective probabilities and has been criticised
regarding its applicability to scientific inference. There are however, a number of
more powerful convergence results avoiding these assumptions, for example based on
Doob’s martingale convergence theorem [5]. There are also several generalisations of
these results, e.g. Gaifman and Snir [8].
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all the axioms of standard doxastic logic, and one form of conditional belief
(with propositional information) satisfies the standard AGM axioms for belief
revision. But the other form of conditioning (with sampling evidence) does not
satisfy these axioms, and this is in fact essential for our convergence results.
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