
Probabilities with Gaps and Gluts

Abstract

Belnap-Dunn logic (BD), sometimes also known as First Degree En-
tailment, is a four-valued propositional logic that complements the clas-
sical truth values of True and False with two non-classical truth values
Neither and Both. The latter two are to account for the possibility of
the available information being incomplete or providing contradictory ev-
idence. In this paper, we present a probabilistic extension of BD that
permits agents to have probabilistic beliefs about the truth and falsity of
a proposition. We provide a sound and complete axiomatization for the
framework defined and also identify policies for conditionalization and ag-
gregation. Concretely, we introduce four-valued equivalents of Bayes’ and
Jeffrey updating and also suggest mechanisms for aggregating information
from different sources.

Keywords: Belnap-Dunn logic, First Degree Entailment, Non-standard proba-
bility theory, Probability theory, Bayes’ updating, Jeffrey updating, Probability
Aggregation

1 Introduction

In learning about a classical system that adheres to the laws of propositional
logic, we may be faced with information that does not. Naturally, if information
is scarce, our evidence may contain truth value gaps, neither indicating certain
propositions to be true nor false. But we may also be faced with contradictory
information, especially when our insights are gained by combining various bodies
of evidence. This may lead to truth value gluts, i.e. propositions that are labelled
as both true and false.

There has been many attempts in the literature to develop formal systems
for capturing and analyzing such non-classical situations. These are generally
divided into two camps. The first is motivated by adopting the philosophical
position of dialetheism as defended by Priest (2006, 2007), advocating the thesis
that there are true contradictions, i.e. sentences which are both true and false.
Corresponding formal systems should thus allow for assigning both truth values
to a sentence simultaneously. Probably the most well known example of such
logical systems is the logic LP (Priest, 1979, 2002).

The second camp takes the existence of gaps and gluts as a pathological con-
sequence of imperfect information. Crucially, one may hope than even imperfect
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information would allow for at least some reliable inferences. In general, there
are two ways to go here. One could either make the set of premises consistent
or develop non-trivial inference rules that work on inconsistent sets of premises.
Consistency of premises can be obtained by focusing on maximal consistent sub-
sets, cf. Rescher and Manor (1970); Klein and Marra (2020), or by employing
belief revision, as in AGM systems (Alchourrón et al., 1985). Mechanisms for
dealing with inconsistent information, on the other hand, are developed in a
variety of frameworks such as discussive logic (Jaskowski, 1948), adaptive logic
(Batens, 2001), Da Costa’s logics of formal inconsistency (1974; 1989), relevant
logic of Anderson and Belnap (1975) and their variants.

Another well-known logical framework that falls in this last category is
Belnap-Dunn logic (BD. cf. Belnap, 1977, 2019; Dunn, 1976), sometimes also
going by the name of First Degree Entailment. Briefly, this system rests on two
assumptions. The first is that gaps and gluts may occur even for boundedly ra-
tional agents, as information may be limited (gaps) and the question of whether
a given belief set is consistent (i.e. checking for the absence of gluts) is known to
be NP-hard. Building on the latter claim, BD’s second assumption is that the
logic of information should not validate the principle of explosion1. Just to the
contrary, BD stipulates that a body of information may afford us substantial in-
sights about some matter q, even if it contains contradictory information about
some other p that is completely unrelated to q. Belnap-Dunn logic, in short, is
a substructural logic, that invalidates explosion and tracks which insights can
be inferred from an information base that may contain gaps and gluts.

But of course, the problem of insufficient or contradictory information does
not apply to categorial true-false information only. Rather, probabilistic infor-
mation is affected by similar arguments about gaps and gluts as those outlined
above. In his 1997 paper, Jøsang puts forward a framework for three valued
probabilities, incorporating uncertainty as third value that may occur naturally
when evidence is ambiguous or insufficient. Notably, this framework circum-
vents the debated principle of insufficient reason by distinguishing situations of
insufficient information from those, where equally strong evidence is available
for and against some proposition. Later approaches extend this to four-valued
probabilities, where the fourth value represents conflicting information, or gluts.
The necessity of gluts is often argued for by considering a Bayesian agent who re-
ceives two pieces of mutually contradictory information from sources she judges
highly reliable, cf. the firefighter example in Dunn and Kiefer (2019).

In short, these arguments call for a four-valued probabilistic generalization
of Belnap-Dunn logic in a similar way as classical probability theory generalizes
propositional logic. In a first approach to this project Michael Dunn (2010) has
defined a four-valued probabilistic framework and has studied logical properties
of the resulting probabilistic entailment. In a similar vein, Childers, Majer
and Milne (2019) have put forward a single-valued approach to non-standard
probabilities motivated by a frequentist interpretation where probability gaps
and gluts may occur naturally if probabilities are derived from sampling two

1The principle of explosion states that every formula can be derived from a contradiction.
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independent sources. They further substantiate the approach by providing a
subjectivist interpretation of non-standard probabilities and the corresponding
Dutch Book Argument.

In the present paper, we offer a novel framework for non-standard probabil-
ities that reconciles Dunn’s and Childers et al.’s lines of work (Section 3). In
doing so, we pursue four major goals. The first is to provide a translation mecha-
nism between four-valued and single-valued non-standard probabilities, showing
that these are different but equivalent perspectives on the same phenomenon.
(Section 5). The second aim relates to an axiomatization of the system defined.
While Dunn (2010) analyzes logical properties of the probabilistic inference re-
lation ensuing from his approach, no axiomatization of the probabilistic system
itself has been put forward so far. To fill this gap, we provide an axiomatiza-
tion of the non-standard probabilities defined here (Section 4) and show this
axiomatization sound and complete with respect to a certain class of proba-
bilistic models (Section 6). While building on Dunn’s approach, our framework
slightly deviates from his in order to avoid certain conceptual problems. As
we will show, both, Jøsang’s three valued probabilities as well as Dunn’s four-
valued probability implicitly assume all events to be mutually probabilistically
independent. Under this assumption, the question of conditionalization trivial-
izes, as no proposition bears any information about any other proposition. In
the present framework, we abandon this independence assumption. Consequen-
tially, the question of conditional probabilities becomes meaningful. Defining
and studying an adequate notion of conditionalization is our third goal, pursued
in Section 7. The fourth goal, finally, is related to aggregation, i.e. the question
of how to combine probabilistic information from various sources. Here, we will
introduce various policies and study their respective properties (Section 8).

2 Logical Preliminaries

We start by giving a brief recollection of Belnap-Dunn four-valued logic before
proceeding to introduce its probabilistic extensions. Belnap-Dunn four-valued
logic is defined over a propositional language that is built over a set Prop of
propositional variables. Formally, the logical language LProp is given by the
Backus-Naur form:

ϕ :: p |  ϕ, |ϕ^ ϕ

Disjunction (_) is defined in the standard way. The main difference to classical
propositional logic consists in the way that formulas are evaluated. In classical
propositional logic, evaluations are defined as functions v : LProp Ñ t0, 1u that
are derived from a valuation on the set of atoms Prop. For Belnap-Dunn logic
there are two ways to define evaluations. One approach is to define evaluations
as functions v : LProp Ñ Ppt0, 1uq. In other words instead of evaluating formulas
on the two element lattice
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t0u

t1u

they are interpreted on the four element lattice BD4

t0u

t u t1, 0u

t1u

Evaluating formulas in the four element lattice Ppt0, 1uq allows for the assign-
ment of two new truth values tu and t0, 1u. These represent so-called truth-value
gaps and gluts, i.e. situations where formulas obtain neither resp. both of the
classic truth values. Formally, the evaluation is defined inductively, starting
from an atomic valuation v : Prop Ñ Ppt0, 1uq, by:

1 P vp φq iff 0 P vpφq
0 P vp φq iff 1 P vpφq
1 P vpφ^ ψq iff 1 P vpφq and 1 P vpψq
0 P vpφ^ ψq iff 0 P vpφq or 0 P vpψq

An alternative approach is to use two separate classical valuations, called the
positive valuation v` and the negative valuation v´. Building on atomic val-
uations v` : Prop Ñ t0, 1u and v´ : Prop Ñ t0, 1u, these are defined for
φ, ψ P LProp as:

v`p φq “ 1 iff v´pφq “ 1
v´p φq “ 1 iff v`pφq “ 1
v`pφ^ ψq “ 1 iff v`pφq “ 1 and v`pψq “ 1
v´pφ^ ψq “ 1 iff v´pφq “ 1 or v´pψq “ 1

Both approaches yield equivalent semantics for Belnap-Dunn logic, as is eas-
ily seen. For reasons of notational convenience, we will employ the double valu-
ation approach. Within this approach, we can define an entailment relation as
φ (L ψ if and only if v`pφq “ 1 ñ v`pψq “ 1 for all double valuations pv`, v´q.
This entailment relation goes by the name of first degree entailment.

An important property of Belnap-Dunn logic, that we will make heavy use
of later, is that it admits disjunctive (as well as conjunctive) normal forms.
Just as in classical logic, a formula in disjunctive normal form is written as
a disjunction of conjunctions of literals. However, unlike in classical logic, an
atom might appear both positively and negatively within a conjunctive clause.

4



Theorem 1. (Theorem 3.9 in Font (1997)) Every formula of Belnap-Dunn
logic is equivalent to a formula in a conjunctive (disjunctive) normal form.

Moreover, up to permutation of conjuncts and disjuncts, formulas in con-
junctive (disjunctive) normal form may be identified with finite families of finite
sets of literals (Theorem 3.15 in Přenosil (2018)).

3 Probabilistic Models

The double valuation approach’s starting assumption is that positive and nega-
tive evidence are distinct. That is the absence of positive evidence for some p is
not the same as negative evidence against p (or positive evidence for  p, if you
will). In particular, there may be gaps, where neither evidence for p nor against
p is available, and gluts, where evidence of both types is present. Within our
models, we must hence treat positive and negative evidence separately. In the
following, we assume Prop finite and constant. Also, we will denote the set of
literals over Prop by Lit, i.e. Lit :“ PropYt p | p P Propu.

Definition 1. A non-standard model is a triple M “ xΣ, v`, v´y where Σ
is a finite or countably infinite set of states and v`, v´ : Σˆ Prop Ñ t0, 1u are
called the positive (negative) valuation function respectively. For p P Prop we
let v˘ppq “ ts P Σ | v˘ps, pq “ 1u.

Hence, a state s of a model M might be assigned an inconsistent set of
propositions (i.e., s P v`ppq X v´ppq for some p P Prop), and may remain
undecided about some propositions (s R v`pqq Y v´pqq for some q P Prop).

Non-standard models provide a semantics for BD. More specifically, logical
formulas of LProp are evaluated on model-state pairs, using relations |ù` and
|ù´. From this, we then obtain the notions of a positive and negative extension.

Definition 2. Let M “ xΣ, v`, v´y be a non-standard model, s P Σ a state
and ϕ,ψ P LProp be formulas. Then
iq The semantics of LProp on pM, sq is given by:

M, s |ù` p iff s P v`ppq

M, s |ù´ p iff s P v´ppq

M, s |ù` ϕ^ ψ iff M, s |ù` ϕ and M, s |ù` ψ

M, s |ù´ ϕ^ ψ iff M, s |ù´ ϕ or M, s |ù´ ψ

M, s (`  ϕ iff M, s |ù´ ϕ

M, s |ù´  ϕ iff M, s |ù` ϕ

iiq The positive and negative extensions of ϕ P LProp are

|ϕ|`M “ ts P Σ |M, s (` ϕu

|ϕ|´M “ ts P Σ |M, s (´ ϕu p“ ts P Σ |M, s (`  ϕuq
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We define the entailment relation between sentences in the usual way: φ (˘ ψ
if and only if for all models M and states σ, if M, s (˘ φ then M, s (˘

ψ. Observe the obvious connection between positive and negative extension:
| ϕ|`M “ |ϕ|´M. Moreover, we define the set of pure belief, pure disbelief,
conflict and uncertainty about ϕ as

|ϕ|bM “|ϕ|`Mz|ϕ|
´
M |ϕ|dM “|ϕ|´Mz|ϕ|

`
M

|ϕ|cM “|ϕ|`M X |ϕ|´M |ϕ|uM “Σzp|ϕ|`M Y |ϕ|´Mq.

The terms belief and disbelief, of course, refer to the intended interpretation as
doxastic state. Whenever clear by context, we omit the subscript M.

Towards a semantics of non-standard probability theory, we expand the non-
standard model defined above with a probability measure that is classic. Non-
classicality of the ensuing probability assignments, then, will be derived from
the underlying valuations only, i.e. from the fact that non-standard models
allow for gaps and gluts of truth values.

Definition 3. A probabilistic model is a tuple M “ xΣ, µ, v`, v´y where
xΣ, v`, v´y is a non-standard model and µ is a probability measure on the full
subset algebra of Σ.

Building on probabilistic models, we can derive two different probability assign-
ments from M, one four-valued, the other single valued. These are:

Definition 4. For a probabilistic model M “ xΣ, µ, v`, v´y,
iq the induced non-standard probability function pµ : LProp Ñ R is:

pµpϕq “ µp|ϕ|`Mq

iiq the induced four-valued probability function p̂µ : LProp Ñ R4 is

p̂µpϕq “
`

µp|ϕ|bq, µp|ϕ|dq, µp|ϕ|uq, µp|ϕ|cq
˘

.2

To end this section, we’d like to highlight a strong similarity to classic prob-
abilistic models. Classic probability assignments can be derived from possible
worlds models equipped with a probability function, i.e. finite classical models
akin to those in Definition 3. More explicitly, for a classical model of the form
M “ xW, v, µy with W a set of possible worlds, v : W ˆ Prop Ñ t0, 1u a valua-
tion, and µ : PpW q Ñ r0; 1s a probability measure, the probability of some ϕ is
given as µprϕsq, with rϕs “ ts P Σ: M, s ( ϕu. In fact, if Prop is finite, every
probability assignment to LProp can be obtained in this way.

Moreover, every world w of a possible worlds models W naturally corre-
sponds to its atomic valuation, which can be represented by the subset V Ď Prop
given by p P V iff vpw, pq “ 1 for p P Prop. In the same vein, each state

2We use the following convention in naming of probability measures i) p-like names stand
for syntactic measures (on languages) and µ-like names for measures on spaces. ii) Hat-
superscripts are used to denote four-valued probabilities. iii) The Subscript µ may be used if
a syntactic measure is derived from a space.
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σ of a probabilistic model corresponds to a non-standard possible assignment
ns Ď PpLitq defined by p P ns iff v`pw, pq “ 1 and  p P ns iff v´pw, pq “ 1
for p P At. Hence, non standard probabilistic models are obtained from pos-
sible world models by replacing classical worlds, i.e. atomic valuations with
BD-possible worlds, that is elements of PpLitq.

4 Axioms of Non-standard probability

In the following, we present a number of axioms for non-standard and four-
valued probabilities. The two sets of axioms given here are easily seen to be
sound w.r.t. to the semantics just presented. That they are also complete will
be shown in Section 6. We can hence use these axioms for a purely syntactic
definition of non-standard and four-valued probabilities.

Non-standard probabilities

We begin with axioms for single-valued non-standard probabilities, i.e. proba-
bility measures assigning each ϕ P LProp a unique rational number.

Definition 5. A non-standard probability assignment is a function
p : LProp Ñ R satisfying for all ϕ,ψ P LProp.

(A1) 0 ď ppϕq ď 1 (normalization)
(A2) if ϕ (L ψ then ppϕq ď ppψq (monotonicity)
(A3) ppϕ^ ψq ` ppϕ_ ψq “ ppϕq ` ppψq. (import-export rule)

where (L in (A2) is the entailment relation of Belnap-Dunn logic (first-degree
entailment).

These axioms are strictly weaker than the classic Kolmogorov axioms (Kol-
mogorov, 2018). Axioms (A1)-(A3) can be derived from the Kolmogorov axioms,
using that first degree entailment is a sub-relation of classical entailment. In
the converse direction, however, only the non-negativity axiom (ppϕq ě 0 for
all ϕ) is derivable from (A1). Neither Kolmogorov’s unit axiom pppJq “ 1q
nor the (σ)-additivity axioms are derivable from (A1)-(A3), as is illustrated by
the fact that assigning probability .5 to every formula satisfies (A1)-(A3). In
fact, the import-export axiom is a weak counterpart to additivity, stating that
a general rule for adding probabilities that is derivable from the Kolmogorov
axioms, ppϕ _ ψq “ ppϕq ` ppψq ´ ppϕ ^ ψq, continues to hold. Within the
above axiomatization, the import-export axioms (A3) is the only condition
regulating the relation between the probability of a formula and its negation.
As a result the probabilities of ϕ and  ϕ need not sum up to 1. The con-
straint ppϕ _  ϕq ` ppϕ ^  ϕq “ ppϕq ` pp ϕq allows for probabilistic gaps
(ppϕ _  ϕq ă 1q and gluts (ppϕ ^  ϕq ą 0q to occur simultaneously. This
squares with our original motivation of establishing independence between pos-
itive and negative evidence.
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Four-Valued probabilities

We now turn to four-valued probability assignments. These are characterized
by a total of six axioms.

Definition 6. A four-valued probability assignment is a function p̂ :
LProp Ñ R4. Writing ϕ̂ as pbϕ, dϕ, uϕ, cϕq, this function must satisfy

(D1) 0 ď bϕ, dϕ, uϕ, cϕ
(D2) bϕ ` dϕ ` uϕ ` cϕ “ 1
(D3) b ϕ “ dϕ, c ϕ “ cϕ
(D4) if ϕ (L ψ then bϕ ` cϕ ď bψ ` cψ
(D5) bϕ^ ϕ “ 0, cϕ^ ϕ “ cϕ
(D6) bϕ ` cϕ ` bψ ` cψ “ bϕ^ψ ` cϕ^ψ ` bϕ_ψ ` cϕ_ψ

where (L is first-degree entailment and ϕ,ψ P LProp

The four entries of p̂ stand for pure belief (i.e. ϕ is true and  ϕ is not),
pure disbelief, uncertainty and conflict respectively. Let us briefly explain the
axioms. The first two axioms (D1) and (D2) are classicality axioms, stating
that probabilities are non-negative and that the probabilistic masses of pure
belief, pure disbelief, conflict and uncertainty must add up to 1. This reflects
the intuition that the four cases are mutually exclusive and jointly exhaustive,
i.e. that the metatheory of gaps and gluts is classical.

Axioms (D3)-(D6) then represent structural relations between the four-
valued assignments. (D3) emphasizes the strong relation between ϕ and  ϕ:
belief in one is the same as disbelief in the other, while both share the same
conflict and uncertainty. (D4) is a direct counterpart of axioms (A2) above,
stating that the total belief in ϕ (i.e. the sum of pure belief in ϕ and belief in
ϕ and  ϕ together) must be monotonous under first degree entailment. (D5)
expresses that an agent cannot have pure belief in contradictory formulas of the
form ϕ^ ϕ. A fortiori, the conflict about ϕ^ ϕ must be derived from (and
equal to) conflict about ϕ alone. (D6), finally, is a counterpart to the import-
export axiom (A3). Briefly, it states the total beliefs (i.e. the sum of pure belief
and conflict together) of ϕ,ψ, ϕ_ ψ and ϕ^ ψ must satisfy the import-export
rule.

We should note that the axioms presented here are weaker than those put
forward in Dunn (2010). There, the probability of a conjunction ϕ ^ ψ is
determined by its conjuncts through:

bϕ^ψ “ bϕ ¨ bψ dϕ^ψ “ dϕ ` dψ ´ dϕdψ ` cϕuψ ` uϕcψ
uϕ^ψ “ uϕbψ ` bϕuψ ` uϕuψ cϕ^ψ “ bϕcψ ` cϕbψ ` cϕcψ

A similar axiom for three valued probabilities (true/false/uncertain) can be
found in Jøsang (1997). Notably, such definition makes conjunctions truth func-
tional, i.e. the probability of ϕ^ψ is fully determined by the probabilities of ϕ
and ψ. We take this to be too strong, especially given that no such functional de-
pendence holds in classic probability theory. Moreover this truth functional ap-
proach implies that all propositions are mutually probabilistically independent -
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precluding any interesting notions of conditionalization. To see this, assume that
ϕ and ψ are classical, i.e. p̂pϕq “ pbϕ, dϕ, 0, 0q and p̂pψq “ pbψ, dψ, 0, 0q. Then
the above definition simplifies to p̂pϕ^ψq “ pbϕbψ, dϕ ` dψ ´ dϕdψ, 0, 0q. With
other words, the probability (belief) in ϕ^ψ is the product of the probabilities
of ϕ and ψ - which exactly is the definition of probabilistic independence.

In the following section we will show a strong correspondence between non-
standard and four-valued probability assignments. Thereafter, we show axiom
systems (A1)-(A3) and (D1)-(D6) to be sound and complete with respect to the
class of probabilistic models defined above (Section 6). In Section 7 we then
discuss approaches to conditionalization in either setting.

5 Correspondence between non-standard and
four-valued probabilities

We have so far presented two different frameworks for non-standard probability,
one real-valued, the other with values in R4. As we show now, both are different
but equivalent perspectives on the same phenomenon. To this end, let Pns and
P4 be the set of non-standard and four-valued probability assignments respec-
tively. That is, Pns is the set of functions LProp Ñ R satisfying (A1)-(A3) while
P4 consists of all mappings LProp Ñ R4 satisfying (D1)-(D6). We will show the
translation map tr4

ns : P4 Ñ Pns defined by

tr4
nspp̂qpϕq :“ bϕ ` cϕ where p̂pϕq “ pbϕ, dϕ, uϕ, cϕq

to be a bijection. In the opposite direction, the map trns4 : Pns Ñ P4 is given by

trns4 ppqpϕq :“pppϕq ´ ppϕ^ ϕq, pp ϕq ´ ppϕ^ ϕq,

p1´ ppϕq ´ pp ϕq ` ppϕ^ ϕq, ppϕ^ ϕqq

As expected, the maps tr4
ns and trns4 are inverse to each other:

Theorem 2. tr4
ns and trns4 are well-defined. Moreover trns4 ˝ tr4

ns “ idP4
and

tr4
ns ˝ tr

ns
4 “ idPns

Moreover, the translation maps tr4
ns and trns4 cohere with the way we defined

non-standard and four-valued assignments on a given probabilistic model.

Theorem 3. Let M “ xΣ, µ, v`, v´y be a probabilistic model and pµ and p̂µ the
induced non-standard and four-valued probability functions. Then tr4

ns ˝ p̂µ “ pµ
and trns4 ˝ pµ “ p̂µ.

The remainder of this section is devoted to showing these two results.

Proof of Theorem 2. To see that tr4
ns is well defined let p1 “ tr4

nspp̂q for a fixed
p̂ P P4. First, note that for any ψ P LProp with p̂pψq “ pbψ, dψ, uψ, cψq we have
0 ď bψ ` cψ ď 1, showing that p1 satisfies (A1). To see that p1 satisfies (A2)
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assume that ϕ (L ψ. By (D4), we have that bϕ ` cϕ ď bψ ` cψ and hence
p1pϕq ď p1pψq. For (A3) finally, note that by (D6) we have for any ϕ,ψ P LProp

that bϕ` cϕ` bψ` cψ “ bϕ^ψ` cϕ^ψ` bϕ_ψ` cϕ_ψ which immediately implies
that p1pϕq ` p1pψq “ p1pϕ^ ψq ` p1pϕ_ ψq.

Next, we show that also trns4 is well defined. For this fix p P Pns. For
ψ P LProp denote tr4

nsppqpψq by pbψ, dψ, uψ, cψq. Using this notation, we obtain

bψ ` dψ ` uψ ` cψ “`ppψq ´ ppψ ^ ψq ` pp ψq ´ ppψ ^ ψq

` 1´ ppψq ´ pp ψq ` ppψ ^ ψq ` ppψ ^ ψq

the latter term is easily seen to equal 1, showing (D2). For (D1) note that
ψ ^  ψ (L ψ and ψ ^  ψ (L  ψ. By (A2), we have that ppψ ^  ψq ď
ppψq, pp ψq which, together with (A1) implies that bψ, dψ, cψ ě 0. Finally, by
(A1) and (A3),

1´ ppψq ´ pp ψq ` ppψ ^ ψq ě ppψ _ ψq ´ ppψq ´ pp ψq ` ppψ ^ ψq “ 0

and hence uψ ě 0. The first half of (D3) follows from the fact that bψ “ ppψq´
ppψ^ ψq “ d ψ, using that ψ )(L   ψ and hence, by (A2), ppψq “ pp  ψq.
The second half follows from the fact that ψ^ ψ )(L  ψ^  ψ and hence,
by (A2), ppψ^ ψq “ pp ψ^  ψq. Similarly, (D4) can be derived from (A2)
together with the fact that bψ ` cψ “ ppψq ´ ppψ ^  ψq ` ppψ ^  ψq “ ppψq.
Using the latter fact again, (D6) is an immediate consequence of (A3). For
(D5), finally, note that ψ^ ψ )(L ψ^ ψ^ pψ^ ψq and hence, by (A2),
ppψ ^ ψq “ ppψ ^ ψ ^ pψ ^ ψqq. This implies that cψ^ ψ “ cψ and that
bψ^ ψ “ ppψ ^ ψq ´ ppψ ^ ψ ^ pψ ^ ψqq “ 0.

Finally, we show that trns4 ˝ tr4
ns “ idP4

and tr4
ns ˝ tr

ns
4 “ idPns

, i.e. that
trns4 and tr4

ns are left and right inverses of each other. We begin by showing
that tr4

nsptr
ns
4 ppqq “ p for any p P Pns. For ϕ P LProp, we have that trns4 ppqpϕq

equals

pppϕq ´ ppϕ^ ϕq, pp ϕq ´ ppϕ^ ϕq, 1´ ppϕq ´ pp ϕq ` ppϕ^ ϕq, ppϕ^ ϕqq .

Hence tr4
nsptr

ns
4 ppqqpϕq “ ppϕq ´ ppϕ^ ϕq ` ppϕ^ ϕq “ ppϕq as desired.

For the converse direction, let p̂ P P4. We have to show that trns4 ptr
4
nspp̂qq “

p̂. For this, let ϕ P LProp and denote p̂pψq by pbψ, dψ, cψ, uψq for any ψ P LProp.
By axioms (D3) and (D5) we have that b ϕ “ dϕ, c ϕ “ cϕ, bϕ^ ϕ “ 0 and
cϕ^ ϕ “ cϕ. Hence, the values of tr4

nspp̂qpϕq, tr
4
nspp̂qp ϕq and tr4

nspp̂qpϕ^ ϕq
are bϕ ` cϕ, dϕ ` cϕ and cϕ respectively. We then get that

trns4 ptr
4
nspp̂qqpϕq

“ptr4
nspp̂qpϕq ´ tr

4
nspp̂qpϕ^ ϕq, tr

4
nspp̂qp ϕq ´ tr

4
nspp̂qpϕ^ ϕq,

tr4
nspp̂qpϕ^ ϕq, 1´ tr

4
nspp̂qpϕq ´ tr

4
nspp̂qp ϕq ` tr

4
nspp̂qpϕ^ ϕqq

“pbϕ ` cϕ ´ cϕ, dϕ ` cϕ ´ cϕ, cϕ, 1´ pbϕ ` cϕq ´ pdϕ ` cϕq ` cϕq

“pbϕ, dϕ, cϕ, 1´ bϕ ´ dϕ ´ cϕq “ pbϕ, dϕ, cϕ, uϕq

where the last equation employs (D2). Hence tr4
nsptr

ns
4 pp̂qq “ p̂ as desired.
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Proof of Theorem 3. For ϕ P LProp denote p̂µpϕq by pbϕ, dϕ, uϕ, cϕq. By Defini-
tion 3, we have

bϕ “ µp|ϕ|bMq “ µp|ϕ|`Mz|ϕ|
´
Mq

cϕ “ µp|ϕ|cMq “ µp|ϕ|`M X |ϕ|´Mq

Hence,

tr4
nspp̂µqpϕq “ bϕ ` cϕ “ µp|ϕ|bMq ` µp|ϕ|

c
Mq

“ µp|ϕ|`Mz|ϕ|
´
Mq ` µp|ϕ|

`
M X |ϕ|´Mq “ µp|ϕ|`Mq

By definition, the latter term is exactly pµpϕq. Thus tr4
ns ˝ p̂µ “ pµ, as desired.

Moreover, the latter formula implies that trns4 ˝ tr4
ns ˝ p̂µ “ trns4 ˝ pµ. By

Theorem 2, we have have trns4 ˝ tr4
ns “ idP4

. Hence, the last equation reduces
to p̂µ “ trns4 ˝ pµ, proving the second part of the theorem.

6 A Completeness Result.

Having shown that non-standard and four-valued probability assignments are
equivalent, as witnessed by the bijection tr4

ns : P4 Ñ Pns, we now turn our
attention to the class of probability functions that are induced by probabilistic
models. As it turns out, these are fully characterized by our axioms (A1)-
(A3). More specifically, we will show that axioms (A1)-(A3) are a sound and
complete characterization of the induced non-standard probability functions of
probabilistic models. Of course, by Theorems 2 and 3, this implies that also
(D1)-(D6) are a sound and complete characterization of the induced four-valued
probability functions of probabilistic models. In fact, the soundness part is easy
to check:

Lemma 1. Let M “ xΣ, µ, v`, v´y be a probabilistic model and pµ the induced
non-standard probability function. Then pµ satisfies (A1)-(A3).

Towards completeness, we will show a stronger result. Recall that com-
pleteness expresses that every p P Pns is the induced non-standard probability
function of some probabilistic model M. This M may, however, not be unique
as p may be not expressive enough to completely determine all properties of M.
As we will show M, is almost unique. More specifically, we determine a class
Mcan of canonical models such that every p P Pns is the induced non-standard
probability function of exactly one M PMcan.

Definition 7. iq We call a probabilistic model M “ xΣ, µ, v`, v´y canonical
iff Σ “ PpLitq and v`, v´ satisfy

v`ppq “ tσ P PpLitq | p P σu v´ppq “ tσ P PpLitq |  p P σu

iiq Mcan is the set of canonical probabilistic models.
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Remark: The set Mcan is representative of the set of all models in the fol-
lowing sense: For any probabilistic model M “ xΣ, µ, v`, v´y, there is a unique
canonical model Mc “ xPpLitq, µc, v

`
c , v

´
c y and a unique function f : MÑMc

such that x P v˘ppq ô fpxq P v˘c ppq and µcpσcq “ µpf´1pσcqq for all σc P PpLitq.
In particular, pµpϕq “ pµc

pϕq for all ϕ P LProp. The main theorem of this section
is:

Theorem 4. For any p P Pns there is a unique canonical model Mp “

xPpLitq, µ, v`, v´y with induced non-standard probability function pµ such that
p “ pµ.

Corollary 1. Axioms (A1)-(A3) are sound and complete with respect to the
class of induced non-standard probability functions of probabilistic models.

By Theorems 2 and 3, the previous result readily translates to the level of
four-valued probability functions.

Theorem 5. For any p̂ P P4 there is a unique canonical model Mp̂ “

xPpLitq, µ, v`, v´y with induced four-valued probability function p̂µ such that
p̂ “ p̂µ.

Corollary 2. Axioms (D1)-(D6) are sound and complete with respect to the
class of induced four-valued probability functions of probabilistic models.

Proof of Theorem 4. Fix p P Pns. Let Σ “ PpLitq and let v˘ : Prop Ñ PpΣq be
defined as v`pqq “ tσ P Σ | q P σu and v´pqq “ tσ P Σ |  q P σu respectively.
We will construct a classic probability function µ : PpΣq Ñ r0; 1s such that the
canonical model M “ xΣ, µ, v`, v´y satisfies pµ “ p. It suffices to construct the
underlying probability mass function W : Σ Ñ r0; 1s, i.e. the function satisfying
W pxq “ µptxuq for x P Σ. We will do so by induction on |x| for x P Σ “ PpLitq.
The construction proceeds in three steps. As an induction base, we set µpxmaxq
with xmax the unique element in Σ with |xmax| “ |Lit |. In the induction step,
we define µpxq for all x with |x| “ k ě 1, assuming that µpyq has already been
defined for all y with |y| ą k. In the last step, finally, we define µpHq, where H
is the unique element of Σ of cardinality 0.

We will need to ensure that that µprϕsq “ ppϕq for all ϕ P LProp, where rϕs
denotes the truth set of ϕ in the non-standard model xΣ, v`, v´y, i.e. rϕs “
tx Ď Lit |

Ź

qPx q (L ϕu. Note that by the normal form theorem (Theorem 1)
and axiom (A2), it suffices to show this property for all ϕ P LProp that are in
disjunctive normal form. Moreover note that for any ϕ,ψ P LProp in disjunctive
normal form, we have that µprϕ_ψsq “ µprϕsq`µprψsq´µprϕ^ψsq, as witnessed
by

µprϕ_ ψsq “
ÿ

x(ϕ_ψ

µpxq “
ÿ

x(ϕ

µpxq `
ÿ

x(ψ

µpxq ´
ÿ

x(ϕ^ψ

µpxq

“µprϕsq ` µprψsq ´ µprϕ^ ψsq.

By (A3), hence, knowing that µpr˚sq “ pp˚q for ˚ P tϕ,ψ, ϕ^ψu guarantees that
µprϕ_ ψsq “ ppϕ_ ψq. It thus suffices to show that µprϕsq “ ppϕq whenever ϕ

12



is a conjunction of literals, i.e. of the form
Ź

qPx q with x Ď Lit. We will show
this property to hold alongside our inductive construction.

For the first step, let xmax be
Ź

qPLit q, the unique element in PpΣq of max-
imal cardinality. Note that txmaxu is the truth set of the formula

Ź

qPLit q. We
thus set W pxmaxq :“ pp

Ź

qPLit qq. By axiom (A1) we have that 0 ďW pxmaxq ď
1.

For the inductive step let k ě 1 and assume that W pyq has already been
defined for all y with |y| ą k. We simultaneously define W pxq for all x Ď
Lit with |x| “ k. Let such x be given. Note that the truth set of

Ź

qPx q is
ty Ď Lit | x Ď yu. By induction assumption W pyq is already defined for all
ty Ď Lit | x Ă yu. We can hence define

W pxq :“ pp
ľ

qPx

qq ´
ÿ

tyĎLit|xĂyu

W pyq. (1)

We have that W pxq ď pp
Ź

qPx qq and thus W pxq ď 1. On the other hand, note
that ty Ď Lit | x Ă yu is the truth set of

Ž

yĄx

Ź

qPy q. Hence, by induction
assumption,

ÿ

tyĎLit|xĂyu

W pyq “ pp
ł

yĄx

ľ

qPy

qq. (2)

Moreover, note that
Ž

yĄx

Ź

qPy q (
Ź

qPx q and hence, by (A2),
pp
Ž

yĄx

Ź

qPy qq ď pp
Ź

qPx qq. Combining this inequality with (1) and (2) yields
W pxq ě 0.

For the last step, finally, assume that W pxq is already defined for all x ‰ H.
We then setW pHq “ 1´

ř

x‰HW pxq. It follows immediately that
ř

xPΣW pxq “
1. Moreover, by our induction, W pxq ě 0 for all x ‰ H, hence W pHq ď 1. On
the other hand, note that tx Ď Lit | x ‰ Hu is the truth set of

Ž

qPLit q.
By induction assumption,

ř

x‰HW pxq “ pp
Ž

qPLit qq. By axiom (A1), hence,
W pHq ě 0.

Along the lines of the proof, we have ensured that µprϕsq “ ppϕq for all ϕ
of the form

Ź

qPx q for some x Ď Lit. By the above remark, this ensures that
µprϕsq “ ppϕq for all ϕ, i.e. that pµ “ p.

To end the static parts of this paper, we provide a graphical overview over
the relationships identified so far. By Theorems 2 to 5, the diagram in Figure
1 commutes. Moreover, each pair of opposite arrows in the upper half of the
diagram, i.e. the pairs ptr4

ns, tr
ns
4 q, pp ÑMp, µ Ñ pµq and pp̂ ÑMp̂, µ Ñ p̂µq

are left- and right inverses to each other.

7 Conditioning

In a classic setting, Bayesian conditioning on a formula ϕ describes a situation,
where ϕ is learned to be true with probability 1 – and hence  ϕ true with
probability 0. A generalization of this rule is Jeffrey conditioning, where an
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Pns P4

Mcan

M

trns4

tr4
ns

p
Ñ
M
p

µ
Ñ
p
µ

p̂
Ñ
M
p̂

µ
Ñ
p̂ µ

Ď
M
Ñ

M
c

µ
Ñ
p
µ

µ
Ñ
p̂ µ

id id

id

Figure 1: The relationships identified so far. By Theorems 2 to 5, this diagram
commutes.

ϕ  ϕ

Figure 2: Classic Conditioning

agent may learn the probability of ϕ to be any value in q P r0; 1s, rather than
only the extremal value of 1 (or 0, when  ϕ is learned) permitted in Bayes’
conditioning.

Either method is best illustrated semantically. Within a classical setting, any
formula ϕ defines a binary partition trϕs, r ϕsu on the state space, cf. Figure 2.
Jeffrey conditioning is then executed by linearly expanding or contracting the
original measure µ on rϕs and r ϕs to some new µ in such a way that µprϕsq “ q
and µpr ϕsq “ 1´ q. We hence get for any ϕ P LProp that

µprψsq “ µprψ ^ ϕsq
q

µprϕsq
` µprψ ^ ϕsq

1´ q

µpr ϕsq
(3)

which, in the case of Bayesian condition (i.e. q “ 1) reduces to the well-known

formula µprψsq “ µprψ^ϕsq
µprϕsq .

Conditionalization in our extended setting follows a similar idea. However,
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note that both Bayes’ and Jeffrey conditioning implicitly rest on the facts that
ppϕq ` pp ϕq “ 1 and that ppϕ ^  ϕq “ 0, i.e. that there are no gaps and
gluts. As this fact no longer holds, conditioning will behave differently in a
non-standard setting. In fact, we will show that non-standard probabilities
allow for two different notions of Jeffrey updating, one where a new value for
the probability of ϕ, i.e. ppϕq is learned, the other where a new value of the
four-valued vector p̂pϕq is acquired. The former version of Jeffrey updating is
best described on the level of non-standard probability assignments, the latter
on the level of four-valued assignments. Yet, using the maps tr4

ns and trns4 ,
both versions of updating can naturally be applied to either non-standard or
four-valued probability assignments.

Just as in the standard case, non-normal Bayes conditioning can be defined
as extremal case of Jeffrey updates. In fact, non-normal Bayes conditioning has
been studied independently, for instance in Mares (1997). The current frame-
work generalizes the latter’s approach by also incorporating Jeffrey updating
and by identifying a number of different Bayes like updates, containing the one
put forward by Mares.

7.1 Updating on non-standard information

In our first notion of updating, the agent’s update proscribes her to set the
probability of ϕ to some q P r0; 1s. Notably, within a non-standard setting,
this does not carry any information about the value of  ϕ - the agent may
or may not leave pp ϕq unchanged in her update. In line with classic Jeffrey
updating, non-standard Jeffrey updating is best illustrated semantically.
For any set ψ P LProp, we can dissect the state space of a probabilistic model
M “ xΣ, µ, v`, v´y in two sets – the truth set rϕs of ϕ and it’s complement
Σzrϕs. Unlike in the classic case, however, Σzrϕs is not the truth set of r ϕs,
nor of any other ψ P LProp. Yet, we can define Jeffrey updating as in the classic
case.

Definition 8. Let M “ xΣ, µ, v`, v´y be a probabilistic model. Let q P r0; 1s
and ϕ P LProp such that µprϕsq P p0; 1q. Then the semantic non-standard
Jeffrey update for updating the probability of ϕ to be q on M is the proba-
bilistic model Mϕ,q “ xΣ, µϕ,q, v`, v´y determined by:

µϕ,qptxuq “

#

µptxuq ¨ q
µprϕsq iff x P rϕs

µptxuq ¨ 1´q
1´µprϕsq else.

Fact 1. Non-standard Jeffrey updating is successful, i.e. for any probabilistic
model M “ xΣ, µ, v`, v´y, any q P r0; 1s and ϕ P LProp such that µprϕsq P p0; 1q
the non-standard Jeffrey update on M updating the probability of ϕ to q satisfies
µϕ,qpxqprϕsq “ q.

Despite the fact that the set Σzrϕs is not definable, we can give a syn-
tactic characterization of non-standard Jeffrey-updating. The following is a
non-standard equivalent to classic Jeffrey’s updating, cf. Formula (3).
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Lemma 2. Let M “ xΣ, µ, v`, v´y be a probabilistic model. Let q P r0; 1s and
ϕ P LProp such that µprϕsq P p0; 1q. Then for any ψ P LProp, the non-standard
Jeffrey update Mϕ,q “ xΣ, µϕ,q, v`, v´y of M satisfies:

µϕ,qprψsq “ µprψ ^ ϕsq ¨
q

µprϕsq
` pµpψq ´ µpψ ^ ϕqq

1´ q

1´ µprϕsq

Notably, after translating the previous fact into its induced non-standard
probability assignments pµ and pµϕ,q , we obtain a fully syntactic characteriza-
tion of non-standard Jeffrey updating.

Definition 9. Let p : LProp Ñ R be a non-standard probability assignment, let
q P r0; 1s and ϕ P LProp with ppϕq P p0; 1q. Then the syntactic non-standard
Jeffrey update setting the probability of ϕ to q is the probability function
pϕ,q : LProp Ñ R defined by

pϕ,qpψq “ ppψ ^ ϕq ¨
q

ppϕq
` pppψq ´ ppψ ^ ϕqq

1´ q

1´ ppϕq

By construction, semantic and syntactic non-standard Jeffrey updating coincide
in the following sense.

Fact 2. Let M “ xΣ, µ, v`, v´y be a probabilistic model, let q P r0; 1s and
ϕ P LProp with ppϕq P p0; 1q. Then pµϕ,q “ pϕ,qµ .

We will hence omit the labels and only speak of non-standard Jeffrey updat-
ing. We end this section with three facts about non-standard Jeffrey updating.

Fact 3. Assume that the non-standard probability function p : LProp Ñ R is
classic, i.e. satisfies the Kolmogorov axioms. Moreover, let ϕ P LProp with
ppϕq P p0; 1q and q P r0; 1s. Then the non-standard and the classic Jeffrey
update for setting the probability of ϕ to q coincide, i.e. for all ψ P LProp

pϕ,qpψq “ ppψ ^ ϕq
q

ppϕq
` ppψ ^ ϕq

q

pp ϕq
.

From this, it follows directly that

Fact 4. Non-standard Jeffrey updating is not commutative. That is, there is
a non-standard probability function p : LProp Ñ R and ϕ,ψ P LProp and q, r P
r0; 1s with ppϕq, ppψq, pϕ,qpψq, pψ,rpϕq P p0; 1q such that ppϕ,qqψ,r ‰ ppψ,rqϕ,q.

Non-standard Bayesian updating

Just as in the classic case, we will define non-standard Bayesian updating as
special case of non-standard Jeffrey updating where the probability of ϕ is set
to 1. In this case, the formula of Definition 9 simplifies to the same formula as
in the classical case. Note that this is also the first of two approaches to Bayes
updating proposed by Mares (1997). The second proposal by Mares, in contrast
is not related to any version of Bayes updating presented here, as it strives to
actively minimize conflict.
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Definition 10. Let p : LProp Ñ R be a non-standard probability function and
let ϕ P LProp with ppϕq ą 0. Then the (positive) non-standard Bayesian
update on ϕ is the function pϕ,pos:

pϕ,pospψq “
ppψ ^ ϕq

ppϕq
for ϕ P LProp.

Unlike in the classical setting, however, non-standard Bayesian updating does
not cover all extremal cases. Setting the probability of ϕ to 0 is not the same as
setting the probability of  ϕ to 1, hence this case needs to be treated separately.

Definition 11. Let p : LProp Ñ r0; 1s be a non-standard probability function
and let ϕ P LProp with ppϕq ă 1. Then the negative non-standard Bayesian
update on ϕ is the function pϕ,neg:

pϕ,negpψq “
ppψq ´ ppψ ^ ϕq

1´ ppϕq
for ϕ P LProp.

As their classic counterpart, positive and negative non-standard Bayesian con-
ditioning are order independent:

Lemma 3. Let p : LProp Ñ R and let ϕ,ψ P LProp with

ppϕq, ppψq, pϕpψq, pψpϕq P p0; 1q. Then ppϕ,˚qψ,ˆ “ ppψ
ˆ

qϕ,˚ for
˚,ˆ P tpos, negu.

7.2 Updating on four-valued information

Within non-standard probability, knowing the probability of ϕ does not provide
any information about the probability of  ϕ. Hence, in learning about ϕ,
two cases are to be distinguished. In the first case, the agent only receives
information about ϕ, without learning anything about  ϕ or ϕ ^  ϕ. In the
second case, the agent learns the full probabilistic information about ϕ, that
is, the probabilities of ϕ and  ϕ, but also the size of the corresponding gap
and glut. As discussed above, this information can be encoded in a vector
pb, d, u, cq P R4 specifying the new pure belief (i.e. belief without conflict), pure
disbelief (belief in  ϕ without conflict), uncertainty and conflict about ϕ.

Again, the notion of four-valued Jeffrey updating is best illustrated se-
mantically. As shown in Figure 3, for any ϕ P LProp, the sets of pure be-
lief, pure disbelief, uncertainty and conflict about ϕ jointly form a partition
prϕszrϕ^ ϕs, pr ϕszrϕ^ ϕs,Σzrϕ_ ϕs, rϕ^ ϕsq of a probabilistic model
M. Hence, a similar idea as in classic Jeffrey updating can be applied, linearly
expanding or shrinking the measure on each of these four cells to their appro-
priate size. Notably, linear expansion (to a larger size) is only well defined if
the cell to be expanded has a strictly positive measure. We capture this with
the notion of admissibility of a vector pb, d, u, cq:

Definition 12. Let M “ xΣ, µ, v`, v´y, let ϕ P LProp and denote p̂µpϕq by
pbϕ, dϕ, uϕ, cϕq. We call a vector pb, d, u, cq P r0; 1s4 with b ` d ` u ` c “ 1
admissible for ϕ if it satisfies that b “ 0 if bϕ “ 0, d “ 0 if dϕ “ 0, u “ 0 if
uϕ “ 0 and c “ 0 if cϕ “ 0.
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Figure 3: Four-valued conditioning

Definition 13. Let M “ xΣ, µ, v`, v´y be a probabilistic model, let ϕ P LProp

and let pb, d, u, cq P r0; 1s4 admissible for ϕ. Then four-valued Jeffrey up-
dating on ϕ to pb, d, u, cq is the model Mϕ,pb,d,u,cq “ xΣ, µϕ,pb,d,u,cq, v`, v´y
with:

µϕ,qpxq “

$

’

’

’

’

&

’

’

’

’

%

µpxq ¨ b
µprϕs´µrϕ^ ϕsq iff x P rϕszrϕ^ ϕs

µpxq ¨ d
µpr ϕsq´µprϕ^ ϕsq iff x P r ϕszrϕ^ ϕs

µpxq ¨ c
µprϕ^ ϕsq iff x P rϕ^ ϕs

µpxq ¨ u
1´µprϕ_ ϕsq else

Fact 5. Four-valued Jeffrey updating is successful, i.e. for any probabilistic
model M “ xΣ, µ, v`, v´y, any ϕ P LProp and any pb, d, u, cq P r0; 1s4 that is
admissible for ϕ, the non-standard Jeffrey update on M setting the probability
of ϕ to pb, d, u, cq satisfies p̂µϕ,pb,d,u,cqpϕq “ pb, d, u, cq.

Just as in the case of non-standard Jeffrey conditioning, we obtain a purely
syntactic characterization of four-valued Jeffrey updating. Unfortunately, the
drop in elegance with respect to standard Jeffrey updating is significant.

Lemma 4. Let M “ xΣ, µ, v`, v´y be a probabilistic model, let ϕ P LProp and
let pb, d, u, cq P r0; 1s4 be admissible for ϕ. Then non-standard Jeffrey update on
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M setting the probability of ϕ to pb, d, u, cq satisfies for any ψ P LProp that

b1ψ “
b

bϕ
pbϕ,ψq `

d

dϕ
pbϕ,ψq

`
u

uϕ
pdϕ,ϕ,ψ,ψ ´ dϕ,ϕ,ψ ´ cϕ,ϕ,ψ ` cϕ,ϕ,ψ,ψq `

c

cϕ
pcϕ,ϕ,ψ ´ cϕ,ϕ,ψ,ψq

d1ψ “
b

bϕ
pbϕ,ψq `

d

dϕ
pbϕ,ψq

`
u

uϕ
pdϕ,ϕ,ψ,ψ ´ dϕ,ϕ,ψ ´ cϕ,ϕ,ψ ` cϕ,ϕ,ψ,ψq `

c

cϕ
pcϕ,ϕ,ψ ´ cϕ,ϕ,ψ,ψq

u1ψ “
b

bϕ
pbϕ ´ bϕ,ψ ´ bϕ,ψ ´ cϕ,ψ ` cϕ,ϕ,ψq `

d

dϕ
pdϕ ´ bϕ,ψ ´ bϕ,ψ ´ cϕ,ψ ` cϕ,ϕ,ψq

`
u

uϕ
p1´ dϕ,ϕ,ψ,ψ ´ cϕ,ϕ,ψ,ψq `

c

cϕ
pcϕ ´ cϕ,ϕ,ψ ´ cϕ,ϕ,ψ ` cϕ,ϕ,ψ,ψq

c1ψ “
b

bϕ
pcϕ,ψ ´ cϕ,ϕ,ψq `

d

dϕ
pcϕ,ψ ´ cϕ,ϕ,ψq

`
u

uϕ
pcψ ´ cϕ,ψ ` cϕ,ϕ,ψ ´ cϕ,ψ ` cϕ,ϕ,ψ ´ cϕ,ϕ,ψ,ψq `

c

cϕ
pcϕ,ϕ,ψ,ψq

where pbψ, dψ, uψ, cψq and pb1ψ, d
1
ψ, u

1
ψ, c

1
ψq denote the four-valued probability vec-

tor of ψ before and after the update. In the above equations, ψ is shorthand for
 ψ, while ϕ,ψ stands for ϕ ^ ψ. For ease of notation, this formula uses the
convention that 0

0 “ 0.

Proof. Consider the propositions ϕ and ψ as well as the labeling of areas in the
top row of Figure 4. By definition of updating, the mass of areas 1-4 need to
be multiplied by b

bϕ
, that of areas 5-8 by d

dϕ
, the weight of areas 9-12 by u

uϕ
and

that of areas 13-16 by b
bϕ

. Moreover, the agent’s pure belief in ψ, i.e. bψ is the

joint mass of areas 1, 5, 9 and 13, her disbelief in ψ the joint mass of areas 2, 6,
10 and 14, her uncertainty is the joint weight of areas 3, 7, 11 and 15 and her
conflict set the sum of areas 4, 8, 12 and 16.

To check correctness of the above equations, it then suffices to verify that
the formulas pick out the respective fields, i.e. that bϕ,ψ is the size of field 1,
bϕ,ψ is the size of field 5, dϕ,ϕ,ψ,ψ´dϕ,ϕ,ψ´ cϕ,ϕ,ψ` cϕ,ϕ,ψ,ψ is the size of field 9
and so on. That this is the case follows from the pictures in Figure 4, showing
the belief and disbelief sets for certain composites of ϕ and ψ.

Again, the latter set of equations can be read purely syntactically. Thus, we
get a syntactic counterpart to semantic four-valued Jeffrey updates.

Definition 14. Let p̂ : LProp Ñ R4 be a four-valued probability function and
let ϕ P LProp. Moreover, let pb, d, u, cq P r0; 1s4 be admissible for ϕ. Then (syn-
tactic) four-valued Jeffrey updating with the vector pb, d, u, cq yields a four-
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ϕ ψ

1

2
3

4

5

6
7

8

9

10
11

12

13

14
15

16

ϕ^ ψ  ϕ^ ψ ϕ^ ψ

 ϕ^ ψ ϕ^ ϕ^ ψ ϕ^ ϕ^ ψ

ϕ^ ϕ^ ψ ^ ψ

Figure 4: Belief and disbelief sets of ϕ (top left), ψ (top center) and various
combinations thereof. Belief sets are dotted, disbelief set shaded. The diagrams
fall in 16 sections that are labelled as shown on the top right.
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valued probability function p̂ϕ,pb,d,u,cq defined by p̂ϕ,pb,d,u,cqpψq “ pb1ψ, d
1
ψ, u

1
ψ, c

1
ψq

with:

b1ψ “
b

bϕ
pbϕ,ψq `

d

dϕ
pbϕ,ψq

`
u

uϕ
pdϕ,ϕ,ψ,ψ ´ dϕ,ϕ,ψ ´ cϕ,ϕ,ψ ` cϕ,ϕ,ψ,ψq `

c

cϕ
pcϕ,ϕ,ψ ´ cϕ,ϕ,ψ,ψq

d1ψ “
b

bϕ
pbϕ,ψq `

d

dϕ
pbϕ,ψq

`
u

uϕ
pdϕ,ϕ,ψ,ψ ´ dϕ,ϕ,ψ ´ cϕ,ϕ,ψ ` cϕ,ϕ,ψ,ψq `

c

cϕ
pcϕ,ϕ,ψ ´ cϕ,ϕ,ψ,ψq

u1ψ “
b

bϕ
pbϕ ´ bϕ,ψ ´ bϕ,ψ ´ cϕ,ψ ` cϕ,ϕ,ψq `

d

dϕ
pdϕ ´ bϕ,ψ ´ bϕ,ψ ´ cϕ,ψ ` cϕ,ϕ,ψq

`
u

uϕ
p1´ dϕ,ϕ,ψ,ψ ´ cϕ,ϕ,ψ,ψq `

c

cϕ
pcϕ ´ cϕ,ϕ,ψ ´ cϕ,ϕ,ψ ` cϕ,ϕ,ψ,ψq

c1ψ “
b

bϕ
pcϕ,ψ ´ cϕ,ϕ,ψq `

d

dϕ
pcϕ,ψ ´ cϕ,ϕ,ψq

`
u

uϕ
pcψ ´ cϕ,ψ ` cϕ,ϕ,ψ ´ cϕ,ψ ` cϕ,ϕ,ψ ´ cϕ,ϕ,ψ,ψq `

c

cϕ
pcϕ,ϕ,ψ,ψq.

By construction, semantic and syntactic non-standard Jeffrey updating co-
incide in the following sense.

Fact 6. Let M “ xΣ, µ, v`, v´y be a probabilistic model, let ϕ P LProp and let

pb, d, u, cq P r0; 1s4 be admissible for ϕ. Then p̂µϕ,pb,d,u,cq “ p̂
ϕ,pb,d,u,cq
µ .

We will hence omit the distinction between semantic and syntactic and only
speak of four-valued Jeffrey updating. We end this section with three facts
about this updating.

Fact 7. Assume that the four-valued probability function p̂ : LProp Ñ R4 is
classic, i.e. p̂pψq P R2 ˆ t0u2. Moreover, let ϕ P LProp and pb, d, 0, 0q P r0; 1s4

be admissible for ϕ, i.e. b “ 0 if ppϕq “ 0 and d “ 0 if pp ϕq “ 0. Then
the non-standard and the classic Jeffrey update setting the probability of ϕ to q
coincide, i.e. for all ψ P LProp

p̂ϕ,pb,d,0,0qpψq “

ˆ

bψ^ϕ
q

bϕ
` bψ^ ϕ

q

b ϕ
, 1´ bψ^ϕ

q

bϕ
´ bψ^ ϕ

q

b ϕ
, 0, 0

˙

From this, it follows directly that

Fact 8. Non-standard Jeffrey updating is not commutative. That is, there is
a four-valued probability function p̂ : LProp Ñ r0; 1s4, some ϕ,ψ P LProp and
pb, d, u, cq, pb1, d1, u1, c1q P r0; 1s such that pb, d, u, cq is admissible for ϕ in p̂ and
in p̂pb

1,d1,u1,c1q, while pb1, d1, u1, c1q is admissible for ψ in both p̂ and p̂pb,d,u,cq, such
that

ppϕ,pb,d,u,cqqψ,pb
1,d1,u1,c1q ‰ ppψ,pb

1,d1,u1,c1qqϕ,pb,d,u,cq
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Four-valued Bayesian updating

Just as in the classical case, we can define four-valued Bayesian updating as a
special instance of Jeffrey updating where the information acquired is extremal.
Here, we focus on three cases. In the first, the agent learns the vector (1,0,0,0),
i.e. she acquires full pure belief in ϕ. In the second and third case, the agent
learns the vectors (0,0,1,0) or (0,0,0,1) respectively, acquiring full belief in un-
certainty or conflict about ϕ. The remaining case, learning (0,1,0,0), follows
from these, as it corresponds to updating on information (1,0,0,0) about  ϕ.
In either of our three cases, the above definition of four-valued Jeffrey updating
simplifies to:

Definition 15. iq Let p̂ : LProp Ñ R4 be a four-valued probability func-
tion such that bϕ ą 0, where p̂pϕq “ pbϕ, dϕ, uϕ, cϕq. Then positive four-
valued Bayesian updating on ϕ yields the function p̂ϕ,` defined by p̂ϕ,` “
pb1ψ, d

1
ψ, u

1
ψ, c

1
ψq with

b1ψ “
bϕ,ψ
bϕ

d1ψ “
bϕ,ψ
bϕ

u1ψ “
bϕ ´ bϕ,ψ ´ bϕ,ψ ´ cϕ^ψ ` cϕ,ϕ,ψ

bϕ

c1ψ “
cϕ,ψ ´ cϕ,ϕ,ψ

bϕ

iiq Let p̂ : LProp Ñ R4 be a four-valued probability function such that uϕ ą 0,
where p̂pϕq “ pbϕ, dϕ, uϕ, cϕq. Then uncertainty Bayesian updating about
ϕ is defined as: p̂ϕ,upψq “ pb1ψ, d

1
ψ, u

1
ψ, c

1
ψq with

b1ψ “
dϕ,ϕ,ψ,ψ ´ dϕ,ϕ,ψ ´ cϕ,ϕ,ψ ` cϕ,ϕ,ψ,ψ

uϕ

d1ψ “
dϕ,ϕ,ψ,ψ ´ dϕ,ϕ,ψ ´ cϕ,ϕ,ψ ` cϕ,ϕ,ψ,ψ

uϕ

u1ψ “
1´ dϕ,ϕ,ψ,ψ ´ cϕ,ϕ,ψ,ψ

uϕ

c1ψ “
cψ ´ cϕ,ψ ` cϕ,ϕ,ψ ´ cϕ,ψ ` cϕ,ϕ,ψ ´ cϕ,ϕ,ψ,ψ

uϕ

iiiq Let p̂ : LProp Ñ R4 be a four-valued probability function such that cϕ ą 0,
where p̂pϕq “ pbϕ, dϕ, uϕ, cϕq. Then conflict Bayesian updating about ϕ is
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defined as: p̂ϕ,cpψq “ pb1ψ, d
1
ψ, u

1
ψ, c

1
ψq with

b1ψ “
cϕ,ϕ,ψ ´ cϕ,ϕ,ψ,ψ

cϕ

d1ψ “
cϕ,ϕ,ψ ´ cϕ,ϕ,ψ,ψ

cϕ

u1ψ “
cϕ ´ cϕ,ϕ,ψ ´ cϕ,ϕ,ψ ` cϕ,ϕ,ψ,ψ

cϕ

c1ψ “
cϕ,ϕ,ψ,ψ
cϕ

Just as its classic counterpart, four-valued Bayesian conditioning in all three
flavors is order independent:

Lemma 5. Let p̂ : LProp Ñ r0; 1s and let ϕ,ψ P LProp such that

p̂ϕ,a, p̂ψ,b, pp̂ϕ,aqψ,b and pp̂ψ,bb qϕ,a are all defined. Then pp̂ϕ,aqψ,b “ pp̂ψ,bb qϕ,a.
for a, b P t`, u, cu

7.3 Interaction Principles

Using the translation functions tr4
ns and trns4 , both notions of Jeffrey condition-

ing, non-standard and four-valued, work on both types of probability functions
defined, non-standard and four-valued. However, the notions of updating do
not correspond to each other. While non-standard Jeffrey conditioning applies
to situations where only the probability of ϕ is set, without any mention of
the probabilities of  ϕ or ϕ^ ϕ, four-valued Jeffrey conditioning covers cases
where new probabilities of ϕ, ϕ and the corresponding gap and glut are all
proscribed simultaneously. Hence, even after appropriate transformations of
their domains with tr4

ns and trns4 , the two types of Jeffrey updates are not inter-
definable. This, however, changes if we move to non-standard and four-valued
Bayesian updating. Each of the three types of four-valued Bayesian updating
is equivalent to a composition of two steps of non-standard Bayesian updating.
Moreover, the order of these two steps does not matter.

Lemma 6. Let p̂ : LProp Ñ R4 be a four-valued probability assignment and let
ϕ P LProp.

iq if bϕ ą 0, then tr4
nspp̂

ϕ,`q “ ptr4
nspp̂q

ϕ,posq ϕ,neg “ ptr4
nspp̂q

 ϕ,negqϕ,pos

iiq if uϕ ą 0, then tr4
nspp̂

ϕ,uq “ ptr4
nspp̂q

ϕ,negq ϕ,neg “ ptr4
nspp̂q

 ϕ,negqϕ,neg

iiiq if cϕ ą 0, then tr4
nspp̂

ϕ,uq “ ptr4
nspp̂q

ϕ,posq ϕ,pos “ ptr4
nspp̂q

 ϕ,posqϕ,pos

Proof. iq By Theorem 5, there is a unique canonical model M “

xPpLitq, µ, v`, v´y such that p̂µ “ p̂. By Facts 2 and 6, it hence suffices to
show the claim for semantic four-valued Jeffrey updating on M. Note that
the result of positive Bayesian updating, i.e. the updated four-valued probabil-
ity function µϕ,p1,0,0,0q of Mϕ,p1,0,0,0q “ xPpLitq, µϕ,p1,0,0,0q, v`, v´y is uniquely
determined by the conditions
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(1) µϕ,p1,0,0,0qpxq “ 0 whenever x R rϕszrϕ^ ϕs

(2) µϕ,p1,0,0,0qpxq{µϕ,p1,0,0,0qpyq “ µpxq{µpyq whenever x, y P rϕszrϕ^ ϕs
with µpyq ą 0.

By construction, the two-valued Bayesian updates, i.e. Jeffrey updates µϕ,1

and µ ϕ,0 both satisfy (2). Moreover, µϕ,1pxq “ 0 whenever x R rϕs and
µ ϕ,0pxq “ 0 whenever x P r ϕs. Thus both pµϕ,1q ϕ,0 and pµ ϕ,0qϕ,1 also
satisfy (1). Hence, both pµϕ,1q ϕ,0 and pµ ϕ,0qϕ,1 satisfy conditions (1) and
(2) and, hence, are identical to µϕ,p1,0,0,0q. This implies that tr4

nspp̂
ϕ,`q “

ptr4
nspp̂

ϕ,posq ϕ,negq “ ptr4
nspp̂

 ϕ,negqϕ,posq.
The proofs of iiq and iiiq follow similarly.

7.4 Conditioning on Partial Information

In the previous sections we investigated updating a probability function with a
generalized Jeffery rule by learning either only a new value for the belief in ϕ
(Section 7.1) or the entire four-valued probability vector assigned to ϕ (Section
7.2). However, there may be other contexts where the agent acquires partial
information about the (four-valued) probability of ϕ, e.g. only a new value for
pure belief or pure disbelief in ϕ.

The idea for conditioning on partial information proceeds along the same
lines as for complete information, i.e. by a modified version of Jeffery condi-
tioning. The only difference is that the partiality of information, say about ϕ
does not permit to work with the full partition induced by ϕ on a model M,
i.e. the partition into trϕszr ϕs, r ϕszrϕs,Σ ´ rϕ _  ϕs, rϕ ^  ϕsu, cf Figure
3, but with a coarsening thereof.

By obtaining partial information we mean that the agent learns the values
of a partial assignment a : tb, d, u, cu á r0; 1s, i.e. an assignment proscribing
new values for some of the agent’s pure belief, pure disbelief, uncertainty and
conflict, but not necessarily for all. Let us denote the domain of a, i.e. those
x P tb, d, u, cu for which apxq is defined, by dompaq. For simplicity, we assume
that H Ă dompaq Ă tb, d, u, cu with both inclusions strict. Following the same
intuitions as in the four-valued case, we can define conditioning on the partial
information a by setting the new pure belief, disbelief, uncertainty and conflict
in ϕ to be apbq, apdq, apuq and apcq respectively whenever this is defined and
afterwards rescaling the probabilistic mass on the remaining area appropriately.

Formally, to ensure that the corresponding operation is well-defined, we need
to assume that

ř

yPdompaq y ď 1. Denoting the prior four-valued probability

vector of ϕ with pbϕ, dϕ, uϕ, cϕq, the Jeffrey updating sketched above will lead
to the posterior four-valued probability vector pb̄ϕ, d̄ϕ, ūϕ, c̄ϕq with:

x̄ϕ “

#

apxq iff x P dompaq

x ¨
1´

ř

yPdompaq y

1´
ř

yPdompaq yϕ
else

for x P tb, d, u, cu. With this, we can formally define partial Jeffrey updating.
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Definition 16. Let a : tb, d, u, cu á r0; 1s be a partial assignment such that
ř

yPdompaq y ď 1. Let M “ xΣ, µ, v`, v´y be a model, let ϕ P LProp and let

the vector pb̄ϕ, d̄ϕ, ūϕ, c̄ϕq defined above be admissible for ϕ. Then the four-
valued Jeffrey update of ϕ on the partial information a is defined as
the four-valued Jeffrey update on ϕ to pb̄ϕ, d̄ϕ, ūϕ, c̄ϕq.

8 Aggregation

Assume two agents informed you about their credences in ϕ. You take both
agents as similarly competent and equally informed. Yet, they equip you with
different assessments of ϕ. How, then, should you combine these judgments
towards forming your own belief about ϕ? Within standard probability theory,
your options are fairly limited. You may, for instance, decide to follow one of
the agents, or build a weighted average between the two. A broad number of
approaches in the literature on peer disagreement, for instance, promotes to
split the difference equally see for instance Elga (2007); Christensen (2007) on
conciliationism, but also Kelly (2010) for an opposing opinion.

8.1 Aggregating non-standard probabilities

Within the non-standard probabilities studied here, further options open up.
First, note that within classic probability theory, learning about the agents
credence in ψ also informs us about her degree of belief in  ψ. This does not
hold true within the current non-standard setting. Hence, let us assume for the
current analysis that agents inform us about both their positive and negative
attitude towards ϕ, that is about ppϕq and pp ϕq, or even about their four-
valued vector p̂pϕq. Of course, we may follow the previous strategies and form
weighted averages between the agents’ assessments of ϕ. If needed, this policy
could be specified to also taking a weighted average on the agents conflict and
uncertainty and, more general, their remaining belief set.

Definition 17. Let k P r0, 1s.
iq Assume agents A and E provide their non-standard assessments of ϕ, i.e.
pApϕq, pEpϕq, pAp ϕq and pEp ϕq. Then their k-weighted non-standard
aggregate belief pk

tA,Eu is defined by

pktA,Eupϕq “ kpApϕq ` p1´ kqpEpϕq and pktA,Eup ϕq “ kpAp ϕq ` p1´ kqpEp ϕq.

iiq For agent A and E1s four-valued probabilitiy assessments pb, d, u, cqA and
pb, d, u, cqE for ϕ, i.e. p̂Apϕq and p̂Epϕq their k-weighted four-valued aggre-
gate belief p̂k

tA,Eu is:

p̂ktA,Eupϕq “ kp̂Apϕq ` p1´ kqp̂Epϕq.

Lemma 7. Weighted averaging can be applied to an entire belief base simulta-
neously. That is, when agents A and E both provide their full subjective non-
standard probability functions pA, pE : LProp Ñ R (resp. p̂A, p̂E : LProp Ñ R4),
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Updating rule ptA,Eupϕq ptA,Eup ϕq

k-weighted kpApϕq ` p1´ kqpEpϕq kpAp ϕq ` p1´ kqpEp ϕq

credulous maxppApϕq, pEpϕqq maxppAp ϕq, pEp ϕqq

cautious minppApϕq, pEpϕqq minppAp ϕq, pEp ϕqq

optimist maxppApϕq, pEpϕqq minppAp ϕq, pEp ϕqq

pessimist minppApϕq, pEpϕqq maxppAp ϕq, pEp ϕqq

Table 1: Different rules for aggregating agent A and E’s non-standard beliefs
in ϕ and  ϕ, i.e. pApϕq, pEpϕq, pAp ϕq and pEp ϕq.

a weighted average belief pk
tA,Eu : LProp Ñ R can be defined by kpA ` p1´ kqpE.

Likewise, p̂k
tA,Eu : LProp Ñ R can be defined by kp̂A`p1´kqp̂E. Moreover, these

policies commute with tr4
ns, that is

tr4
nspp̂

k
tA,Euq “ pktA,Eu and trns4 pp

k
tA,Euq “ p̂ktA,Eu.

Non-Standard beliefs, however, allow for further aggregation policies that
do not have classic counterparts. Credulous agents, for instance, could opt
for the maximal values of their input in terms of belief and disbelief simul-
taneously. That is, they could set their updated belief and disbelief in ϕ to
be maxppApϕq, pEpϕqq and maxppAp ϕq, pEp ϕqq respectively. Likewise, cau-
tious agents may rather chose to belief and disbelief ϕ only to an amount
supported by all input information. Such agents would set their belief and
disebelief in ϕ to minppApϕq, pEpϕqq and minppAp ϕq, pEp ϕqq respectively.

In special situations, further policies are conceivable. When testing the
safety of a new drug, for example, agents may be extremely vary of false pos-
itives while being much less concerned with false negatives. Such an agent
might decide to set her new belief in ϕ to minppApϕq, pEpϕqq while adopting
maxppAp ϕq, pEp ϕqq as new disbelief in ϕ. Likewise, also the combination of
maxppApϕq, pEpϕqq with minppEp ϕq, pEp ϕqq are conceivable. In some sense,
the latter two policies are aggregation functions that minimize type I and type
II errors. For a lack of a better name we call these pessimist and optimist
updating rules respectively. See Table 1 for an overview.

Unlike weighted average, none of these four policies can be applied to an
entire belief set simultaneously.

Fact 9. Let pA and pE be such that pApϕq “ 1 and pAp ϕq “ pApϕ^ ϕq “ 0,
while pEp ϕq “ 1 and pEpϕq “ pEpϕ^ ϕq “ 0. Then pA and pE are consistent,
but the function ptA,Eu defined by ptA,Eup˚q “ maxp˚q for ˚ P tϕ, ϕ,ϕ^ ϕu
is not.

Proof. To see that pA and pE are consistent consider a nonstandard model
with three worlds, x, y, z and v`ppq “ tx, yu, v´ppq “ tx, zu. The measure µA
putting all weight on y is such that pµA

p˚q “ pAp˚q for ˚ P tϕ, ϕ,ϕ ^  ϕu,
showing pA consistent by Lemma 1. Likewise, the measure µE putting all weight
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on z shows pE consistent. For the inconsistency of ptA,Eu, finally, note that
ptA,Eupϕ ^  ϕq “ 0 and ptA,Eupϕq “ ptA,Eup ϕq “ 1. Plugging these three
values into (A3) yields 0` ptA,Eupϕ_ ϕq “ 2, contradicting (A1).

Likewise, the missing conditions for cautious updates cannot be retrieved by
extending the policy of taking minima to the agents’ assessments of ϕ_ ϕ, as
can be seen from the previous Fact. In particular, there is no counterpart to
Lemma 7 for credulous or cautious update. Neither can be performed for all
ϕ P LProp simultaneously.

Before proceeding to four-valued updating, we compare the above policies
to operations in non-probabilistic Belnap-Dunn logic. For this, recall the classic
Belnap-Dunn bi-lattice of truth values BD4.

t0u

t u t1, 0u

t1u

information

tr
u

th

This bi-lattice can be interpreted in two directions relating to truth values
and the available information. We denote meet and join of the truth lattice
operations by ^ and _ while meet and join for the information lattice operations
are [ and \. Note that we can identify an assignment of BD4-values to some
formula ϕ with a non-standard probability assignment of ppϕq and pp ϕq into
t0, 1u. More specifically, assigning t1, 0u to some ϕ corresponds to ppϕq “
pp ϕq “ 1, while assigning t1u, resp t0u to ϕ corresponds to ppϕq “ 1, pp ϕq “
0 and ppϕq “ 0, pp ϕq “ 1 respectively. Value tu, finally, corresponds to
ppϕq “ pp ϕq “ 0. For a probability assignment ppϕq, pp ϕq P t0, 1u, we
denote the corresponding BD4 value by tppϕq. Applying this correspondence,
we obtain the following characterization of the four updating policies introduced
above:

Lemma 8. Assume when asked about their credences in ϕ, agents A and E pro-
vide extremal assignments, i.e. pApϕq, pAp ϕq, pEpϕq, pEp ϕq P t0, 1u. Then

Credulous update
yields beliefs in ϕ and  ϕ

tpApϕq \ tpE pϕq
Cautious update

that are equal to
tpApϕq [ tpE pϕq

Opimistic update tpApϕq _ tpE pϕq
Pessimistic update tpApϕq ^ tpE pϕq.

Finally, we consider the special case where both agents input classic
probability values, i.e. values such that ppϕq ` pp ϕq “ 1.
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Fact 10. When pA and pE are classic, i.e. pApϕq`pAp ϕq “ pEpϕq`pEp ϕq “
1, then the same holds for the aggregated belief when aggregation follows weighted
averaging, optimistic or pessimistic updates. That is, these three rules preserve
classicality. This does not hold for credulous and cautious updating. The latter
two rules turn classic inputs beliefs for agent A and E into non-classic aggregate
values as soon as A and E disagree about ppϕq.

8.2 Aggregating four-valued probabilities.

So far, we have assumed aggregation to operate on non-standard probability
assignments. Within the above framework, agents provide their subjective non-
standard beliefs in both ϕ and  ϕ, which the various aggregative mechanisms
described above then merge into aggregate belief values for ϕ and  ϕ. But of
course, our agents might also provide their subjective four-valued probabilities
p̂Apϕq “ pbAϕ , d

A
ϕ , u

A
ϕ , c

A
ϕ q and p̂Epϕq “ pbEϕ , d

E
ϕ , u

E
ϕ , c

AEϕq instead. Naturally,
we could then hope to obtain an aggregate four-valued probability

p̂tA,Eupϕq “ pb
tA,Eu
ϕ , dtA,Euϕ , utA,Euϕ , ctA,Euϕ q.

Note, that by the map tr4
ns, the non-standard probabilities ppϕq and pp ϕq

can be calculated from the four-valued probability p̂pϕq. Hence, if p̂tA,Eupϕq
is defined, a corresponding two-valued aggregation mechanism for ptA,Eupϕq
and ptA,Eup ϕq follows immediately. However, the opposite does not hold.
ptA,Eupϕq and ptA,Eup ϕq do not fully determine p̂tA,Eupϕq and hence the vari-
ous policies defined in the last section do not readily translate into four-valued
aggregation procedures. In fact, when employing the map trns4 , the three val-
ues ppϕq, pp ϕq and ppϕ ^ ϕq are required to determine p̂pϕq. In the case of
weighted averaging, this is not a problem. By Lemma 7, setting

pktA,Eupϕ^ ϕq “ kpkApϕ^ ϕq ` p1´ kqp
k
Epϕ^ ϕq

yields a consistent set of requirements and the corresponding four-valued aggre-
gation rule is exactly p̂k

tA,Eupϕq “ kp̂Apϕq ` p1´ kqp̂Epϕq.
However, the situation is different in the case of credulous or cautious up-

dating. As shown in Fact 9, requiring that ptA,Eupϕq “ maxppApϕq, pEpϕqq,
ptA,Eup ϕq “ maxppAp ϕq, pEp ϕqq and ptA,Eupϕ ^  ϕq “ maxppApϕ ^
 ϕq, pEpϕ^ ϕqq may yield an inconsistent set of requirements. Hence, other
choices are needed.

The vector ptA,Eupϕq is determined by four choices. With two of them given
by ptA,Eupϕq “ maxppApϕq, pEpϕqq and ptA,Eup ϕq “ maxppAp ϕq, pEp ϕqq,
and a third by axiom (D2), one last condition is missing. In the case of credulous

update, we would arguably expect that c
tA,Eu
ϕ ě maxpcAϕ , c

E
ϕ q: If an agent opts

to be credulous about both ϕ and  ϕ, she could not expect her conflict to fall
below any of the input conflicts. Within this restriction, the below definition

of credulous update, assumes c
tA,Eu
ϕ to be as close to maxpcAϕ , c

E
ϕ q as possible

while maintaining consistency.
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Likewise, in the case of cautious update, we would arguably expect overall
uncertainty to grow, or, at least, not to shrink through aggregation. That is, we

would expect that u
tA,Eu
ϕ ě maxpuAϕ , u

E
ϕ q. Again, We will demand that u

tA,Eu
ϕ

is the maximal possible consistent value with this property.

Definition 18. Assume agents A and E provide four-valued probabili-
ties p̂Apϕq “ pbAϕ , d

A
ϕ , u

A
ϕ , c

A
ϕ q and p̂Epϕq “ pbEϕ , d

E
ϕ , u

E
ϕ , c

AEϕq. Then
the credulously aggregated four-valued probability p̂tA,Eupϕq “

pb
tA,Eu
ϕ , d

tA,Eu
ϕ , u

tA,Eu
ϕ , c

tA,Eu
ϕ q is given by the following four conditions

b
tA,Eu
ϕ ` c

tA,Eu
ϕ “ maxpbAϕ ` c

A
ϕ , b

E
ϕ ` c

E
ϕ q

d
tA,Eu
ϕ ` c

tA,Eu
ϕ “ maxpdAϕ ` c

A
ϕ , d

E
ϕ ` c

E
ϕ q

b
tA,Eu
ϕ ` d

tA,Eu
ϕ ` u

tA,Eu
ϕ ` c

tA,Eu
ϕ “ 1

c
tA,Eu
ϕ “ max

´

cEϕ , c
A
ϕ , pb

tA,Eu
ϕ ` c

tA,Eu
ϕ q ` pd

tA,Eu
ϕ ` c

tA,Eu
ϕ q ´ 1

¯

By tr4
ns, the first two of these equations correspond to the two conditions

of credulous non-standard updates, i.e. ptA,Eupϕq “ maxppApϕq, pEpϕqq and
ptA,Eup ϕq “ maxppAp ϕq, pEp ϕqq. The third equation is axiom (D2). The

last equation, finally expresses that c
tA,Eu
ϕ is the minimal consistent choice such

that c
tA,Eu
ϕ ě maxpcAϕ , c

E
ϕ q. To see this, note that by (D2), we have b

tA,Eu
ϕ `

d
tA,Eu
ϕ ` c

tA,Eu
ϕ ď 1 and hence

btA,Euϕ ` ctA,Euϕ ` dtA,Euϕ ` ctA,Euϕ ´ 1 ď ctA,Euϕ .

Likewise we can define a cautious aggregation of four-valued probabilities:

Definition 19. For p̂A and p̂E as above, the cautiously aggregated four-

valued probability p̂tA,Eupϕq “ pb
tA,Eu
ϕ , d

tA,Eu
ϕ , u

tA,Eu
ϕ , c

tA,Eu
ϕ q is given by the

following four equations

b
tA,Eu
ϕ ` c

tA,Eu
ϕ “ minpbAϕ ` c

A
ϕ , b

E
ϕ ` c

E
ϕ q

d
tA,Eu
ϕ ` c

tA,Eu
ϕ “ minpdAϕ ` c

A
ϕ , d

E
ϕ ` c

E
ϕ q

b
tA,Eu
ϕ ` d

tA,Eu
ϕ ` u

tA,Eu
ϕ ` c

tA,Eu
ϕ “ 1

u
tA,Eu
ϕ “ max

´

uEϕ , u
A
ϕ , 1´ pb

tA,Eu
ϕ ` c

tA,Eu
ϕ q ´ pd

tA,Eu
ϕ ` c

tA,Eu
ϕ q

¯

Credulous and cautious aggregation as defined here cohere with their definition
for non-standard probabilities.

Lemma 9. Assume that agents A and E provide four-valued vectors p̂A and
p̂E respectively. Then the following diagrams commute, where the application of
tr4
ns makes use of the fact that ppϕq and pp ϕq can be calculated from p̂pϕq.
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p̂Apϕq
p̂Epϕq

p̂tA,Eupϕq

pApϕq, pAp ϕq
pEpϕq, pEp ϕq

ptA,Eupϕq

tr4
ns

cred
u

lo
u

s

cred
u

lo
u

s

tr4
ns

p̂Apϕq
p̂Epϕq

p̂tA,Eupϕq

pApϕq, pAp ϕq
pEpϕq, pEp ϕq

ptA,Eupϕq

tr4
ns

ca
u

tio
u

s

ca
u

tio
u

s

tr4
ns

The algebraic structure of credulous and cautious aggregation.

Definition 20. For an aggregation strategy S, we call ϕ a neutral element if
for all ψ we have

Spϕ,ψq “ Spψ,ϕq “ ψ,

and we call ϕ an anihilator if for all ψ

Spϕ,ψq “ Spψ,ϕq “ ϕ.

Proposition 1. The subjective four-valued probability assignment p0, 0, 0, 1q,
i.e. the element of maximal conflict, is an anihilator with respect to credulous
updating. Likewise, the subjective four-valued probability assignment p0, 0, 1, 0q,
representing maximal uncertainty, is an anihilator for the cautious strategy.

Proof. Let p̂Apϕq “ p0, 0, 0, 1q, let p̂Epϕq be arbitrary and denote the result of
credulous updating by pB,D,U,Cq. Then by definition B ` C “ D ` C “ 1
which, together with (D1) and (D2) implies C “ 1, B “ D “ 0, and hence
U “ 0. In a similar manner, let p̂Apψq “ p0, 0, 1, 0q and let p̂Epψq be arbitrary,
and denote the result of cautious updating by pB1, D1, C 1, U 1q. then by definition
B1 ` C 1 “ D1 ` C 1 “ 0, which implies B1 “ D1 “ C 1 “ 0 and hence U 1 “ 1.

Proposition 2. The subjective four-valued probability assignment p0, 0, 0, 1q,
i.e. the element of maximal conflict, is a neutral element with respect to cautious
updating. Likewise, the subjective four-valued probability assignment p0, 0, 1, 0q,
representing maximal uncertainty, is neutral with respect to credulous updating.

Proof. Let p̂Apϕq “ p0, 0, 0, 1q, let p̂Epϕq “ pb, d, u, cq be arbitrary and denote
the result of cautious updating by pB,D,U,Cq. Then by definition B`C “ b`c
and D ` C “ d` c which implies

B `D ` 2C “ b` d` 2c. (4)

Using this, the last condition of cautious updating yields U “ maxp0, u, 1 ´
b ´ d ´ 2cq. Since u “ 1 ´ b ´ d ´ c, this implies U “ u. Together with
1 “ U `B ` C `D “ u` b` c` d, it follows that B ` C `D “ b` c` d. In
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combination with equation (4), this implies C “ c. With this, B ` C “ b ` c
and D`C “ d` c imply that B “ b and D “ d. The proof for the second claim
follows from a similar argument.

9 Conclusions

Many classical approaches to reasoning address idealized situations, where the
agents’ information is consistent, closed under logical implication, and possibly
even complete. These assumptions, of course, are at odds with many realistic
reasoning scenarios, where the available evidence may be scarce and memory
or observation faulty. In short, there is no guarantee for our available infor-
mation to be consistent, nor complete. Yet, we would arguably hold that some
valid inferences can be drawn from such imperfect information, as partial incom-
pleteness or local contradictions may not preclude us from drawing conclusions
about other parts of the data. As automated reasoning systems are becom-
ing increasingly important, there is a need for a rigorous formal treatment of
inferences from non-ideal information. To this end, a wealth of non-classical
logical systems for dealing with uncertainty or conflict has been put forward,
with Belnap-Dunn logic (BD) arguably the most prominent such framework.

However, the reasons for moving to non-normal, BD like frameworks apply
equally well to probabilistic settings. Agents may, for instance, have inconclu-
sive, probabilistic evidence for the truth or falsity of various statements. Just as
in the classic case, if such information comes from different sources or different
experiments, it needs not add up to 1, nor be mutually exclusive. It hence seems
natural to investigate probabilistic extensions of BD. This was the focus of the
current paper.

Paralleling recent work by Dunn (cf. Dunn, 2010; Dunn and Kiefer, 2019),
we have investigated four-valued probability assignments that permit agents to
have probabilistic beliefs about the truth and falsity of a statement, and about
its gaps and gluts. More specifically, we have provided a theory of four-valued
probabilities that slightly departs from Dunn’s in its treatment of conjunctions.
Yet, both are generalizations of Belnap-Dunn logic in that they coincide with
BD whenever all probabilities are extremal, i.e. only assume the values of 0 and
1.

In this paper, we have clarified the connection between our four-valued prob-
abilities and single valued non-standard probabilities as introduced by Childers,
Majer and Milne (2019). By providing a translation function between the two
approaches, we have shown these to be equivalent. Moreover, we have intro-
duced probabilistic models as semantics for four-valued probabilities, and have
provided a sound and complete axiomatization with respect to the class of all
such models. Lastly, we have enriched our frameworks with dynamical opera-
tions for updating and aggregation. As for the former, we have provided versions
of Jeffrey and Bayes’ conditioning that work in non-standard and four-valued
settings and have clarified the relation between these. For aggregation, finally,
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we have studied a host of different aggregation policies, some of which go beyond
what is available in classic probabilistic settings.

Of course, there are other approaches to weakening classic probability the-
ory, not all of which have a corresponding logic as starting point. Many such
approaches take probability or weights as central notion, but consider various
cases where no exact probabilistic information is available. A typical example
are inner measures intended to approximate probability from below (Fagin and
Halpern, 1991). Their underlying idea, briefly, is that an agent might lack prob-
abilistic evidence about some proposition ϕ, for instance when ϕ is not in the al-
gebra of (possible) observations. The agent may, though, estimate a lower bound
for the probability of ϕ by building on her available information about other
propositions. Formally, this gives rise to an inner measures that only satisfy
super-additivity instead of the classic additivity, i.e. µ˚pϕ_ψq ě µ˚pϕq`µ˚pψq,
where ϕ^ ψ a classical contradiction.

A related weakening of classic probability theory is Dempster-Shafer (DS)
theory of belief (Shafer, 1976; Halpern, 2017). The starting point of this theory
is an agent’s evidence about some state of affairs, usually represented as a
normalized measure on a boolean algebra of possible observations. This evidence
then gives rise to a belief function, where Belpϕq, the belief in some ϕ, is derived
from all pieces of evidence that entail ϕ. As the agent might have strong evidence
for a compound event, say ψ _ ϕ, without having much evidence that entails
either of its compounds alone, this belief function is super-additive in the sense
defined above. More specifically, the degree of support for some A needs not
be complementary to the support of  A. That is, BelpAq may be less than
1 ´ Belp Aq, just as in our framework. While BelpAq can be seen as a lower
bound for the classical probability for A, the term 1 ´ Belp Aq, sometimes
denoted the plausibility of A, is it’s upper bound. The interval between both
is then interpreted as the agent’s uncertainty about A. As our presentation
suggests, there is a tight connection between DS theory and inner measures
approaches: both are equivalent, at least on a syntactic level where probabilities
are associated to formulas, rather than states (Fagin and Halpern, 1991; Zhou,
2013).

Both, inner probabilitiy approaches and DS theory differ in two ways from
our framework. In one dimension, our framework is more general than DS belief
functions or inner probabilities, as it admits not only for uncertainty but also
for conflict in probability assignments. By allowing for gluts, non-standard and
four-valued probability assignments can represent contradictory information in
ways that DS theory and inner measure frameworks cannot.

For a second difference consider a classic tautology such as p _  p. Work-
ing on a classical meta-theory, DS theory associates a probability of 1 to this
tautology. Yet, when evidence is scarce, the belief values assigned to p and  p
need not add up to one, exemplifying the above super-additivity. In fact, it is
compatibly with DS theory that both p and  p are even assigned a belief of
zero. In our framework, in contrast, uncertainty or conflict derive straight from
the information available about p and  p, rather than from evidence about
some larger proposition. Working with an non-classic, BD-metatheory, non-
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classic information about literals extends to complex formulas such as p _  p,
as witnessed in the inclusion-exclusion axiom (A3). This axiom, in fact, can be
seen to stand in direct opposition to the theory of inner measures. Our axioms
(A3) implies a subadditivity property (i.e. µ˚pϕ _ ψq ď µ˚pϕq ` µ˚pψq when
ϕ^ψ is a classical contradiction), in contrast to the superadditivity of DS the-
ory and inner measures. A detailed comparison beyond DS belief functions and
our approach would require a more careful analysis that exceeds the scope of
this article. We leave this for future work.

Finally, another open line of inquiry concerns practical implications of the
present framework. One may, for instance, ask how an ideally rational agent
is to act if she has only imperfect information at her disposal. In future work,
we hope to sketch the contours of a non-standard decision theory, that rests
on four-valued probabilities in the same manner as traditional decision theory
employs classic probability. Doing so, we hope, can help to fill a gap between
current frameworks for decisions under risk and under uncertainty.
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