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ABSTRACT.

Scientific philosophy is a recent but rapidly growing approach to investi-
gate a wide range of philosophical problems. This approach advocates the
employment of scientific methodologies, including mathematical and computa-
tional methods, in philosophical investigations. In this thesis we will present
four case studies in scientific philosophy, using both mathematical/logical
formalisations and computational simulations. We will investigate problems
from different philosophical disciplines aiming to show how the formal and
computational methods can be beneficial to a wide range of philosophical
investigations. We shall study a probabilistic approach to para-consistency
and reasoning from conflicting information, learning indicative conditionals,
modelling rational deliberation and an investigation of the anchoring effect in
deliberations. All these are long standing problems in philosophy that have
attracted a lot of interest, in particular, in recent years. Thus, in this thesis, we
hope to contribute to the growing literature in scientific philosophy and further
motivate its extensive domain of application.
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Chapter 1

Introduction

Scientific philosophy is a relatively new approach to philosophical enquiry that
amidst, sometimes strongly voiced, oppositions and supports is increasingly gain-
ing popularity in the recent years. According to Leitgeb (Leitgeb 2013) there are
at least three ways to understand scientific philosophy.

The first view goes back to the ideas of the Vienna and the Berlin circles and
considers philosophy as a discipline employed in the service of science. On this
view, the role of philosophy is to study and analyse science on the meta-level.
The goal of philosophy will then be to refine and improve scientific language and
to enhance the logic where needed and possible. The study of scientific fields
on the meta-level clarifies and improves our understanding of the concepts that
play a part in the corresponding scientific field and their interrelation. In doing
so, philosophy contributes to the development of an appropriate object language
with which scientists work and the adoption of the correct logical structures and
reasoning mechanisms suitable for different scientific theories. The contribution
of philosophy in this view, as advocated by Michael Friedman for example, is most
visible in Kuhnian paradigm shifts when a new scientific theory replaces an old
one. At such revolutionary stages, philosophy plays a crucial role in development
of proper scientific language and is the force that ensures the scientific theory
change remains confined within the boundaries of rationality.

The second view sees philosophical studies as part of the scientific endeav-
our. This account, advocated amongst others by Quine, roots in Naturalism
and considers natural sciences our best medium to access the truth and so the
most viable approach to philosophical studies. According to this view, the role
of philosophy is to analyse and shed light on the foundational issues in scien-
tific disciplines and the philosophical studies should be carried out along the
same methodological lines, in the same language as in the respective scientific
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12 CHAPTER 1. INTRODUCTION

fields and by employment and use of scientific theories and their results. Quine’s
naturalised epistemology, for example, emphasises the close connection between
epistemology and natural sciences and the necessity to take into account the
results from the study of human reasoning when dealing with problems in episte-
mology. In his view, our knowledge can be captured mainly in our language use,
the observable characteristics of which allows its study in the same manner as
other scientific inquiries. This account closely connects the study of epistemology
with research in cognitive psychology and argues in favour of articulating prob-
lems and arguments in epistemology using the language and concepts developed
in psychology. As pointed out by Leitgeb (Leitgeb 2013), philosophy of mathe-
matics and set theory as well as studies in metaphysics and physics, for example,
bear the same connection and in this conception of scientific philosophy should
be carried out in the same languages respectively and deal with the same issues
and concerns. Thus this view urges (or in more radical approaches, necessitates)
the employment and use of scientific theories and the results of investigations in
relevant scientific disciplines for proper and fruitful study of philosophical ques-
tions. This approach has been taken up in more recent years by philosophers
such as Penelope Maddy in her book “Second Philosophy” (Maddy 2009), and
James Ladyman and Don Ross in their account of naturalistic metaphysics in
“Every Thing Must Go: Metaphysics Naturalized” (Ladyman & Ross 2009) who
have argued for naturalisations of parts of philosophy.

Finally the third view, understands scientific philosophy as the philosophy
carried out using scientific methods. This is the account of scientific philosophy
that this thesis will fall into. As emphasised by Leitgeb, this account is in no
conflict with viewing philosophy as an independent discipline that is “not neces-
sarily being pursued, whether on the meta-level or on the object level, with the
aim of facilitating scientific progress” (Leitgeb 2013). Thus with this account of
scientific philosophy, philosophers are no more required (at least not necessarily)
to be concerned with problems and notions raised in scientific theories and phi-
losophy is an autonomous discipline with its own concepts and questions. This
view is thus consistent with philosophy as a discipline that is pursued for the
sake of understanding issues and concerns that stem from motivations other than
scientific progress and that have engaged our forefathers since antiquity; issues
such as truth, knowledge, existence, morality and ethics.

What, then, are the scientific methods that that can be employed in philo-
sophical studies? As hard as it may be to clearly characterise what can or cannot
be considered as scientific methods useful for philosophy, there are some obvi-
ous candidates to start with. In (Leitgeb 2013), for instance, Leitgeb points to
three examples, namely, mathematical, computational and experimental meth-
ods. First are the mathematical methods. Mathematical methods have been in
use in scientific studies for as long as such studies have been carried out. Their
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employment in philosophy is also old news. Application and study of mathe-
matical logic in philosophical studies, for example, dates back to works of Aris-
totle. Leibniz work on metaphysics is another example in point. The link has
grown stronger in the more contemporary studies in philosophy by introduction
of inductive logic, temporal logics, epistemic logics, dynamic logics and the like.
The connection, however, does not end with mathematical logic and includes
a wide range of mathematical disciplines such as probability theory, game the-
ory, discrete mathematics, etc. The interplay of philosophy and mathematics in
the investigation of mechanisms for reasoning, in particular, has brought about
thriving research programs that have continued throughout the 20th century and
is continuing to this date. An impressive collection of works in the literature,
commonly referred to as Formal Philosophy is witness to this thriving dynamics.
The formal Epistemology movement and the birth and formulation of Bayesian
Epistemology are examples in point.

Second are the computational methods. This is, in short, application of
computational algorithms, computer simulations and the resulting numerical
analysis in the study of philosophical problems and in support of philosoph-
ical claims and arguments. Computational models, for example, have been
used for more than two decades to study both the process of scientific dis-
covery and the process of evaluating scientific theories. The BACON project,
a pioneering project in this regard, for instance, was developed by Pat Lan-
gley, Herbert Simon and their colleagues (Langley et. al. 1987 ) as model for
deriving mathematical laws from numerical data. Other examples are the
KEKADA program developed by Kulkarni and Simon (Kulkarni & Simon 1988)
and Paul Thagard ”Computational Philosophy of Science” (Thagard 1993),
that introduces a computational model for problem solving which he uses
to study issues in philosophy of science such as hypothesis formation and
theory justification amongst others. The Structure Mapping Engine devel-
oped by Falkenhainer, Forbus, and Gentner (Falkenhainer et. al. 1989), the
Analogical Constraint Mapping Engine introduced by Holyoak and Thagard
(Holyoak & Thagard 1989; Holyoak & Thagard 1995) for modelling anological
reasoning and the ECHO program developed by Thagard to model theory evalua-
tion in science are other examples of computational approaches as is the Fitelson’s
and Zelta’s (Fitelson & Zalta 2007) work on computational metaphysics.

More recently, there has been many examples of the application of computer
simulations, in particular formal epistemology and in philosophy of social sci-
ences. This is, at least, partly because these simulations prove very useful in
studying the group dynamics and the emergence and evolution of phenomena
in social interactions. Many instances of (emergence or dissolution of) social
phenomena or patterns in groups depend on the group topology and the connec-
tions between individuals in the group. This makes the analytical study of such
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instances difficult in the sense that many different cases have to be considered
separately. Computer simulations allow study of diverse large sample spaces to
identify common trends that that can be studied uniformly among different cases.
Not only are computer simulations increasingly used in philosophical studies, but
their application has become significant enough to prompt philosophical studies
into simulations themselves. These studies, for instance “Computer Simulations
and the Changing Face of Scientific Experimentation” by Juan Duran and Eck-
hart Arnold (Duran & Arnold 2013), are aimed to better understand the type of
inference that is possible on the basis of computer simulations and the criteria
that constitute a conceptually adequate simulation.

Third kind of scientific methods, are the experimental methods. Experimen-
tal philosophy uses empirical data gathered through surveys, interviews and de-
signed experiments to derive clues with regard to philosophical questions. The
issue of using such methods is the subject of intense debate among philosophers.
Although the empirical studies appear to be illuminating and insightful for philo-
sophical studies in many instances, in particular, investigations in philosophy of
mind, philosophy of language, morality and the like, for example in the works of
Natalie Gold, Regina Rini, Stephen Stich, Shen-yi Liao among others, there has
been serious criticisms raised in opposition to it. One immediate reason is that,
as opposed to computational and mathematical methods, empirical results does
not provide a priori knowledge or justification. Another point of criticism is that
people’s intuitions, which are the main outcome of experimental studies, cannot
be considered as evidence for philosophical studies. Thus, the use of experimental
methods is more controversial than the formal and computational methods and
we shall not be concerned with them in this thesis.

There are many reasons as to why the application of formal methods is useful
in philosophy. An important contribution of mathematical methods is the expli-
cation of philosophical concepts. This is the development of new concepts that
can extend existing concepts in the sense that the new concept coincides with the
old in standard and clear cases while improving on it in “exactness, fruitfulness
and simplicity”, see (Leitgeb 2013), in the more problematic or fuzzy cases. In
(Leitgeb 2013) Leitgeb argues that not only are the mathematical formulations
useful for the process of explicating philosophical concepts but they are in many
cases necessary. Tarski’s explication of truth, Carnap’s explication of confirma-
tion of hypotheses by evidence, and Adams’ explication of the acceptability of
conditionals are examples of such cases. Tarski’s work is built on second order
logic and set theory while Carnap’s and Adams’ require the theory of subjective
probability. In addition, mathematical definitions and formulation, where pos-
sible, can make philosophical concepts more precise and immune to divergence
of interpretations. Similarly, precision and exactness of mathematical proofs can
be carried into the philosophical arguments that are formulated in mathematical
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terms. Using mathematical language and formal methods not only makes the
philosophical arguments more precise but are also needed to represent the more
complex arguments correctly and more understandably. The same way formal
models are useful in presenting arguments that are not necessarily proofs in the
sense of showing that the truth of assumptions entail the truth of the conclusions
but rather inductively strong in the sense that the conclusions are at least as
likely as the assumptions. Hartmann and Bovens use of Bayesian networks in
(Bovens & Hartmann 2003) in support of claims about confirmation, testimony,
etc. have such characteristic. What is more, mathematical formulations will
make all the relevant assumptions and prerequisites explicit and again prevent
the multitude of interpretations. They clarify links to scientific theories which
might in turn introduce interesting new philosophical concepts or questions and
even point to enological cases in different areas of philosophy.

The benefits of such formal approaches, however, can be best evaluated by
looking at the contribution of the application of such methods to the philosophical
literature. The role of mathematical formulation is robustness and rigidity of
Bayesian epistemology, theories of truth, studies of rationality and belief revision
and investigations in social epistemology and collective rationality and decision
making needs no reminder. It seems, however, important to emphasise that the
formal approach to philosophy is not a reductionist view. The aim is not to
reduce philosophical studies to mathematics or any other scientific discipline but
rather to use mathematical, computational and scientific results to the benefit
of philosophical investigations where such applications are possible. This is to
acknowledge that there may very well remain many areas, concepts and questions
in philosophy where it is not possible (or not yet possible) to take a formal stand.
But where the application of such methods has been possible, the input and
benefit of such applications to the literature, to which we also hope to contribute
in this thesis, is undeniable.

What Follows....

In what follows we will present four studies in scientific philosophy in the
third sense above, using mathematical and computational methods (and their
combination). The studies are carried out in the framework of formal and social
epistemology and the first two deal with problems of reasoning for individual
rational agents and the second two are concerned with issues of collective decision
making. All problems that we shall visit in this thesis have been of long standing
interest to philosophers and the subject of philosophical debate and investigation
for quite some time. The goal here is to demonstrate how the application of
formal tools can help to settle or further elaborate these problems.

We start with the problem of para-consistent reasoning. This has attracted
the theoretical interest of logicians and philosophers for a long time and sev-
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eral approaches have been proposed and studied in the literature, see for ex-
ample, (da Costa 1974; da Costa 1989; da Costa 1998) (Priest 1979; Priest 1987;
Priest 1989). Besides the purely theoretical interest, however, working with in-
consistencies is of great importance in the study of practical reasoning. Our
approach to para-consistency arises from the studies of probabilistic consequence
relations in (Knight 2002), (Paris 2004) and (Picado-Muino 2008). We advocate
the idea that the inconsistency in an agent’s evidence should be identified with
the uncertainty that it will induce in the agent’s knowledge. In this sense, reason-
ing with inconsistent information is essentially reduced to uncertain reasoning.
We will proceed in our investigation in three steps. First, we will present the
formal machinery to bridge between an inconsistent set and its uncertain con-
sistent reduction. Next, we will extend the approach developed in (Paris 2004)
and (Paris et. al. 2008) for defining a probabilistic consequence relation, to first
order languages. The probabilistic consequence relation will then provide the for-
mal logical system for reasoning with these (consistent) uncertain knowledge sets.
Finally we will briefly discuss some immediate generalisations of this approach.

Almost all current models of belief revision assign a higher degree of reliability
to the new information than what is already in the belief set. The approach
presented in this study allows us to assign different degrees of trust to the newly
received information not only with respect to the current knowledge set as a
whole but also with respect to each individual statement in that set. This will,
thus, allow a fine graded analysis of the inconsistency in relation to the current
knowledge set and the new information.

The second study on the individual aspects of reasoning concerns
the indicative conditionals. The issue has been studied meticulously in
the works of Arlo-Costa, Lewis, Stalnaker, van Fraassen and Douven
among others, (Arlo-Costa1990), (Douven 2012), (Douven & Romeijn 2012),
(van Fraassen 1981), (Stalnaker 1968), (Lewis 1976), and several approaches
have been proposed and studied in the literature. These include identifying the
indicative conditional with the corresponding material conditional, working with
the Stalnaker account using imaging as proposed by David Lewis, updating with
Adam’s conditioning rule or using information theoretic updating procedures such
as Kullback-Leibler (KL) distance minimisation1.

All these proposals, however, have been criticised by means of counter exam-
ples and despite the extensive effort spent on the issue, a general Bayesian account
of updating on conditionals is still missing from the literature. The essence of
these counter examples deals with the unintuitive effect of updating procedure
on the probability of the antecedent of the conditional. To be more precise, they
are all concerned with how the posterior probability of the antecedent compares
to its prior probability as the result of the updating procedure as opposed to how

1This approach was, to our knowledge, first studied by van Fraassen.
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they should compare intuitively (see, (Douven 2012)).

We shall address this problem using existing links to measure theory and the
Kullback-Leibler Distance minimisation procedure, the theory of casual struc-
tures and their relation to conditionals. Our proposal is the implementation of
the KL distance minimisation in a slightly richer setting. To be more precise, we
will show that the KL distance minimisation will provide the intuitively expected
results if applied in a setting where all the relevant variables in the scenario are
fixed and the complete causal structure of the problem is identified. In this set-
ting, one will start with the prior belief function induced by the causal structure
and the indicative conditional will give a constraint on the posterior probabilities.
The posterior probability function will then be chosen as to minimises the KL
distance to the priors. We shall revisit all the examples given by Douven and his
co-authors as well as the Judy Benjamin example and will show that the above
proposal will give the results that one intuitively expects in all proposed scenar-
ios. These two studies are concerned with aspects of reasoning and the dynamics
of belief in individual agents while the next two will deal with belief dynamics in
a collective setting.

Our third study deals with the investigation of rational deliberation in groups.
The expansion and multitude of different social networks, to which almost each
and every member of the society is subscribed in the modern day, is rapidly in-
creasing the number of essentially social judgments. The majority of decisions
are no longer made by individual agents but rather by the social networks to
which they belong and as such, are inevitably subject to influence and revision
as they evolve from personal judgments into a collective decisions. This evolu-
tion takes place, to a major part, in the course of agents social interactions and
communications. Deliberation is an important example of such social interaction
and communications and the normative investigation of mechanisms that govern
the flow of deliberative processes and the dynamics of belief change towards the
group consensus, can be instrumental in devising interaction protocols that facil-
itate dissemination of some independent and inter-subjective truth, when such is
definable. Our goal in this study is to contribute to this investigation.

Groups can proceed to make a collective decision either by aggregating indi-
vidual judgments such as in voting scenarios or can deliberate on the issue until
they reach a consensus where all the group members manifest the same individual
judgment. There are also two views on how to evaluate methods for collective
decision making. From the proceduralist point of view, a decision making proce-
dure should be judged on the basis of its procedural characteristics only without
any reference to the epistemic nature of the outcomes. On the other hand is the
epistemic view that evaluates a decision making process by the epistemic values
of its outcomes without taking account of the procedural considerations. In case
of democratic decision making, the distinction between the two conceptions can
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be formulated in terms of the characteristics expected from the outcome: Is it
the fairness or the correctness that constitute our main concern?

In this regard, it is not hard to justify that the deliberation presents an
obvious procedural advantage to voting. The prospect of achieving a collective
consensus, on which all the group members agree, eliminates the necessity of a
compromise that is inevitable in voting scenarios and makes the deliberation an
ideal approach from procedural point of view. A question of interest is then to
ask how the two process compare epistemically. We shall, thus, emphasise our
concern on the epistemic nature of the deliberative process and the epistemic
comparison between deliberation and voting.

To this end, we shall first introduce a Bayesian model that is built on the
basis of two attributes of the decision makers; the first order reliability, that
is the reliability of each individual to give the correct answer to the problem
under deliberation and, the second order reliability, that represents each individ-
ual’s ability to assess the first order reliabilities of her group members. We will
then use a combination of mathematical formulations and computer simulations
to investigate its truth tracking properties and give a comparison between the
epistemic properties of this deliberation model and that of the majority voting.

The fourth, and final, study in this thesis concerns the investigation of the
anchoring effect in deliberations. As we emphasise the social aspects of reasoning
and multi-agent decision making, there are certain socio-psychological consider-
ations that become relevant to the dynamics of belief change. It is not at any
rate surprising that the epistemic and procedural advantages that arise from
the interaction and communication between decision makers is also accompanied
with certain biases and undesirable factors. Some of these factors, such as the
emergence of pluralistic ignorance in groups, have been formally studied in some
recent works but there is still a gap in the literature of Bayesian Epistemology in
this regard. One of these biases which has been extensively discussed in cogni-
tive psychology, but is surprisingly missing from the formal studies in collective
decision making, is the anchoring effect.

Anchoring is the common human tendency to rely too heavily on one piece of
information in the process of decision making. The effect occurs in a deliberation
process when the outcome of the deliberation depends on the order in which
different group members present their opinions. More specifically, the studies
in cognitive psychology suggests that the group member who speaks first will
usually have the highest effect on the final decision of the group, where she is
said to have anchored the deliberation. The effect is usually attributed to what
is known as the bounded rationality. This refers to cognitive limitations of the
decision makers including short attention span, memory loss, deterioration of
cognitive ability by fatigue, etc. The question that we will be interested in is
whether this bias arise as the result of cognitive limitations only, or can it also
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appear in groups of fully rational agents.
In this final study, we will first present a model of rational deliberation with

incremental updating procedure as a modification of the Lehrer-Wagner model.
We will then use this model to study the path dependence in the deliberation
and will show that the anchoring bias can emerge in fully rational groups without
any cognitive limitation and merely as a result of such updating procedures.
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Chapter 2

Reasoning From Conflicting
Information: A First Order
Account

2.1 Introduction

The treatment of inconsistencies is a long standing issue for mathematical logic.
The process of reasoning in the classical logic has been devised with strong built-
in consistency assumptions and it follows that the full force of classical entailment
relation is too strong for reasoning with inconsistencies. Although limiting the
scope of logical inference to only consistent domains fits well with the spirit
of what one requires from reasoning in mathematical contexts, there are many
aspects of reasoning where it does not. In particular, we have the case when
the context of the reasoning is not assumed to represent some factual property
of a structure nor objective facts concerning the real state of things but some
not-necessarily-certain information or approximations regarding those facts.

There are different motivations for the development of logics that can ac-
commodate inconsistencies and there have been several attempts in the litera-
ture to do so. The main difference between these motivations arise from the
way that the inconsistent evidence is interpreted. One motivation stems from
adopting the philosophical position of dialetheism, best advocated by Graham
Priest for example. This position is characterised by submitting to the thesis
that there are sentences which are true and false simultaneously, see for example
(Priest 1979; Priest 1987; Priest 1989). One approach to deal with inconsisten-
cies in this view is to adopt a three valued logic with truth values {0,1,{0,1}},

21
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for example, with truth value {0,1} for the sentences that are assumed to be
both true and false.

Other motivations can arise from more pragmatic reasons which deal with
reasoning in non-ideal contexts. Here the inconsistencies are interpreted as a
property of the information and are taken to be anomalies that point out errors
or shortcomings of the reasoners’ information (or maybe communication chan-
nels). The approaches that arise from this latter motivation, primarily, try to deal
with the inconsistent sets by reducing the inference to consistent reasoning. This
is done either by defining the logical consequences of such sets on the basis of their
maximal consistent subsets as is the case for da Costa’s para-consistent logics,
(da Costa 1974; da Costa 1989; da Costa 1998), or by first revising the inconsis-
tent sets to consistent ones. For example one might define the set of logical con-
sequences of a possibly inconsistent set Γ as the union (or intersection) of the sets
of logical consequences of its maximal consistent subsets. Or one might choose
to apply some belief revision process to first arrive at a consistent information
set Γ′, as in AGM belief revision process for instance, (Alchourron et. al.1985),
and make the reasoning on the basis of this consistent set. The idea in an AGM-
like belief revision process for example, is that upon receiving some inconsistent
information φ, one will first retract the part of knowledge base that contradicts
this new information and then expands the remaining knowledge set by adding
φ. The assumption here, however, is that the new information is always more
reliable than the old. An assumption which is counterintuitive in many aspects
of reasoning. For example when the context of reasoning consists of statements
derived from a not-completely-reliable sources or processes that are subject to
errors. Even more pointed are cases where the context of reasoning consists of
statements accumulated through different sources and processes which do not
necessarily agree. This is indeed the case in almost all applications of reasoning
outside some mathematical theory. As the information set expands by acquiring
new information through possibly conflicting sources and processes, it may very
well come to include conflicting and inconsistent evidence without any second
order information that warrants discarding parts of these evidence in favour of
others. This will void the possibility of using classical entailment (or other vari-
ations of it which still get trivialised in the presence of inconsistencies ) as it
validates any consequence from such an inconsistent set. In this sense having
some inconsistency in a (possibly very large) set of evidence will render it com-
pletely useless for reasoning. There are many applications of reasoning, however,
in which the inconsistencies should intuitively affect the reasoning only partially.
As a very simple example, consider sentences φ and ψ that share no relation
symbols, function symbols or constants (hence have completely irrelevant infor-
mational content), then

{φ,ψ,¬φ} ⊧ ¬ψ
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many instances of which are counterintuitive. For example, assume a case where
φ is acquired from a source, say S1, different from that of ¬φ, say S2 where both
sources agree on ψ. Here the inconsistency of the information regarding φ may
not provide any reason to affect the reasoning on the part of ψ. This motivates
one to fashion inference processes that allow meaningful extraction of information
from such sets of information. This is the motivation for what we shall pursue in
these Chapter and the aspect of the literature which we hope to contribute to.

The approach presented here, follows the work of Knight, (Knight 2002),
Paris, (Paris 2004) and Paris, Picado-Muino and Rosefield, (Paris et. al. 2008),
in dealing with the same problem for propositional languages and is motivated
by reasoning in non-ideal contexts. This approach lies on the assumption that
the inconsistent evidence do not point out the inconsistencies of the reality under
investigation but point to an inconsistent valuation of facts. Receiving contradic-
tory information should thus affect such valuations. In this view, receiving some
piece of information φ while having ¬φ in our knowledge base has the effect of
changing the valuation of φ (and thus ¬φ). In case of categorical knowledge (with
truth values of zero or one), this means moving from categorical belief in φ and
¬φ to some uncertain valuation of them and in case of probabilistic knowledge
this would entail re-evaluation of the probabilities. Our approach is based on two
assumptions,

• the inconsistencies are identified with the uncertainty that they induce in
the information set

• the information is assumed to be as reliable as possibly allowed by the
consistency considerations.

Thus receiving inconsistent information will change the context of reasoning from
a categorical one to an uncertain one, which we shall represent by means of
probabilities. One can also hope to do so in a way that allows us to limit the
pathological effect of inconsistencies to the part of the reasoning relevant to it.
To make this clear, suppose as above that one is left, after receiving ¬φ, with
the inconsistent knowledge {φ,ψ,¬φ} where again φ is acquired from source S1

and ¬φ from source S2 while both sources agree on ψ. This inconsistency is
accommodated by changing the categorical belief in φ and ¬φ to uncertain one
by assignment of probabilities with the probabilities of φ and ¬φ adding up to 1
but without changing the valuation of ψ as it is irrelevant to the inconsistency.

How the change in the information set induced by the inconsistency is carried
out, depends on one’s approach to the weighting of the new information with
respect to the old information. For example, if we take the new information to
be infinitely more reliable than the old, we will end up with the same retraction
and expansion process as in the AGM. But as we shall shortly see, one can also
devise the change in a manner that allows a wider range of epistemic attitudes
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towards the new information in comparison to the old. Since the inconsistencies
will reduce our categorical knowledge to probabilistic one, any inference based on
such knowledge will essentially be probabilistic. Our goal is to study an entail-
ment relation that allows meaningful inference from such probabilistic knowledge
bases. The idea is to investigate a consequence relation that generalises the clas-
sical consequence relation from a relation that preserves the truth to one that
preserves, or more precisely ensures, some degree of reliability. To this end we will
first investigate how to accommodate inconsistencies of evidence in the informa-
tion set and will then study a probabilistic entailment relation on propositional
languages introduced by Knight, (Knight 2002) and further investigated by Paris,
(Paris 2004), and Paris, Picado-Muino and Rosefield, (Paris et. al. 2008), for the
first order case in order to make inference on the basis of such uncertain knowl-
edge bases.

It is also worth mentioning that one can choose a different route altogether
and deal with the inconsistent evidence by adopting a richer language in which
the source of information is also coded in the information. Thus, for example, φ
received from source S1 is replaced by (φ)1 to the effect that “according to S1,
φ”. In this approach receiving φ1 (according to S1, φ) and (¬φ)2 (according to
S2, ¬φ) pose no contradiction any more while contradictory information from the
same source has the effect of reducing the reliability of the source. The evaluation
of information is carried out by weighting them with the reliability of the sources.
As it would be immediately clear however, this approach will be equivalent to
ours. The simplest case we will discuss corresponds to receiving information from
equally reliable sources. The case of prioritised evidence corresponds to receiving
information from sources with different reliabilities. Our approach, however, has
the advantage of avoiding unnecessary complication of the language.

The rest of this chapter is organised as follows. In Section 2.2 we will in-
vestigate a revision process for reducing inconsistent information sets to (proba-
bilistically consistent) uncertain ones. We will investigate revision of categorical
information in Section 2.2.1, probabilistic information in Section 2.2.2 and pri-
oritised information in Section 2.2.3. In the Section 2.3 we will investigate a
probabilistic entailment relation that allows meaningful inferences on possibly
inconsistent sets. We shall give an analysis of this entailment relation in the first
order logic in Section 2.7.1 and will next investigate a generalisation that allows
different epistemic status for individual sentences in the knowledge set and thus
providing the setting to limit the effect of inconsistency to only part of the rea-
soning in Section 2.4. In Section 2.5 we will connect this entailment relation to
reasoning from conflicting information. Finally the Appendix contains some of
the longer and more involved proofs.
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2.1.1 Preliminaries and Notation

Throughout these chapter we will work with a first order language L with finitely
many relation symbols, no function symbols and countably many constant sym-
bols a1, a2, a3, .... Furthermore we assume that these individuals exhaust the
universe. This means in particular that we have a name for every element in
our universe. Thus a model is a structure M for the language L with domain
∣M ∣ = {ai ∣ i = 1,2, ...} where every constant symbol is interpreted as itself.Let
RL, SL denote the set of relation and the set of sentences of L respectively.

Definition 2.1.1 We shall call w ∶ SL→ [0 , 1] a probability function if for every
φ,ψ,∃xψ(x) ∈ SL,

• P1. If ⊧ φ then w(φ) = 1.

• P2. w(φ ∨ ψ) = w(φ) +w(ψ) −w(φ ∧ ψ).

• P3. w(∃xψ(x)) = limn→∞w(⋁ni=1 ψ(ai)).

Let L be a propositional language with propositional variables p1, p2, ..., pn.
By atoms of L we mean the set of sentences {αi ∣ i = 1, ...J}, J = 2n of the form

±p1 ∧ ±p2 ∧ ... ∧ ±pn.

By disjunctive normal form theorem, for every sentence φ ∈ SL there is unique
set Γφ ⊆ {αi∣ i = 1, ..., J } such that

⊧ φ↔ ⋁
αi∈Γφ

αi.

It can be easily checked that Γφ = {αj ∣αj ⊧ φ}.

Thus if w ∶ SL→ [0 , 1] is a probability function then

w(φ) = w( ⋁
αi⊧φ

αi) = ∑
αi⊧φ

w(αi)

as the αi’s are mutually inconsistent. On the other hand since ⊧ ⋁Ji=1 αi we have

∑
J
i=1w(αi) = 1. So the probability function w will be uniquely determined by its

values on the αi’s, that is by the vector

< w(α1), ...,w(αJ) >∈ DL where DL = { x⃗ ∈ RJ ∣ x⃗ ≥ 0,
J

∑
i=1

xi = 1}.
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Conversely if a⃗ ∈ DL we can define a probability function w′ ∶ SL → [0 , 1] such
that < w′(α1), ...,w

′(αJ) >= a⃗ by setting

w′(φ) = ∑
αi⊧φ

ai.

This gives a one to one correspondence between the probability functions on
L and the points in DL. In particular if a knowledge base K is taken to be a
satisfiable set of linear constraints of the form

n

∑
j=1

aijw(φj) = bi, i = 1,2, ...,m

where φj ∈ SL, aij , bj ∈ R and w is a probability function, then replacing each

w(φj) in K with ∑αi⊧φj w(αi) and adding the equation ∑
J
i=1w(αi) = 1 we will

get a new set of constraints given in terms of the probability of atoms

J

∑
j=1

a′ijw(αj) = bi, i = 1,2, ...,m

< w(α1), ...,w(αJ) > AK = b⃗K .

The situation for first order languages is a bit more complicated. Here the
atoms of the language are defined as the set of formulas

⋀
R j−ary

R∈RL,j∈N+

±R(xi1 , ..., xij).

In the case of first order languages, what plays the role similar to the atoms for
a propositional language, are the state descriptions.

Definition 2.1.2 Let L be a first order language with the set of relation symbols
RL and let L(k) be a sub-language of L with only finitely many constant symbols

a1, ..., ak. The state descriptions of L(k) are the sentences Θ
(k)
1 , ...,Θ

(k)
nk which

enumerate all the sentences of the form

⋀
i1,...,ij≤k
R j−ary

R∈RL,j∈N+

±R(ai1 , ..., aij).

The following theorem, due to Gaifman, provides a similar result, to that we had
above, for the case of a first order language L. Let QFSL be the set of quantifier
free sentences of L:
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Theorem 2.1.3 Let v ∶ QFSL → [0 , 1] satisfy P1 and P2 for φ,ψ ∈ QFSL.
Then v has a unique extension w ∶ SL → [0 , 1] that satisfies P1, P2 and P3.
In particular if w ∶ SL → [0 , 1] satisfies P1, P2 and P3 then w is uniquely
determined by its restriction to QFSL.

For φ ∈ QFSL let k be an upper bound on the i such that ai appears in φ.
Then φ can be thought of as being from the propositional language L(k) with
propositional variables R(ai1 , ..., aij) for i1, ..., ij ≤ k, R ∈ RL and R j−ary. Then

the sentences Θ
(k)
i will be the atoms of L(K) and

φ↔ ⋁
Θ
(k)
i ⊧φ

Θ
(k)
i so w(φ) = ∑

Θ
(k)
i ⊧φ

w(Θ
(k)
i ).

Thus to determine the value w(φ) we only need to determine the values w(Θ
(k)
i )

and to require

• w(Θ
(k)
i ) ≥ 0 and ∑

nk
i=1w(Θ

(k)
i ) = 1.

• w(Θ
(k)
i ) = ∑Θ

(k+1)
j ⊧Θ

(k)
i

w(Θ
(k+1)
j ),

to ensure that w satisfies P1 and P2. Using this we will limit ourselves to only
dealing with QFSL.

2.2 Revising Inconsistent Evidence

2.2.1 Revising Inconsistent Categorical Evidence

We will first investigate the question of how to revise the evidence sets B when
receiving inconsistent information; that is when receiving a new piece of informa-
tion θ where B∪{θ} ⊧ �. As mentioned above using an AGM like revision process
assumes that new information is always more reliable than the old information.
An assumption that is problematic in many contexts of reasoning. Our aim here
is to devise a revision process that relaxes this assumption. In our first attempt
we assume the same epistemic status for the new information as for any of the
statements currently in the evidence set B. We shall relax this assumption in the
next sections to allow for a more detailed analysis of the evidence and to take
into account the degree of reliability for each individual piece of evidence.

Assume for start that the agent is in possession of a consistent set B =
{φ1, . . . , φn}. We start by assuming categorical information only and will ex-
tend our setting to allow for probabilistic evidence later. Suppose that some new
piece of information, say θ, is received by the agent where B∪{θ} is inconsistent.
Following our initial intuition this inconsistency will induce uncertainty in the
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agent’s belief and thus results in moving to some probabilistic belief set B′ which
is intended to represent a probabilistically consistent reduction of B ∪ {θ}, i.e., a
set B′ consisting of probabilistic statements of the form w(φ) = p for φ ∈ B ∪{θ}.

Definition 2.2.1 (Knight 2002) For a set of sentences Γ ⊂ SL, the maximal
consistency of Γ, denoted by mc(Γ) is defined as

mc(Γ) =max{η ∣Γ is η consistent} =

max{η ∣ there is a probability function w on SL such that w(φ) ≥ η for all φ ∈ Γ}

Lemma 2.2.2 Let Γ = {φ1, . . . , φn} ⊂ SL with mc(Γ) = η. Then there is a fixed
subset of Γ, say Γ1 such that for every probability function w on SL, if w(φ) ≥ η
for all φ ∈ Γ then w(φ) = η for all φ ∈ Γ1.

Proof Suppose not, then for every ψ ∈ Γ there is a probability function wψ (not
necessarily distinct) such that wψ(φ) ≥ η for all φ ∈ Γ and wψ(ψ) > η. Let

w = 1/n∑
ψ∈Γ

wψ

then for every φ ∈ Γ we have

w(φ) = 1/n∑
ψ∈Γ

wψ(φ) > η

since every wψ(φ) ≥ η, ψ ≠ φ and wφ(φ) > η. This is a contradiction with
mc(Γ) = η. ◻

Let Γ ⊂ SL and let mc(Γ) = η1 and let Γ1 as in Lemma 2.2.2. Set

η2 =max{η ∣w(ψ) ≥ η for ψ ∈ Γ − Γ1

where w is a probability function such that w(φ) ≥ η1 for φ ∈ Γ}.

With The same argument as in Lemma 2.2.2, one can show that there is a fixed
subset Γ2 ⊂ Γ−Γ1 such that w(θ) = η2 for θ ∈ Γ2 and w(θ) ≥ η2 for θ ∈ Γ−(Γ1∪Γ2)
for every probability function w such that w(φ) ≥ η1 for φ ∈ Γ (so w(φ) = η1 for
φ ∈ Γ1) and w(ψ) ≥ η2 for ψ ∈ Γ − Γ1. Following the same process finitely many
times one will be left a partition Γ = Γ1 ∪ Γ2 ∪ . . . ∪ Γm and values η1, . . . , ηm.
Then set

m⃗c(Γ) =< δ1, . . . , δn >, where δj = ηk ⇐⇒ φj ∈ Γk.

Intuitively the values given in m⃗c(Γ) are the highest probabilities that can be
assigned to the sentences in Γ consistently. In the sense that there is no proba-
bility function that can assign a probability higher than η1 to all the sentences in
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Γ1 simultaneously and same for η2 and Γ2 and so on. In other words if we take
1⃗ =< 1, . . . ,1 > as an n-vector representing the assignment of reliability 1 to all
sentences φ1, . . . , φn (which will be inconsistent if Γ is) then for any probability
function w if we set w⃗ =< w(φ1), . . . ,w(φn) >, we have

d(1⃗, m⃗c(Γ)) ≤ d(1⃗, w⃗)

thus accounting for m⃗c(Γ) being the closest we can consistently get to the as-
sumption that all sentences in our knowledge set Γ are correct.

Definition 2.2.3 Let B = {φ1, . . . , φn} ⊂ SL be consistent set of sentences and
φn+1 ∈ SL be such that B ∪ {φn+1} ⊧ �, then the revision of B by φn+1 is defined
as

B′ = {w(φ1) = p1, . . . ,w(φn) = pn,w(φn+1) = pn+1}

where
< p1, . . . , pn, pn+1 >= m⃗c({φ1, . . . , φn, φn+1}).

Definition 2.2.3 is to capture the idea that the revised belief set is to assign
probabilities to the sentences φ1, . . . , φn, φn+1 that are as close as possible to 1,
that is to assign the highest reliability to the information that is consistently
possible.

2.2.2 Revising Inconsistent Probabilistic Evidence

Using the revision process described above, one will move, in the presence of
inconsistencies, from a set of categorical information to one consisting of prob-
abilistic statements. To use this as a process for iterated revision one needs to
define the revision process also on those consisting of probabilistic statements.
The latter will be more general and include the categorical information sets by
identifying a set {φ1, . . . , φn} with the set {w(φ1) = 1, . . . ,w(φn) = 1}.

Notice that in revising the B = {φ1, . . . , φn}, with a sentence φn+1, the notion
of maximal consistency of B∪{φn+1} represent an attempt to consistently assign
probabilities to these sentences while remaining as close as possible to their prior
probabilities (namely, 1). Thus the attempt to assign the highest probabilities
consistently possible was essentially an attempt to remain as close as possible to
1. The approach when dealing with probabilistic belief sets in general is going to
be the same. We shall try to assign probabilities to these sentences while trying
to set the values as close as possible to the prior probabilities, which might not
necessarily be 1 any more. To this end we first generalise the notion of maximal
consistency for a set Γ. For a set of probabilistic statements, Γ = {w(φ1) =
p1, . . . ,w(φn) = pn}, we say that Γ is inconsistent when there is no probability
function W such that W (φi) = pi. In other words when w can not be extended
to a probability function.



30 CHAPTER 2. REASONING FROM CONFLICTING INFORMATION

Definition 2.2.4 Let Γ = {w(φ1) = p1, . . . ,w(φn) = pn} be a (possibly incon-
sistent) set of probabilistic sentences. The minimal change consistency of Γ,
m⃗cc(Γ), is defined as the n-vector

q⃗ ∈ {< a1, . . . , an > ∣ there is a probability function W on SL with W (φi) = ai}

for which d(q⃗, p⃗) is minimal, where p⃗ =< p1, . . . , pn > and d is the Euclidean
distance.

Notice that for consistent Γ = {w(φ1) = p1, . . . ,w(φn) = pn}, the m⃗cc(Γ) =<
p1, . . . , pn >. The process of revising a set of probabilistic informationB =
{w(φ1) = p1, . . . ,w(φn) = pn} with the statement w(φn+1) = pn+1 is the same
as revising categorical information but with m⃗cc(B ∪ {w(φn+1) = pn+1}) instead
of m⃗c(B ∪ {φn+1}).

Definition 2.2.5 Let B = {w(φ1) = p1, . . . ,w(φn) = pn}, where {φ1, . . . , φn} ⊂
SL and φn+1 ∈ SL be such that B ∪ {w(φn+1) = pn+1} is probabilistically incon-
sistent1, then the revision of B by w(φn+1) = pn+1 is defined as

B′ = {w(φ1) = q1, . . . ,w(φn) = qn,w(φn+1) = qn+1}

where
q⃗ = m⃗cc(B ∪ {w(φn+1) = pn+1}).

2.2.3 Revising Prioritised Evidence With Degrees Of En-
trenchment

One can immediately notice that in the revision process described above all the
sentences in the current belief set, as well as the new information w(φn+1), are
given the same epistemic status, in the sense that one tries to keep them all as
close as possible to the prior values. This can be readily relaxed in our setting.
One can modify the distance used in the definition of m⃗cc to account for a higher
degree of reliability or trust in the new information or the old. More generally
one can assign degrees of entrenchment to the statements in the evidence set to
make some parts of the evidence more robust and resistant to change. To this
end we can for example take

d(q⃗, p⃗) ∶=
√
di(qi − pi)2

and define m⃗cc(B), as the n-vectors

q⃗ ∈ {< a1, . . . , an > ∣ there is a probability function W on SL with W (φj) = aj}

1that is there is no probability function that can simultaneously assign these values to the
sentences in φ1, . . . , φn+1.
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for which d(q⃗, p⃗) is minimal. And as before let the revision of B by w(φn+1) = pn+1

be
B′ = {w(φ1) = q1, . . . ,w(φn) = qn,w(φin+1) = qn+1}

where
q⃗ = m⃗cc(B ∪ {w(φn+1) = pn+1}).

One can achieve the same results by taking a more detailed approach using
some notion of ordinal ranking. To see this take the language L(k) to have the
same relation symbols as L, say R1, . . . ,Rt but with the domain restricted to
{a1, . . . , ak}. If k is the largest such that ak appears in φi, i = 1, . . . , n + 1, then
the φi can be viewed as sentences in the propositional language with propositional
variables

Ri(aj1 , . . . , ajsi )

with 1 ≤ i ≤ t, i1, . . . , isi ∈ {a1, . . . , ak} and si being the arity of Ri. Then the
atoms of this language are the sentences of the form

⋀
j1,...,jsi

≤k
R si−ary

Ri∈RL,j∈N+

±Ri(aj1 , ..., ajsi ).

and given an ordinal ranking on these atoms in a way that contradictions are
given rank 0, and the more plausible atoms get assigned a higher ordinal, one
can take the coefficients di above as the highest rank such that there is an atom
of that rank consistent with φi. On other contextual consideration one might
choose to have the coefficients di to represent the reliability of the source or the
process from which the information is acquired.

2.3 Probabilistic Entailment

2.3.1 The η
⊳ζ Entailment

In this section we will generalise a probabilistic entailment relation introduced by
Knight, (Knight 2002), and further developed by Paris (Paris 2004) and Paris,
Picado-Muino and Rosefield, (Paris et. al. 2008), and present analogous results
to those given by them in the propositional case, for first order languages. Later in
this section we shall study a generalisation of this entailment relation following to
multiple thresholds as the basis for reasoning with conflicting evidence following
(Picado-Muino 2008).

As will be clear shortly, the probabilistic entailment we study provides a
spectrum of consequence relations, each at a different degree of reliability, which
facilitate our goal in deriving meaningful inferences from an inconsistent set. As
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we shall see in details, this is in line with our initial thesis to identify an inconsis-
tent theory with an uncertain theory which we shall represent as a probabilistic
one. The inferences from such a theory will inevitably be probabilistic and, fol-
lowing (Paris 2004; Paris et. al. 2008), we shall regard the entailment relation
as preserving the reliability or “acceptability” of the consequences given that of
the premises as opposed to preserving the categorical truth as is the case for
the classical consequence relation. The “acceptability” in inferences here, will
be represented with a probabilistic threshold which, we shall assume, can be set
from the context of the reasoning.

Definition 2.3.1 (Knight 2002) Let Γ ⊂ SL, ψ ∈ SL and η, ζ ∈ [0,1].

Γη ⊳ζ ψ ⇐⇒ for all probability functions w on L, if w(Γ) ≥ η then w(ψ) ≥ ζ

The idea here is that as long as one is in the position to assign to each of the
sentences in Γ a probability of at least η, one is also in the position to assign
a probability of at least ζ to the sentence ψ. The intuition for defining such
a probabilistic entailment is more evident when η = ζ are interpreted as the
thresholds for acceptance. In this situation the entailment relation Γη ⊳η ψ can
be read as: as long as we are prepared to accept all the sentences in Γ we are
bound to accept ψ. There are situations, however, where the context of reasoning
justifies different threshold for the assumptions and conclusion.

An important feature of this entailment relation, relevant to our purpose here,
is the observation that for the right value of η this is a para-consistent entailment
relation. To see this notice for example that

{φ,¬φ,ψ}1/2 ⊳1/2¬ψ

for φ and ψ syntactically disjoint (i.e., when they do not share any relation
or constant symbols), since one can find a probability function w for which,
w(φ) = w(¬φ) = 1/2 and w(ψ) = 1 (and thus w(¬ψ) = 0). This does however
depend for each Γon the value of η. For η > 1/2, for example, η ⊳ζ will be
trivialised on the set {φ,¬φ,ψ} for any ζ since there would be no probability
function that can assign a probability higher than 1/2 to all the sentences in this
set. To be more precise, the entailment relation η ⊳ζ is para-consistent on the set
of sentences Γ for all η ≤mc(Γ). Thus for the rest of this section we shall restrict
ourselves to η ∈ [0,mc(Γ)] whenever we make a reference to Γη ⊳ζ .

Next we shall see some properties of this entailment relation before gener-
alising to the case of multiple thresholds and return to our main goal of pro-
viding meaningful logical inference from an inconsistent theory. Many of these
properties are generalised from the propositional case, given in (Paris 2004) and
(Paris et. al. 2008), immediately and some need modifications to the proof to
work for the first order languages. We shall give the proof for the first order case
where such modifications are required.
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2.3.2 Properties of η
⊳ζ

Proposition 2.3.2 For any Γ ⊂ SL and ψ ∈ SL,
(i) Γη ⊳0 ψ.
(ii) For ζ > 0, Γ1 ⊳ζ ψ ⇐⇒ Γ ⊧ ψ.
(iii) For η >mc(Γ), Γη ⊳1 ψ.
(iv) For ζ > 0, Γ0 ⊳ζ ψ ⇐⇒ ⊧ ψ.

Proof Parts (i) and (iii) are immediate from the definition. Notice that classical
valuations on L are themselves probability functions. Thus for consistent Γ,
Γ1 ⊳ζ ψ implies that v(ψ) ≥ ζ for all valuations v for which v(Γ) = 1. Since ζ > 0
this implies that v(ψ) = 1 and thus Γ ⊧ ψ. If Γ is inconsistent then (ii) follows
trivially. Conversely suppose Γ ⊧ ψ and w(Γ) = 1. Let βi, 1 ≤ i ≤ m, enumerate
sentences of the form

n

⋀
i=1

φεii

where Γ = {φ1, . . . , φn}, εi ∈ {0,1} and φ1
i = φi and φ0

i = ¬φi. Then for any βi
such that w(βi) > 0 we have βi ⊧ φi for all 1 ≤ i ≤ n since otherwise we will have

w(φi) = ∑
βj⊧φi

w(βj) < 1.

So βi ⊧ ⋀Γ and since ⋀Γ ⊧ ψ,

ζ ≤ 1 = ∑
βj⊧⋀Γ

= w(⋀Γ) ≤ w(ψ)

as required. For (iv), if ⊭ ψ then there is a valuation v for which v(ψ) = 0. Since v
is also a probability function and v(Γ) ≥ 0, Γ0 ⊳ζ will fail for any ζ > 0. Conversely
if Γ0 ⊳ζ ψ fails then there si a probability function w for which w(ψ) < ζ ≤ 1 and
thus ⊭ ψ. ◻

Proposition 2.3.3 Assume that Γη ⊳ζ ψ. Then
(i) If τ ≥ η and ν ≤ ζ, then Γτ ⊳ν ψ.
(ii) if τ ≥ 0 and η + τ, ζ + τ ≤ 1, then Γη+τ ⊳ζ+τ ψ

We will first prove the following lemma:

Lemma 2.3.4 Take φ1, . . . , φn ∈ SL, and let βi enumerate the sentences

n

⋀
i=1

φεii

as before and let v(βi) be such that ∑
2n

i=1 v(βi) = 1. The there is a probability
function, w on SL for which

w(βi) = v(βi).
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Proof It is only enough to define w on QFSL, the quantifier free sentences of
L. Choose any probability function u on SL such that u(βi) ≠ 0 for i = 1, . . . ,2n

and for ψ ∈ QFSL, define

w(ψ) =
2n

∑
i=1

v(βi)u(ψ∣βi).

◻

Proof of Proposition (2.3.3). (i) is immediate from the definition. For (ii) sup-
pose that Γη+τ ⊳ζ+τ ψ failed. Thus there is a probability function w for which
w(Γ) ≥ η + τ but w(ψ) < ζ + τ . If w(ψ) < ζ we will have that Γη ⊳ζ ψ fails.
Otherwise let γ ≥ 0 be such that

γ < ζ < γ + (ζ + τ −w(ψ)).

Let βi enumerate all the sentences of the form

n

⋀
i=1

φεii ∧ ψεn+1 .

Pick a βi such that w(βi) > 0 and βi ⊭ ψ (such a βi exists otherwise we should
have w(ψ) = 1 and Γη+τ ⊳ζ+τ ψ will hold). Define

v(βk) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

w(βk).(γ/w(ψ)) if βk ⊧ ψ,

w(βk) if βk ⊮ ψ,βk ≠ βi,

w(betai) +w(ψ) − γ if βk = βi

so ∑
2n+1
k=1 v(βk) = 1. Using Lemma (2.3.4), we can find a probability function w′

on SL such that w′(βi) = v(βi) for i = 1, . . . ,2n. Then we have:

w′(ψ) = ∑
βi⊧ψ

w′(βi) = ∑
βi⊧ψ

w(βi).γ/w(ψ) = γ

and for φ ∈ Γ we have

w(φ) −w′(φ) ≤ ∑
βi⊧φ∧ψ

w(βi)(1 − γ/w(ψ)) ≤ w(ψ) − γ

because for all other w′(βk) > w(βk). So

w′(φ) ≥ η + τ − (w(ψ) − γ) > η.

So we have w′(φi) > η while w′(ψ) = γ < ζ which contradicts Γη ⊳ζ ψ. ◻
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Proposition 2.3.5 If limn→∞ ηn = η and limn→∞ ζn = ζ with ηn increasing and
Γηn ⊳ζn ψ for all n, then Γη ⊳ζ ψ.

Proof See (Picado-Muino 2008)

The next result shows that the entailment relation η ⊳ζ does not depend on
the choice of language. More precisely, let L1,L2 be finite first order languages
and such that Γ ⊂ SL1 ∩ SL2 and ψ ∈ SL1 ∩ SL2, then w1(ψ) ≥ ζ for every
probability function w1 on SL such that w1(Γ) ≥ η if and only if w2(ψ) ≥ ζ for
every probability function w2 on SL such that w2(Γ) ≥ η.

Proposition 2.3.6 The relation η ⊳ζ is language invariant.

Proof Let Γ ⊂ SL and ψ ∈ SL such that Γη ⊳ζ ψ for the language L, i.e., for
every probability function w on SL if w(Γ) ≥ η then w(ψ) ≥ ζ. It is enough to
show that if L′ is a language such that L ⊂ L′ then for every probability function
w′ on SL′, if w′(Γ) ≥ η then w′(ψ) ≥ ζ and conversely.

For the forward direction assume that w′ is a probability function on SL′ such
that w′(Γ) ≥ η but w′(ψ) < ζ. Let w be the restriction of w′ to SL. Then w will
be a probability function that agrees with w′ on Γ and ψ and thus Γη ⊳ζ ψ will
fail in the context of the language L. Conversely let w be a probability function
on SL such that w(Γ) ≥ η but w(ψ) < ζ. Let Γ = {φ1, . . . , φn} and as before let
βi enumerate the sentences of the form

n

⋀
i=1

φεii ∧ ψεi+1

and we have that
w(ψ) = ∑

βi⊧ψ
w(βi) < ζ.

Since L ⊂ L′, we have βi ∈ SL
′ and since w is a probability function we have that

∑
2n+1
i=1 w(βi) = 1. Using lemma 2.3.4, we can find a probability function w′ on SL′

with w′(βi) = w(βi). With the notation of Lemma 2.3.4, for φ ∈ Γ,

w′(φ) =
2n+1

∑
i=1

w(βi)u(φ∣βi) = ∑
βi⊧φ

w(βi) = w(φ) ≥ η

and

w′(ψ) =
2n+1

∑
i=1

w(βi)u(ψ∣βi) = ∑
βi⊧ψ

w(βi) = w(ψ) < ζ.

Hence Γη ⊳ζ ψ fails in the context of language L′. ◻
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2.4 Generalising to Multiple Thresholds; η⃗
⊳ζ

The intuition behind the probabilistic entailment as studied in the previous sec-
tions is to see the relation as extending the classical relation between the truth
of two sentences to a relation between their reliability. As mentioned before this
relation will only make sense if we restrict ourselves to η ∈ [0,mc(Γ)] and in
particular when dealing with inconsistent information sets, we will be interested
in the case where η = mc(Γ). This intuitively means that we are interested to
investigate the probabilistic inferences from a set Γ if we are ready to accept it
with the highest reliability consistently possible. That reliability will of course
be 1 for a consistent Γ in which case the set of logical consequences of Γ will
coincide with its classical consequences.

This approach however might be too coarse a view in many cases. One such
case, for example, is when the statements in Γ are accumulated from different
sources and their reliability is inevitably bound by the reliability of the cor-
responding source. Consider a set Γ where some statements in Γ are proved
analytically and some are driven from experiments with a certain degree of reli-
ability or error margin. The relation η ⊳ζ , however fails to distinguish between
such statements in Γ and the threshold η is assigned to all the sentences in indis-
criminatingly. Although this relation provides the means to derive probabilistic
inferences from an inconsistent set, as we shall elaborate more in the next section,
it fails to limit the effect of inconsistency to the part of the information that is
relevant to the inconsistency as we intended. This is because, the threshold η
is assigned to the set Γ as a whole and the presence of inconsistencies in Γ will
change the maximal consistency for it as a whole. With this idea in mind, one
can set out to generalise this entailment relation to a more fine graded relation
that allows distinguishing between different parts of the knowledge base. To this
end, we will generalise the relation η ⊳ζ investigated in the previous section. The
idea here is that the entailment relation between the set Γ and a sentence ψ is
to account not only for the relation between the reliability ψ and that of Γ as a
whole but between ψ and the individual sentences in Γ.

Definition 2.4.1 Let Γ = {φ1, . . . , φn} ⊂ SL, ψ ∈ SL and η⃗ ∈ [0,1]n, ζ ∈ [0,1].
Define

Γη⃗ ⊳ζ ψ ⇐⇒ for all probability functions w on L,
if w(φi) ≥< η⃗ >i for i = 1, . . . , n then w(ψ) ≥ ζ.

As mentioned before this gives more suitable grounds for dealing with inconsistent
information (in particular when there are reasons to distinguish the sentences in
Γ from the reliability point of view, for instance when such sentences are coming
from different sources) by allowing to restrict the effect of inconsistencies to only
parts of the information set.
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2.5 Reasoning with Inconsistent Information

We are now in a position to address the goals towards which we set out. First
we wish to be able to make inferences from an inconsistent set while avoiding
trivialisation and secondly to limit the effect of inconsistencies to the parts of
the reasoning relevant to them. Following our initial approach we interpret the
inconsistencies by the uncertainty that they induce in the information and thus
essentially deal with uncertain reasoning when trying to reason from inconsisten-
tor conflicting evidence.

Given a set of sentences Γ ⊂ SL, let η =mc(Γ) and define

Γ ∣≈ζψ ⇐⇒ Γη ⊳ζ ψ.

Intuitively we have Γ ∣≈ζψ if assuming the highest reliability for the sentences
of Γ, ψ will be at least as reliable as ζ. This gives, for each Γ, a spectrum of
inference relations ∣≈ζ for ζ ∈ [0,1] each at a different degree of reliability. Notice

that if we denote the set of consequences of Γ at reliability degree ζ by CζΓ then
for ζ ≤ δ we have

CδΓ ⊆ CζΓ.

This does address our first goal to make valid nontrivial inferences from an
inconsistent set. To address the second goal we shall move to the fine graded
version of the entailment relation; Given a set of sentences Γ ⊂ SL, with m⃗cc(Γ) =
η⃗, define

Γ ∣≈ζψ ⇐⇒ Γη⃗ ⊳ζ ψ.

Again, we have a spectrum of entailment relations from the set Γ each at a
different degree of reliability in [0,1]. To see how this allows limiting the effect of
inconsistencies consider the following case; Let L1 and L2 be disjoint languages
with L = L1 ∪ L2 and let Γ1 ⊂ SL1 and Γ2 ⊂ SL2 so Γ = Γ1 ∪ Γ2 ⊂ SL. Let
Γ1 = {φ1, . . . , φn} be inconsistent with m⃗ccΓ1 =< η1, . . . , ηn > and assume that
Γ2 = {ψ1, . . . , ψm} is consistent and so m⃗ccΓ2 =< δ1, . . . , δm >=< 1, . . . ,1 >. Then
taking

Γ = {φ1, . . . , φn, ψ1, . . . , ψm}

in this fixed order, we have

m⃗cc(Γ) =< η1, . . . , ηn,1, . . . ,1 >,

and for θ ∈ SL2 ⊂ SL we have

Γ ∣≈ζθ ⇐⇒ Γ2 ⊧ θ

thus reducing the inference on sentences of L2 where the relevant knowledge is
consistent to the classical inference, hence limiting the pathological effect of the
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inconsistency only to inferences on sentences L1 where the knowledge is incon-
sistent.

Thus reasoning with conflicting evidence in our approach amounts to first
identifying the maximal (probabilistic) consistency of the evidence. This will
give the reliability of the evidence which in turn identifies the relevant evaluation
functions. In the case of classical consequence relation, logical consequences of a
set of sentences are those that get value 1 from all relevant evaluation functions.
In the same manner the set of logical consequences of a set Γ in our setting are
those that receive a probability higher than a certain threshold by all the relevant
evaluation functions: the probability functions that satisfy the reliabilities for the
evidence given in the m⃗cc(Γ).

2.6 Conclusion

We started with two goals. First to study consequence relations that allow infer-
ence from inconsistent sets and second, to do so in a manner that allows us to
limit the effect of inconsistencies to only parts of the reasoning that is relevant
to the inconsistency. We studied a process for revising inconsistent information
sets to consistent probabilistic ones. Our approach is to change the evaluation in-
consistent information by consistently assigning probabilities that are as close as
possible to prior evaluations, thus capturing the idea of minimal change revision.
Our approach allows for fine grade analysis of the revision process on individual
sentences and to allow for the handling of prioritised belief sets.

Next we investigated a probabilistic entailment relation for first order lan-
guages that allows us to make logical inference at different degrees of reliabili-
ties. This entailment relation for the right values of the thresholds will yield a
para-consistent consequence relation that provides the setting for reasoning with
inconsistent information. We derived some basic properties of this relation and
studied a generalisation to multiple thresholds which will facilitate our second
goal.

Of course our notion of ”closeness” when revising the inconsistent belief can
be subject to debate. The use of Euclidean distance was motivated by trying to
choose the closest values for all sentences simultaneously. It would be interesting
to investigate if other notions of ”closeness” can improve this approach. Another
interesting aspect which we hope to investigate next is to study how to update
the weights associated to the informations while dealing with a prioritised belief
sets. Given such a set B if one assigns a certain weight to the information φ ∈ B
and then receives ¬φ (again with some weight), it seems reasonable to not only
revise the valuation of φ (and ¬φ) but also the weights that are assigned to these
sentences. One would expect such an analysis to depend on how these weights
are interpreted above anything else.
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2.7 Appendix

Paris, (Paris 2004) and Paris, Picado-Muino and Rosefield, (Paris et. al. 2008)
give an analysis of the η ⊳ζ relation in classical propositional language as well as
a complete proof theory. The analysis follows naturally to the first order case
and the proof theory can be easily generalised for first order languages. For the
sake of completeness, we repeat this analysis here with slight modifications to
work in the first order case.

2.7.1 A Classical Analysis of η
⊳ζ

We will now present an analysis of the entailment relation η ⊳ζ in classical first
order logic the intention behind this analysis becomes evident when we discuss
its proof theory in the next section. We start with the case where η, ζ > 0 are
rational and will generalise to the irrational η and ζ after introducing some more
technicalities. Thus let η = c/d and ζ = e/f for c, d, e, f ∈ N and assume

φ1, . . . , φ
c/d
n ⊳e/f ψ. (2.1)

As usual let β1, . . . , βm enumerate the sentences of the form

εi

⋀
φi

∧ψεn+1 .

Let φ⃗i eb the m-vector with the jth coordinate 1 if and only if βj ⊧ φi and 0

otherwise (notice that if βj ⊭ φi then βj ⊧ ¬φi) and define ψ⃗ the same way. Let

Wm = {< x1, . . . , xm > ∣xi ≥ 0,∑xi = 1}.

Notice that Wm is in one to one correspondence with the probability functions
on SL: using Lemma 2.3.4, every v⃗ ∈ Wm can be extended to a probability
function w on SL for which w(β) =< v⃗ >i and for every probability function w,
< w(β1), . . . ,w(βm) >∈Wm and and we have

w(φi) = ∑
βj⊧φi

w(βj) = φ⃗i⋅ < w(β1), . . . ,w(βm) > .

With this setting (2.1) will be equivalent to

For all w⃗ ∈Wm, if φ⃗i ⋅ w⃗ ≥ c/d for i = 1, . . . , n, then ψ⃗ ⋅ w⃗ ≥ e/f. (2.2)

Let 1⃗ be the m-vector with all coordinates 1, and set,

φ⃗i = φ⃗i − (c/d)1⃗, ψ⃗ = ψ⃗ − (e/f)1⃗
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then (2.2) can be written as

For all w⃗ ∈Wm, if φ⃗i ⋅ w⃗ ≥ 0 for i = 1, . . . , n then ψ⃗ ⋅ w⃗ ≥ 0. (2.3)

This means that ψ⃗ is in the cone

⎧⎪⎪
⎨
⎪⎪⎩

n

∑
i=1

aiφ⃗i +
m

∑
j=1

bj e⃗j ∣0 ≤ ai, bj ∈ Q
⎫⎪⎪
⎬
⎪⎪⎭

where e⃗j are the unit m-vectors. This means that for some 0 ≤ ai, bj ∈ Q,

ψ⃗ =
m

∑
i=1

ai
⃗

φi +
m

∑
j=1

bj e⃗j . (2.4)

If we take M to be the product of the denominators of these ai’s, write the ai’s
as Ni/M with M,Ni ∈ N, remove the rightmost expression and multiply both
sides by dM , we can rewrite (2.4) as

n

∑
i=1

Ni(dfφ⃗i − cd1⃗) ≤M(dfφ⃗ − de1⃗) (2.5)

Setting ¬⃗ψ = 1⃗ − ψ⃗, (2.5) will be equivalent to

Mdf ¬⃗ψ +
n

∑
i=1

dfNiφ⃗i ≤ [Md(f − e) + cf
n

∑
i=1

mi]1⃗ (2.6)

Conversely if (2.6) hlds for some M,N1, . . . ,Nn ≥ 0 then this process can be
reversed to get back (2.2).

Let ξ1, . . . , ξN ∈ {φ1, . . . , φn} be such that the sentence φi appears exactly
dfNi many times among ξ1, . . . , ξN (so N = df ∑iNi). If βk ⊧ ¬ψ, by (??), the
k-th coordinate of ξj is non-zero for at most −deM + cf ∑iNi = (cN − d2eM)/d
many j. So

⋁
J⊂{1,...,N}

∣J ∣>(cN−d2eM)/d

⋀
j∈J

ξj ⊧ ψ (2.7)

On the other hand, if βk ⊧ ψ then k-th coordinate of ξj is non-zero for at most
(cN − d2M(f − e))/d many j. So

⋁
J⊂{1,...,N}

∣J ∣>(cN−d2M(f−e))/d

⋀
j∈J

ξj ⊧ �. (2.8)

Now set,
Z = 1 + (cN − d2eM)/d,
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T = 1 + (cN − d2M(f − e))/d

So
Td(f − e) = fcN − edZ + df

and we have T < Z. From (2.7) and (??),

⋁
J⊂{1,...,N}
∣J ∣=T

⋀
j∈J

ξj ⊧ ψ, (2.9)

⋁
J⊂{1,...,N}
∣J ∣=Z

⋀
j∈J

ξj ⊧ � (2.10)

Td(f − e) = fcN − edZ + dfandT < Z. (2.11)

Conversely, if for some ξ1, . . . , ξN and some Z,T ∈ N (2.9), (2.10) hold and T
and Z are related as in (2.11) then for any βi, if βi ⊧ ¬ψ then βi ⊧ ξj for at most
T − 1 many j. the same way if βi ⊧ ψ there are at most Z − 1 many such j. So

N

∑
j=1

ξ⃗j ≤ (T − 1)1⃗ + (Z − T )ψ⃗. (2.12)

Now let w⃗ ∈ Wm and ξ⃗j ⋅ w⃗ ≥ c/d for j = 1, . . . ,N . If we multiply both sides of
(2.12) with w⃗ we get

(Z − T )ψ⃗ ⋅ w⃗ ≥ (c/d)N − T + 1.

But from (2.11),
(c/d)N − t + 1

Z − T
= e/f

so ψ⃗ ⋅ w⃗ ≥ e/f . Thus if (2.9), (2.10) and (2.11) hold then

ξ1, . . . , ξ
c/d
N ⊳e/f ψ

and conversely if

φ1, . . . , φ
c/d
n ⊳e/f ψ

then there is a θ and sentences ξ1, . . . , ξN ∈ Γ (possibly with repeats) such that
θ ⊧ ψ and for some T,Z ∈ N, (2.9), (2.10) and (2.11) hold.

Theorem 2.7.1 For η, ζ ∈ (0,1] and φ1, . . . , φn ∈ SL,

φ1, . . . , φn
η ⊳ζ ψ ⇐⇒ ∃ξ1, . . . , ξN ∈ {φ1, . . . , φn}, and T,Z ∈ N with
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T (1 − ζ) ≤ ηN − ζZ + 1, T < Z and

⋁
J⊂{1,...,N}
∣J ∣=T

⋀
j∈J

ξj ⊧ ψ, ⋁
J⊂{1,...,N}
∣J ∣=Z

⋀
j∈J

ξj ⊧ �

Proof The preceding analysis gives the proof for the case of rational η and ζ. To
include irrationalη and ζ, first consider the case where η is irrational but ζ ∈ Q
and assume that Γη ⊳ζ ψ. Before preceding to show the result for the case where
either η or ζ are irrational we need to introduce some notation and technicalities.

Definition 2.7.2 For Γ ⊂ SL, ψ ∈ SL and η ∈ [0,1], let

ζψΓ,η = sup{ζ ∈ [0,1] ∣Γη ⊳ζ ψ}.

Using Propositions 2.3.2 and 2.3.5, it is easy to check that this is well defined
and that there is a probability function w for which w(Γ) ≥ η and w(ψ) = ζψΓ,η.

We will first show that for all x in some non-empty neighbourhood (η − ε, η + ε)

we have ζψΓ,x = q1x + q2 for some q1, q2 ∈ Q. To show this we will first argue

that the set of points (x, ζψΓ,x) is convex and then we will show that the function

ζψΓ,x is continuous on [0,mc(Γ)] and so it should be made up of straight lines
y = qi1x + qi2 on this interval. By taking ε small enough we will end up on a
single one of such straight lines in the interval (η − ε, η + ε).

First notice that by Proposition 2.3.3, if x1 ≤ x2 then ζψΓ,x1
≤ ζψΓ,x2

. Thus ζψΓ,x
in creasing in x. Second notice that for η1 < η2 ≤ mc(Γ) and 0 < δ < 1 we can

find probability functions w1 and w2 such that w1(Γ) ≥ η1 and w1(ψ) = ζ
ψ
Γ,η1

and

similarly w2(Γ) ≥ η2 and w2(ψ) = ζ
ψ
Γ,η2

. Take w = δw1 + (1 − δ)w2 and we will
have

w(φ) = δw1(φ) + (1 − δ)w2(φ) ≥ δη1 + (1 − δ)η2

w(ψ) = δw1(ψ) + (1 − δ)w2(ψ) = δζ
ψ
Γ,η1

+ (1 − δ)ζψΓ,η2

Thus we have

ζψ
Γ,(δη1+(1−δ)η2) ≤ δζ

ψ
Γ,η1

+ (1 − δ)ζψΓ,η2

This shows that on [0,mc(Γ)], ζψΓ,x is both increasing and convex as a function on

x. Thus to show its continuity it would be enough to show that limx→mc(Γ) ζ
ψ
Γ,x =

ζψ
Γ,mc(Γ). Using Proposition 2.3.5, we have

lim
x→mc(Γ)

ζψΓ,x ≤ ζ
ψ
Γ,mc(Γ). (2.13)
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If limx→mc(Γ) ζ
ψ
Γ,x < ζ

ψ
Γ,mc(Γ) then we can take

lim
x→mc(Γ)

ζψΓ, < t < ζ
ψ
Γ,mc(Γ)

we can then find an increasing sequence rn converging to mc(Γ) and probability
functions wn for which wn(Γ) ≥ rn and wn(ψ) < t. For Γ = {φ1, . . . , φn} and as
usual let βi, i = 1, . . . ,m enumerate the sentences

n

⋀
i

φεii ∧ ψεn+1

and consider the vector

w⃗j =< wj(β1), . . . ,wj(βm) > .

Since wj(β1) is a bounded sequence it has a convergent subsequence, say w1j(β1),
converging to say, w(β1). Let

w⃗1
j =< w

1
j (β1), . . . ,w

1
j (βm) >

be a subsequence of w⃗j such that w1
j is a subsequence of w1j (so w1

j (β1) converges

to w(β1) ). The same way we have wj1(β2) is a bounded sequence and so has a
convergent subsequence, say w2j(β2), converging to say w(β2) and let

w⃗2
j =< w

2
j (β1), . . . ,w

2
j (βm) >

be a subsequence of w⃗1
j for which w2

j (β2) is a subsequence of w2j(β2) and so con-
verges to w(β2). By the same method we will eventually construct a convergent
subsequence of w⃗j , namely w⃗mj , that converges to

w⃗ =< w(β1), . . . ,w(βm) > .

Using Lemma 2.3.4 we can extend this to a probability function w on SL and for
all φ ∈ Γ

w(φ) = ∑
βk⊧φ

w(βk) = ∑
βk⊧φ

lim
j→∞

wmj (βk) = lim
j→∞

∑
βk⊧φ

wj(βk) = lim
j→∞

wj(φ) ≥ lim
j→∞

rj = r

while

w(ψ) = ∑
βk⊧ψ

w(βk) = ∑
βk⊧ψ

lim
j→∞

wmj (βk)

= lim
j→∞

∑
βk⊧ψ

wj(βk) = lim
j→∞

wj(ψ) < lim
j→∞

t = t < ζψ
Γ,mc(Γ)
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which is a contradiction. Thus the strict inequality can hold in (2.13) and we
have

lim
x→mc(Γ)

ζψΓ,x = ζ
ψ
Γ,mc(Γ)

as required. It only remains to show that the set of pints (x, ζψΓ,x) is convex. Take

Ψ(x, y) to be a formula in the language R =< R,+,≤,0,1 > such that for η, ζ ∈

[0,1], R ⊧ Ψ(η, ζ) ⇐⇒ ζψΓ,η = ζ. Then since R admits quantifier elimination and

is an elementary extension of Q =< Q,+,≤,0,1 > we can suppose that Ψ(x, y) is
of the form

s

⋁
i=1

us

⋀
j=1

(mijy ∗ nijx + kij)

for some mij , nij , kij ∈ Z, where ∗ is either < or ≤. The set of pairs (x, y) for

which R ⊧ ⋀
us
j=1(mijy ∗ nijx + kij) is convex. Since ζψΓ,x is a continuous and

convex function of x it must be a straight line y = qi1x + qi2 with coefficients
qi1, qi2 ∈ Q with x ranging over some proper interval (which we can take to be

closed since ζψΓ,x is continuous).
Returning to our proof of Theorem 2.7.1, take η irrational and ζ rational and

assume
φ1, . . . , φn

η ⊳ζ ψ,

By the discussion above, ζψΓ,x = q1x + q2 for all x in some non-empty interval

(η − ε, η + ε). Since q1η + q2 is irrational we should have q1η + q2 > ζ (notice

that ζψΓ,x = q1x + q2 is the maximum on all zeta for which φ1, . . . , φn
η ⊳ζ ψ

and the equlity cannot hold) so there are r1, r2 ∈ Q such that r1 < η, r2 > ζ

and q1r1 + q2 > r2. Taking r1 withing the ε of η then ζψΓ,x > r2 so from the
first case for rational thresholds we can find ξ1, . . . , ξN ∈ Γ and Z,T such that
T (1 − r2) ≤ r1N − r2Z + 1, T < Z

⋁
J⊂{1,...,N}
∣J ∣=T

⋀
j∈J

ξj ⊧ ψ, ⋁
J⊂{1,...,N}
∣J ∣=Z

⋀
j∈J

ξj ⊧ � (2.14)

and by taking r1 and r2 close enough to η and ζ we will have

T (1 − ζ) ≤ ηN − ζZ + 1 (2.15)

as required by Theorem 2.7.1. Conversely if we have ξ1, . . . , ξN ∈ Γ and Z,T
satisfying (2.14) and (2.15), there must be r1 < η and r2 > ζ such that

T (1 − r2) ≤ r1N − r2Z + 1

and by the rational case above we should have φ1, . . . , φn
r1 ⊳r2 ψ and thus by

Proposition 2.3.3 we have
φ1, . . . , φn

η ⊳ζ ψ.
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The third case where η ∈ Q and ζ ∉ Q is proved similarly. For the last case
where η, ζ are both irrational assume Γη ⊳ζ ψ. First notice that if ζψΓ,x > ζ then
we can take a rational r2 > ζ and close enough to ζ and proceed as above so we
will assume that ζψΓ,x = q1η + q2 = ζ. The by the discussion above we have that

ζψΓ,x = q1η+q2 in some non-empty interval (η+ε, η−ε), and we can choose r1 ∈ Q in
this interval and set r2 = q1r1 + q2 and by the first case for rational thresholds we
have ξ1, . . . , ξN ∈ Γ and Z < T with T (1 − r2) ≤ r1N − r2Z + 1. We notice that we
should have equality here otherwise we could increase r2 while keeping r1 fixed
and show that ζψΓ,r1 > r2 which contradicts the choice of r2. These Z and T work

for r1 arbitrarily close to η (and r2 = q1r1+q2) and so by taking the limit one can
readily check that the same Z and T will satisfy the required inequality also for
η and ζ. In the other direction, suppose we have ξ1, . . . ξN for which (2.13) hold
and Z,T that satisfy the required inequalities. Then for rational r1 close to η

and r2 ≤
(r1N−T+1)
(Z−T ) close to ζ these same ξ1, . . . , ξN , Z and T will give Γr1 ⊳r2 ψ.

Since r1 and r2 can be made arbitrarily close to η and ζ respectively we can use
Proposition 2.3.5 to get Γη ⊳ζ ψ.
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Chapter 3

Learning Indicative
Conditionals

3.1 Introduction

Indicative conditional statements of the form “if A, then B” constitute a substan-
tial part of the evidence that we obtain. But how should we change our beliefs in
the light of such evidence? This question has prompted a large literature. How-
ever, in a recent survey, (Douven 2012) concludes that a proper general account
of probabilistic belief updating by learning (probabilistic) conditional information
is still to be formulated. And indeed, all accounts that have been proposed so far
have problems. Here are three of them. (For a much more detailed discussion,
see (Douven 2012).)

First and most straightforwardly, one might identify the natural lan-
guage indicative conditional A → B with the material conditional A ⊃ B,
which is equivalent to ¬A ∨ B. In a well-known article, Popper and Miller,
(Popper & Miller 1983), challenged this proposal with an argument based on
the probability calculus. It goes as follows. Consider two propositions A and B
and a prior probability distribution P with 0 < P (A) < 1 and P (B∣A) < 1. We
now learn the indicative conditional A → B, which we express as the material
conditional A ⊃ B. To update our beliefs, we use Bayesian Conditionalisation,
i.e. we calculate the posterior probability P ∗(A) ∶= P (A∣¬A ∨B). Interestingly,
it turns out that P ∗(A) < P (A). That is, learning that B follows from A always
decreases the probability of A if one uses the material conditional. However,
there are examples (such as the Sundowners Example discussed below) where
the posterior probability is intuitively judged to be greater than or equal to the

47
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prior probability, which renders this proposal untenable as a general account.

Second, Lewis, (Lewis 1976), proposed an account called imaging, which
requires a possible worlds semantics with similarity relations holding between
worlds. On this account an indicative conditional is true if its consequence holds
true in the closest possible world where its antecedent is true. Imaging on φ then
transfers the probability of every world in which φ is false to its closest world
where φ holds. It turns out, however, that this proposal also fails to do justice
to some of our intuitive judgments (cf. (Douven & Dietz 2011)).

Third, one constructs the posterior probability distribution by minimising the
Kullback-Leibler divergence between the posterior probability distribution and
the prior probability distribution, taking the learned information as a constraint
(expressed as a conditional probability statement) on the posterior probability
distribution into account. This approach has been challenged with several clever
examples. The most famous one is perhaps van Fraassen’s, (van Fraassen 1981),
Judy Benjamin Problem which aims at showing that the proposed method may
lead to wrong results. Other examples that challenge the Kullback-Leibler
method can be found in the work of Douven and his co-authors, (Douven 2012),
(Douven & Dietz 2011) and (Douven & Romeijn 2012). In this chapter, we re-
visit four of these examples and show that minimising the Kullback-Leibler diver-
gence leads to intuitively correct results if the corresponding probabilistic model
reflects the causal structure of the scenario in question.

The remainder of this chapter is organised as follows. Section 3.2 introduces
the Kullback-Leibler divergence and applies it to probabilistic belief updating.
We then present the four challenging examples. Section 3.3 shows how these
challenges can be met if the above-mentioned methodology methodology is prop-
erly applied. Section 3.4 shows how the effects of disabling conditions can be
properly modelled. Finally, Section 3.5 takes stock and comments on the scope
of our proposal.

3.2 The Kullback-Leibler Divergence and Prob-
abilistic Updating

The Kullback-Leibler divergence DKL(P
′∣∣P ) measures the expected difference

in the informativeness of two probability distributions P ′ and P from the point
of view of P ′. Let S1, . . . , Sn be the possible values of a random variable S
over which probability distributions P ′ and P are defined. The Kullback-Leibler
divergence between P ′ and P is then given by

DKL(P
′∣∣P ) ∶=

n

∑
i=1

P ′(Si) log
P ′(Si)

P (Si)
. (3.1)
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H E

Figure 3.1: The Bayesian Network representation of the relation between H and
E.

The Kullback-Leibler divergence is very popular in information theory and
has also been used to justify probabilistic updating, (Diaconis & Zabell 1982).
Let us show how this works to make ourselves familiar with the Kullback-Leibler
divergence and to introduce the methodology that we use in this chapter. To
do so, we consider two binary propositional variables.1 The variable H has two
values. H: “The hypothesis holds”, and ¬H: “The hypothesis does not hold”.
The variable E has the values E: “The evidence obtains”, and ¬E: “The evidence
does not obtain”.

We represent the probabilistic dependence between H and E in the Bayesian
Network depicted in Figure 1. To complete it, we fix the prior probability of the
root node H, i.e.

P (H) = h (3.2)

and the conditional probabilities of E, given the values of its parent H:

P (E∣H) = p , P (E∣¬H) = q (3.3)

The prior probability distribution over H and E is then given by

P (H,E) = hp , P (H,¬E) = hp

P (¬H,E) = hq , P (¬H,¬E) = hq . (3.4)

Here we have used the convenient shorthand x ∶= 1−x, which we will use through-
out this chapter. We have also used the shorthand notation P (H,E) for P (H ∧E)
which we will also use below when appropriate.

Next, we learn that the evidence E obtains. This is a constraint on the
posterior probability distribution P ′ which amounts to

P ′(E) = 1 . (3.5)

To proceed, we assume that the Bayesian Network depicted in Figure 1 remains
unchanged after learning the new information. Hence, the posterior probability

1Throughout this chapter we follow the convention, adopted e.g. in Bovens and Hart-
mann, (Bovens & Hartmann 2003), that propositional variables are printed in (upper case)
italic script, and that the instantiations of these variables are printed in (upper case) roman
script.
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distribution will have the following form:

P ′(H,E) = h′ p′ , P ′(H,¬E) = h′ p′

P ′(¬H,E) = h′ q′ , P ′(¬H,¬E) = h′ q′ , (3.6)

where we have replaced all variables by the corresponding primed variables. Eqs.
(3.5) and (3.6) then entail that

h′ p′ + h′ q′ = 1 (3.7)

and, taking into account that all four atoms in eqs. (3.6) sum up to 1, that

h′ p′ = h′ q′ = 0. (3.8)

It is easy to see that eqs. (3.8) only hold for all h′ ∈ (0,1) if p′ = q′ = 1. In
this case, eq. (3.7) is automatically fulfilled for all h′. The posterior probability
distribution then simplifies as follows:

P ′(H,E) = h′ , P ′(H,¬E) = 0

P ′(¬H,E) = h′ , P ′(¬H,¬E) = 0 (3.9)

To determine the value of h′, we calculate the Kullback-Leibler divergence be-
tween P ′ and P :

DKL(P
′∣∣P ) ∶= ∑

H,E

P ′(H,E) log
P ′(H,E)

P (H,E)

= h′ log(
h′

hp
) + h′ log(

h′

hq
)

= h′ log
h′

h
+ h′ log

h′

h
+ h′ log

q

p
+ log

1

q
. (3.10)

We differentiate this expression with respect to h′ and obtain after some algebra:

∂DKL

∂h′
= log(

h′

h′
⋅
h

h
⋅
q

p
) (3.11)

To find the minimum, we set the latter expression equal to zero (i.e. we set the
argument of the logarithm equal to 1) and obtain:

h′ =
hp

hp + hq
(3.12)
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In more familiar form, this can be written as2

P ′(H) = P (H∣E) ≡ P ∗(H) . (3.13)

To complete the proof, we convince ourselves that

∂2DKL

∂h′2
=

1

h′ h′
> 0 (3.14)

for all h′ ∈ (0,1), which shows that we have indeed found the minimum of
DKL(P

′∣∣P ). Hence, Bayes Rule follows from minimising the Kullback-Leibler di-
vergence between the posterior and the prior probability distribution, if one takes
the learned information as a constraint on the posterior probability distribution
into account.

Let us now explore whether this method can also be used to construct the pos-
terior probability distribution after having learned an indicative conditional (see
(Kern-Isberner 2001)). To apply the proposed method, one has to derive a prob-
abilistic statement from the learned conditional.3 Here we follow (Douven 2012)
and others and assume that P (H→ E) = p implies that P (E∣H) = p.4 In particu-
lar, we assume that H → E implies that P (E∣H) = 1. As in the previous example,
the learned conditional is then considered to be a constraint on the posterior
probability distribution, which is constructed by minimising the Kullback-Leibler
divergence between the posterior probability distribution and the prior probabil-
ity distribution.

To illustrate our method, let us consider again the Bayesian Network depicted
in Figure 1 with the prior probability distribution given in eq. (3.24). Next, we
learn that H → E, which implies that

P ′(E∣H) ∶= p′ = 1. (3.15)

2In this chapter, P denotes the prior probability distribution, P ∗ denotes the posterior distri-
bution that follows from Bayesian Conditionalisation, and P ′ denotes the posterior distribution
that follows from minimising the Kullback-Leibler divergence between P ′ and P satisfying
various constraints.

3From now on, we drop the adjective “indicative” and the noun “conditional” is always
taken to refer to an indicative conditional.

4Note that we do not assume that P (H→ E) = P (E∣H). All we need here and indeed
throughout the whole chapter is that the learned conditional implies a certain conditional
probability constraint on the new probability distribution. And so Lewis’ triviality results are
of no concern for us.
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The Kullback-Leibler divergence between P ′ and P is then given by

DKL(P
′∣∣P ) ∶= ∑

H,E

P ′(H,E) log
P ′(H,E)

P (H,E)

= h′ log(
h′

hp
) + h′ (q′ log(

h′ q′

hq
) + q′ log(

h′ q′

hq
)) (3.16)

= h′ log
h′

h
+ h′ log

h′

h
+ h′ log

1

p
+ h′ (q′ log

q′

q
+ q′ log

q′

q
) .

To find the minimum of DKL(P
′∣∣P ), we first differentiate this expression with

respect to q′ and obtain

∂DKL

∂q′
= h′ log(

q′

q′
⋅
q

q
) . (3.17)

Next, we set this expression equal to zero and obtain q′ = q. With this, we
simplify DKL and obtain

DKL(P
′∣∣P ) = (h′ log

h′

h
+ h′ log

h′

h
) + h′ log

1

p
. (3.18)

Next, we differentiate DKL(P
′∣∣P ) with respect to h′ and obtain

∂DKL

∂h′
= log(

h′

h′
⋅
h

h
⋅
1

p
) . (3.19)

Setting this expression equal to zero yields

h′

h′
= p ⋅

h

h
, (3.20)

and hence

h′ =
hp

hp + h
. (3.21)

Using Lemma 3 from the Appendix, we conclude from eq. (3.20) that h′ < h,
if 0 < p < 1.5 This result may sound wrong at first sight. After all, we only learn
that H has E as a consequence and nothing else. So why should this prompt us
to change our belief in H? And why should the probability of H decrease? Note,
however, that H becomes more informative after having learned the conditional.
If we also learn H, then we can infer with probability 1 that E will obtain as

5We skip the proof that the corresponding Hessian is positive definite and that we have
therefore found the minimum.
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well. It is therefore natural to set the new probability of H to a lower value
as more informative hypotheses have a lower probability than less informative
hypotheses.6

We have seen that minimising the Kulback-Leibler divergence leads to reason-
able results for situations involving two propositional variables. But does it also
work for more complicated scenarios? Douven and van Fraassen do not think so,
and here are four of their alleged counterexamples. Each example starts with a
story that sets up the scene. Then a conditional is learned which may prompt
some previously held beliefs to change.

1. The Sundowners Example. Sarah and her sister Marian have arranged to
go for sundowners at the Westcliff hotel tomorrow. Sarah feels that there
is some chance that it will rain, but thinks they can always enjoy the view
from inside. To make sure, Marian consults the staff at the Westcliff hotel
and finds out that in the event of rain, the inside area will be occupied by
a wedding party. So she tells Sarah: “If it rains tomorrow, then we cannot
have sundowners at the Westcliff.” Upon learning this conditional, Sarah
sets her probability for sundowners and rain to 0, but does not change her
probability for rain. Thus, in this example, learning the conditional infor-
mation has the effect of leaving the probability of the antecedent unchanged.
This example is from (Douven & Romeijn 2012).

2. The Ski Trip Example. Harry sees his friend Sue buying a ski outfit. This
surprises him a bit, because he did not know of any plans of hers to go on
a ski trip. He knows that she recently had an important exam and thinks
it unlikely that she passed it. Then he meets Tom, his best friend and also
a friend of Sue’s, who is just on his way to Sue to hear whether she passed
the exam, and who tells him: “If Sue passed the exam, her father will
take her on a ski vacation.” Recalling his earlier observation, Harry now
comes to find it more likely that Sue passed the exam. So in this example
upon learning the conditional information Harry should intuitively increase
the probability of the antecedent of the conditional. This example is from
(Douven & Dietz 2011).

3. The Driving Test Example. Betty knows that Kevin, the son of her neigh-
bours, was to take his driving test yesterday. She has no idea whether or

6Note that eq. (3.21) also obtains if one learns the material conditional H ⊃ E ≡ ¬H ∨E and
uses Bayesian Conditionalisation to update one’s beliefs:

P ∗(H) = P (H∣¬H ∨E) =
P (H ∧ (¬H ∨E))

P (¬H ∨E)
=

P (H,E)

P (H,E) + P (¬H)

=
hp

hp + h
≡ h′
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not Kevin is a good driver; she deems it about as likely as not that Kevin
passed the test. Betty notices that her neighbours have started to spade
their garden. Then her mother, who is friends with Kevin’s parents, calls
her and tells her the following: “If Kevin passed the driving test, his parents
will throw a garden party.” Betty figures that, given the spading that has
just begun, it is doubtful (even if not wholly excluded) that a party can be
held in the garden of Kevin’s parents in the near future. As a result, Betty
lowers her degree of belief for Kevin’s having passed the driving test and
thus decreases the probability of the antecedent of the conditional. This
example is from (Douven 2012).

While the first three examples are meant to be challenges to the Kullback-
Leibler method, the following problem is an alleged counterexample.

4. The Judy Benjamin Problem. A soldier, Judy Benjamin, is dropped with
her platoon in a territory that is divided in two halves, Red territory and
Blue territory, respectively, with each territory in turn being divided in
equal parts, Second Company area and Headquarters Company area, thus
forming four quadrants of roughly equal size. Because the platoon was
dropped more or less at the centre of the whole territory, Judy Benjamin
deems it equally likely that they are in one quadrant as that they are in
any of the others. They then receive the following radio message: “I can’t
be sure where you are. If you are in Red Territory, then the odds are 3 ∶ 1
that you are in Second Company area.” After this, the radio contact breaks
down. Supposing that Judy accepts this message, how should she adjust
her degrees of belief?7

To address this question, we introduce two binary propositional variables.
The variable R has the values R: “Judy lands in Red Territory”, and ¬R: “Judy
lands in Blue Territory”. The variable S has the values S: “Judy lands in Second
Company”, and ¬S: “Judy lands in Headquarters”. The probabilistic dependence
between R and S is depicted in the Bayesian Network in Figure 2. To complete
it, we fix the prior probability of the root node R, i.e.

P (R) = r (3.22)

and the conditional probabilities of S, given the values of its parent R:

P (S∣R) = p , P (S∣¬R) = q (3.23)

7This example is from (van Fraassen 1981).



3.2. THE KULLBACK-LEIBLER DIVERGENCE AND PROBABILISTIC UPDATING55

R S

Figure 3.2: The Bayesian Network representation of the relation between R and
S.

From the story it is clear that the prior probability distribution over H and E is
given by

P (R,S) = p r = 1/4 , P (R,¬S) = p r = 1/4

P (¬R,S) = q r = 1/4 , P (¬R,¬S) = q r = 1/4. (3.24)

Hence,
p = q = r = 1/2. (3.25)

Next, we learn the conditional “If you are in Red Territory, then the odds are
3 ∶ 1 that you are in Second Company area.” This is a constraint on the posterior
probability distribution P ′ which amounts to

P ′(S∣R) = k , (3.26)

with k ∈ IJB ∶= (0,1) − {1/2}.8 To proceed, we assume that the Bayesian Net-
work depicted in Figure 2 remains unchanged after learning the new information.
Hence, the posterior probability distribution will have the following form:

P ′(R,S) = r′ p′ , P ′(R,¬S) = r′ p′

P ′(¬R,S) = r′ q′ , P ′(¬R,¬S) = r′ q′ (3.27)

As eq. (3.26) implies that p′ = k, the posterior probability distribution is then
given by

P ′(R,S) = k r′ , P ′(R,¬S) = k r′

P ′(¬R,S) = r′ q′ , P ′(¬R,¬S) = r′ q′. (3.28)

We can now calculate the Kullback-Leibler divergence between P ′ and P and
obtain

DKL(P
′∣∣P ) ∶= ∑

R,S

P ′(R,S) log
P ′(R,S)

P (R,S)

= r′ log r′ + r′ log r′ + r′ (k log k + k log k)

+ r′ (q′ log q′ + q′ log q′) + log 4. (3.29)

8Note that we consider a more general case here than van Fraassen who focused on k = 3/4.
We exclude k = 1/2 as nothing is learned then.
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To find the minimum of DKL(P
′∣∣P ), we first calculate its derivative with respect

to q′,
∂DKL

∂q′
= r′ log

q′

q′
, (3.30)

and set it to 0. Assuming that r′ ∈ (0,1), we obtain

q′ = 1/2. (3.31)

We now insert eq. (3.31) into eq. (3.29) and differentiate the resulting expression
with respect to r′. We then obtain

∂DKL

∂r′
= log

r′

r′
+ φ(k) (3.32)

with
φ(k) ∶= k log k + k log k + log 2 . (3.33)

To find the minimum, we set the expression in eq. (3.32) equal to 0 and obtain

r′ =
1

1 + eφ(k)
. (3.34)

It is easy to see (proof omitted) that φ(k) > 0 for k ∈ IJB . Hence, r′ < 1/2, i.e.
P ′(R) < P (R). However, this is not intuitive, as van Fraassen (1981) has argued:
the probability of R should not change after learning the conditional.

In response to van Fraassen, Douven and Romeijn (Douven & Romeijn 2012),
have proposed a Bayesian solution of the Judy Benjamin Problem which uses
Jeffrey Conditionalisation to model the learning of the uncertain conditional.
However, their solution fails to give an adequate account of a number of examples
where the probability of the antecedent is intuitively judged to change (as in the
previous two examples).

3.3 Meeting the Challenges

To meet the four challenges presented in the previous section, we propose the
following methodology. First, we identify all relevant variables of the problem at
hand and the causal relations that hold between them. Second, we represent the
causal structure by a Bayesian Network and fix the prior probability distribution
P that is associated with that network. Third, we express the learned conditional
as a constraint on the posterior probability distribution P ′ and assume that the
causal structure is the same before and after learning the conditional. Fourth,
we minimise the Kullback-Leibler divergence DKL(P

′∣∣P ) between the posterior
distribution P ′ and the prior distribution P to obtain the posterior probability
distribution P ′. Fifth, we check whether the result complies with our intuitions.



3.3. MEETING THE CHALLENGES 57

R

S

W

Figure 3.3: The Bayesian Network for the Sundowners Example.

3.3.1 The Sundowners Example

We introduce three binary propositional variables. The variable R has values R:
“It will rain tomorrow”, and ¬R: “It will not rain tomorrow”. The variable W has
the values W: “There is a wedding party”, and ¬W: “There is no wedding party”.
Finally, the variable S has the values S: “Sarah and Marian have sundowners”,
and ¬S: “Sarah and Marian do not have sundowners”.

Before we proceed, let us show that using the material conditional and
Bayesian Conditionalisation leads to an intuitively wrong result. To do so, re-
member that Marian tells Sarah “[i]f it rains tomorrow, then we cannot have
sundowners at the Westcliff.” We formalise this as R ⊃ ¬S which is equivalent
to ¬R ∨ ¬S. Using Bayesian Conditionalisation, we then obtain for the posterior
probability of R

P ∗(R) = P (R∣¬R ∨ ¬S) =
P (R ∧ (¬R ∨ ¬S))

P (¬R ∨ ¬S)
=
P (R ∧ ¬S)

P (¬R ∨ ¬S)

=
P (R) − P (R,S)

1 − P (R,S)
. (3.35)

Note that the story suggests that 0 < P (R), P (R,S) < 1. Hence, we conclude
from eq. (3.35) that P ∗(R) < P (R), which conflicts with our intuitive judgment
that the probability of rain should remain unchanged.

Le us now show how our suggested methodology deals with the case. The
story suggests a number of dependencies and independencies between the various
variables. The Bayesian Network in Figure 3 represents the probabilistic depen-
dencies and independencies between these variables. It also properly represents
their causal relations.

To complete the Bayesian Network, we have to fix the prior probability of the
root nodes and the conditional probabilities of all other nodes, given the values
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of their parents. We set

P (R) = r , P (W) = w (3.36)

and

P (S∣R,W) = α , P (S∣R,¬W) = β

P (S∣¬R,W) = γ , P (S∣¬R,¬W) = δ .

If, as we assume, R and W are the only causes of S, then the story suggests
that

P (S∣R,W) = α = 0 . (3.37)

All other conditional probabilities (i.e. β, γ and δ) are in the open interval (0,1).
With this, the prior probability distribution over the variables R,S and W has
the following form:

P (R,S,W) = 0 , P (R,¬S,W) = r w

P (R,S,¬W) = r w β , P (R,¬S,¬W) = r w β (3.38)

P (¬R,S,W) = r w γ , P (¬R,¬S,W) = r w γ

P (¬R,S,¬W) = r w δ , P (¬R,¬S,¬W) = r w δ

Let us now consider the posterior probability distribution P ′, which is defined
over the same Bayesian Network as before. As α = 0 (eq. (3.37)), we conclude
that

α′ = 0. (3.39)

Another constraint on the posterior probability distribution is the learned condi-
tional “If it rains tomorrow, then we cannot have sundowners at the Westcliff”,
which implies that

P ′(S∣R) = 0 (3.40)

and hence P ′(R,S) = 0. Using eq. (3.39), this amounts to

w′ β′ = 0 , (3.41)

where we have taken into account that r′ > 0 as there is no reason (before and
after learning the conditional) to assume that the probability of rain is zero. To
satisfy eq. (3.41), we are then left with two possibilities: (i) w′ = 1 and (ii) β′ = 0.
It is clear from the story that β = P (S∣R,¬W) > 0: If there is no wedding party,
then Sarah and Marian can enjoy their sundowners inside if it rains. This also
holds after learning the conditional, hence β′ > 0. Eq. (3.40) then implies that
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Figure 3.4: The Bayesian Network for the Ski Trip Example.

w′ = 1. Sarah is now certain that there will be a wedding party. The posterior
probability distribution therefore simplifies to

P ′(R,S,W) = 0 , P ′(R,¬S,W) = r′

P ′(R,S,¬W) = 0 , P ′(R,¬S,¬W) = 0 (3.42)

P ′(¬R,S,W) = r′ γ′ , P ′(¬R,¬S,W) = r′ γ′

P (¬R,S,¬W) = 0 , P (¬R,¬S,¬W) = 0.

We can now show the following theorem (proof in the Appendix).

Theorem 3.3.1 Consider the Bayesian Network depicted in Figure 3 with the
prior probability distribution P from eqs. (3.38). We furthermore assume that
(i) the posterior probability distribution P ′ is defined over the same Bayesian
Network, (ii) the learned conditional is modelled as a constraint (eq. (3.40)) on
P ′, and (iii) P ′ minimises the Kullback-Leibler divergence to P . Then P ′(R) =
P (R).

We conclude that the proposed method yields the intuitively correct result in
this case.

3.3.2 The Ski Trip Example

Let us first examine the situation before we learn anything. To do so, we introduce
the following binary propositional variables. The variable E has the values E:
“Sue passed the exam”, and ¬E: “Sue did not pass the exam”. The variable S
has the values S: “Sue’s father invites her for a ski trip”, and ¬S: “Sue’s father
does not invite her for a ski trip”. The variable B has the values B: “Sue buys
a new ski outfit”, and ¬B: “Sue does not buy a new ski outfit”. The Bayesian
Network in Figure 4 represents the probabilistic dependencies and independencies
between these variables. It also properly represents the causal relation between
these variables.

To complete the Bayesian Network, we have to fix the prior probability of E,
i.e.

P (E) = e, (3.43)
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and the conditional probabilities

P (S∣E) = p1 , P (S∣¬E) = q1 (3.44)

P (B∣S) = p2 , P (B∣¬S) = q2.

From the story it is clear that p1 > q1 and p2 > q2: It is more likely that Sue’s
father invites her for a ski trip if she passes the exam than if she does not pass
the exam. Similarly, it is more likely that Sue buys a new ski outfit if her father
invites her for a ski trip than if he does not.

We can now calculate the prior probability distribution over the variables
B,E and S:

P (B,E,S) = e p1 p2 , P (¬B,E,S) = e p1 p2

P (B,E,¬S) = e p1q2 , P (¬B,E,¬S) = e p1 q2

P (B,¬E,S) = e q1 p2 , P (¬B,¬E,S) = e q1 p2 (3.45)

P (B,¬E,¬S) = e q1q2 , P (¬B,¬E,¬S) = e q1 q2

Next we learn two items of information, as a result of which our probability
distribution changes from P to P ′. First, we learn that B obtains. Assuming
that the causal structure depicted in Figure 4 does not change, this means that
we learn that

P ′(B) = e′ (p′1 p
′
2 + p

′
1q

′
2) + e

′ (q′1 p
′
2 + q

′
1q

′
2) = 1 , (3.46)

where we have replaced all variables by the corresponding primed variables. Sec-
ond, we learn the conditional “if Sue passes the exam, then her father invites her
for a ski trip”, which implies that

P ′(S∣E) = p′1 = 1. (3.47)

Inserting eq. (3.47) into eq. (3.46), we obtain

e′ p′2 + e
′ (q′1 p

′
2 + q

′
1 q

′
2) = 1. (3.48)

This equation only holds for e′ ∈ (0,1), if

p′2 = 1 (3.49)

and if
q′1 p

′
2 + q

′
1 q

′
2 ≡ q

′
1 + q

′
1 q

′
2 = 1.

It has the solutions (i) q′1 = 1 and (ii) q′2 = 1. As solution (i) does not make sense,
given the story (why should we now be certain that her father invites her for a
ski trip if she does not pass the exam?), we conclude that

q′2 = 1. (3.50)



3.3. MEETING THE CHALLENGES 61

Eqs. (3.49) and (3.50) make sure that P ′(B) = 1, whether or not Sue’s father
invites her for a ski trip. Inserting conditions (3.47), (3.49) and (3.50) into the
analogues of eqs. (3.45), we can calculate the posterior probability distribution:

P ′(B,E,S) = e′ , P ′(¬B,E,S) = 0

P ′(B,E,¬S) = 0 , P ′(¬B,E,¬S) = 0

P ′(B,¬E,S) = e′ q′1 , P ′(¬B,¬E,S) = 0

P ′(B,¬E,¬S) = e′ q′1 , P ′(¬B,¬E,¬S) = 0 (3.51)

We can now show the following theorem (proof in the Appendix).

Theorem 3.3.2 Consider the Bayesian Network in Figure 4 with the prior prob-
ability distribution from eq. (3.45). Let

k0 ∶=
p1 p2

q1 p2 + q1 q2
.

We furthermore assume that (i) the posterior probability distribution P ′ is defined
over the same Bayesian Network, (ii) the learned information is modelled as
constraints (eqs. (3.46) and (3.47)) on P ′, and (iii) P ′ minimises the Kullback-
Leibler divergence to P . Then P ′(E) > P (E), iff k0 > 1.

To proceed, we have to explore whether the condition k0 > 1 holds. From the
story we learn that Harry thought that it is unlikely that Sue passed the exam,
hence e is small. We also learn from the story that Harry is surprised that Sue
bought a ski outfit, hence

P (B) = e (p1 p2 + p1 q2) + e (q1 p2 + q1 q2) (3.52)

is small. And as e is small, we conclude that q1 p2 + q1 q2 ∶= ε is small. From the
story it is also clear that p2 is fairly large (≈ 1), because Harry did not know of
Sue’s plans to go skiing, perhaps he even did not know that she is a skier. And
so it is very likely that she has to buy a ski outfit to go on the ski trip. At the
same time, q2 will be very small as there is no reason for Harry to expect Sue to
buy such a outfit in this case. Finally, p1 may not be very large, but the previous
considerations suggest that p1 ≫ ε. We conclude that

k0 =
p1

ε
⋅ p2 (3.53)

will typically be greater than 1. If k0 ≤ 1, then the probability of E will not
increase after learning the two pieces of information. We conclude that the pro-
posed method yields the intuitively correct result in this case.
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Figure 3.5: The Bayesian Network for the Driving Test Example.

Let us close this subsection with some more general remarks. In Section 3.1
we have seen that one obtains the wrong result if one uses Bayesian Condition-
alisation and the material conditional. We showed this in all generality, i.e. it
did not matter whether the correct causal structure was taken into account or
not. Interestingly, for the Ski Trip Example, it turns out that one gets the right
result for the posterior probability of E if one uses the correct causal structure
and Bayesian Conditionalisation, i.e. if one updates on B and on the material
conditional E ⊃ S ≡ ¬E ∨ S. The proof of this result can be found in the Appendix
(after the proof of Theorem 2).

3.3.3 The Driving Test Example

Let us first examine the situation before we learn anything. To do so, we intro-
duce the following binary propositional variables. The variable D has the values
D: “Kevin passes the driving test”, and ¬D: “Kevin does not pass the driving
test”. The variable G has the values G: “Kevin’s parents throw a garden party”,
and ¬G: “Kevin’s parents do not throw a garden party”. The variable S has
the values S: “Kevin’s parents spade their garden”, and ¬S: “Kevin’s parents
do not spade their garden”. The Bayesian Network in Figure 5 represents the
probabilistic dependencies and independencies between these variables. It also
properly represents the causal relation between these variables. Note that the
Bayesian Network in Figure 5 has the same structure as the Bayesian Network
in Figure 4. Our calculation therefore proceeds as in the previous example.

To complete the Bayesian Network, we have to fix the prior probability of D,
i.e.

P (D) = d, (3.54)

and the conditional probabilities

P (G∣D) = p1 , P (G∣¬D) = q1

P (S∣G) = p2 , P (S∣¬G) = q2.

We can now calculate the prior probability distribution over the variables
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D,G and S:

P (D,G,S) = dp1 p2 , P (D,G,¬S) = dp1 p2

P (D,¬G,S) = dp1q2 , P (D,¬G,¬S) = dp1 q2

P (¬D,G,S) = d q1 p2 , P (¬D,G,¬S) = d q1 p2

P (¬D,¬G,S) = d q1 q2 , P (¬D,¬G,¬S) = d q1 q2 (3.55)

Next we learn two items of information, as a result of which our probability
distribution changes from P to P ′. First, we learn that S obtains. Assuming
that the causal structure depicted in Figure 5 does not change, this means that
we learn that

P ′(S) = d′ (p′1 p
′
2 + p

′
1q

′
2) + d

′ (q′1 p
′
2 + q

′
1q

′
2) = 1 , (3.56)

where we have replaced all variables by the corresponding primed variables. Sec-
ond, we learn the conditional “if Kevin passed the driving test, his parents will
throw a garden party”, which implies that

P ′(G∣D) = p′1 = 1. (3.57)

Inserting eq. (3.57) into eq. (3.56), we obtain:

d′ p′2 + d
′ (q′1 p

′
2 + q

′
1 q

′
2) = 1 (3.58)

This equation only holds for d′ ∈ (0,1), if

p′2 = 1 (3.59)

and if
q′1 p

′
2 + q

′
1 q

′
2 ≡ q

′
1 + q

′
1 q

′
2 = 1.

It has the solutions (i) q′1 = 1 and (ii) q′2 = 1. As solution (i) does not make
sense intuitively, given the story (unless Kevin’s parents would have planned the
garden party independently), we conclude that

q′2 = 1. (3.60)

Inserting conditions (3.57), (3.59) and (3.60) into the analogues of eqs. (3.55),
we can calculate the posterior probability distribution:

P ′(D,G,S) = d′ , P ′(D,G,¬S) = 0

P ′(D,¬G,S) = 0 , P ′(D,¬G,¬S) = 0

P ′(¬D,G,S) = d′ q′1 , P ′(¬D,G,¬S) = 0 (3.61)

P ′(¬D,¬G,S) = d′ q′1 , P (¬D,¬G,¬S) = 0

We can now show the following theorem (proof in the Appendix).
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Theorem 3.3.3 Consider the Bayesian Network in Figure 5 with the prior prob-
ability distribution from eq. (3.55). Let

k0 ∶=
p1 p2

q1 p2 + q1 q2
.

We furthermore assume that (i) the posterior probability distribution P ′ is defined
over the same Bayesian Network, (ii) the learned information is modelled as
constraints (eqs. (3.56) and (3.57)) on P ′, and (iii) P ′ minimises the Kullback-
Leibler divergence to P . Then P ′(D) < P (D), iff k0 < 1.

Note that it is clear from the story that q2 ≫ p2. Hence,

k0 <
p1p2

q1p2 + q1p2
=
p1p2

p2
= p1 < 1. (3.62)

We conclude that the posterior probability that Kevin passed the driving test is
smaller than the prior probability. The proposed method yields the intuitively
correct result in this case.

3.3.4 The Judy Benjamin Problem

In our discussion of this problem in Section 2 we introduced two propositional
variables, R and S. Before receiving the radio message, Judy considers the two
variables to be probabilistically independent. After receiving the radio message,
they became probabilistically dependent. This probabilistic dependence (as well
as the probabilistic independence before receiving the message) can be repre-
sented in the Bayesian Network in Figure 2. However, as should be clear by
now, this Bayesian Network does not reflect the causal relation between the two
variables: R does not cause S, and S does not cause R. Hence, there must be
another explanation for the probabilistic correlation – a common cause of R and
S.

So let us introduce a new binary propositional variables X. Its values could
be, for example, that there is wind from a certain direction (X), and that there is
no wind from a certain direction (¬X). Note, however, that nothing hinges on the
specific values of X. All we need is that Judy believes that a common cause, and
not a direct causal relation, explains the learned probabilistic correlation between
R and S. The Bayesian Network in Figure 6 represents this situation.

This move suggests the following strategy. The situation after receiving the
radio message is represented by the Bayesian Network in Figure 6. The situa-
tion before receiving the message can be represented by the Bayesian Network
in Figure 2 (with R and S being independent). However, for technical reasons9

9Calculating the Kullback-Leibler divergence between two probability distributions presup-
poses that both distributions have the same number of atoms.
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Figure 3.6: The Bayesian Network for the Judy Benjamin Problem.

it is more convenient to also use the Bayesian Network in Figure 6 to represent
the situation before receiving the message. All one has to do here is to make
sure that R and S are probabilistically independent. One can then determine the
posterior probability distribution by minimising the Kullback-Leibler divergence
between the posterior and the prior probability distribution and calculate P (R).

So let us proceed and complete the Bayesian Network in Figure 6. First, we
have to fix the prior probability of X, i.e.

P (X) = x ∈ (0,1) , (3.63)

and the conditional probabilities

P (R∣X) = p1 , P (R∣¬X) = q1

P (S∣X) = p2 , P (S∣¬X) = q2 . (3.64)

such that the constraints (see eq. (3.24))

P (R,S) = 1/4 , P (R,¬S) = 1/4

P (¬R,S) = 1/4 , P (¬R,¬S) = 1/4 (3.65)

are satisfied. In the Appendix, we show that the following propositions holds.

Proposition 3.3.1 For the Bayesian Network in Figure 6 and the parameter
assignments from eqs. (3.63) and (3.64), the constraints (3.65) imply that (i)
p1 = q1 = 1/2 and xp2 + xq2 = 1/2 or (ii) p2 = q2 = 1/2 and xp1 + xq1 = 1/2.

To simplify matters, we additionally request that the entropy is maximised,
(Williamson 2010).

Proposition 3.3.2 For the Bayesian Network in Figure 6 and the parameter
assignments from eqs. (3.63) and (3.64), the constraints (3.65) imply that setting
p1 = q1 = p2 = q2 = x = 1/2 maximises the entropy.
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Next Judy learns that “if you are in Red Territory, then the odds are 3 ∶ 1
that you are in Second Company area.” This is a constraint on the posterior
probability distribution P ′, which implies that

P ′(S∣R) = k , (3.66)

with k ∈ IJB . In our specific case, we have k = 3/4, but (as above) we want to
keep things slightly more general by introducing the parameter k. We also notice
that the prior probability of X and the likelihoods may change and set

P ′(X) = x′ (3.67)

and

P ′(R∣X) =∶ p′1 , P ′(R∣¬X) =∶ q′1
P ′(S∣X) =∶ p′2 , P ′(S∣¬X) =∶ q′2 . (3.68)

Note that x′, p′1, q
′
1, p

′
2 and q′2 are not independent: They have to satisfy

the constraint (3.66).We can now show the following theorem (proof in the Ap-
pendix).

Theorem 3.3.4 Consider the Bayesian Network in Figure 6 with the prior prob-
ability distribution P satisfying Proposition 2. We furthermore assume that (i)
P ′ is defined over the same Bayesian Network as P , (ii) the learned informa-
tion is modelled as a constraint (eqs. (3.66)) on P ′, and (iii) P ′ minimises the
Kullback-Leibler divergence to P . Then P ′(R) = P (R).

3.4 Disabling Conditions

The analyses of the examples in the previous section presupposed that all relevant
variables can be read off from the story. In particular, we have assumed that there
are no interfering causes or disabling conditions that are not mentioned in the
story. Our analysis of the Ski Trip Example, for instance, assumed that there
is nothing that prevents the father from inviting Sue for a ski trip once he has
made the promise. This may not be the case, and we may have beliefs about the
presence of a disabling condition. For example, we may consider the possibility
that Sue’s father changes his mind or that he looses all his money so that he
cannot cover the costs of Sue’s ski trip anymore. It is also possible that he has
an accident or even dies before he can fulfil his promise. In this section, we show
how such disabling conditions can be modelled in a straightforward way. To do
so, we focus on the Ski Trip Example.
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Figure 3.7: The modified Bayesian Network for the Ski Trip Example.

If a disabling condition is present, then the Bayesian Network depicted in
Figure 4 has to be modified. In addition to the propositional variables B,E and
S from Section 3.2, we add the binary propositional variable D, which is another
parent of S. D has the values D: “A disabling condition is present”, and ¬D:
“No disabling condition is present”. The modified Bayesian Network is depicted
in Figure 7.

To complete the Bayesian Network, we first fix, as before, the prior probability
of E, i.e.

P (E) = e, (3.69)

and the conditional probabilities

P (B∣S) = p2 , P (B∣¬S) = q2. (3.70)

Additionally, we fix the prior probability of D, i.e.

P (D) = d, (3.71)

and the conditional probabilities

P (S∣E,D) = 0 , P (S∣E,¬D) = β

P (S∣¬E,D) = 0 , P (S∣¬E,¬D) = δ. (3.72)

This assignment reflects the fact that the presence of a disabling condition pre-
vents the father from inviting Sue for a ski trip. Note that the parameters p1 and
q1 from eq. (3.44) can be expressed in terms of the new parameters d, β and δ:

p1 = dβ , q1 = d δ (3.73)

As p1 > q1, we conclude that β > δ.
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We can now calculate the prior probability distribution P over the variables
B,D,E and S. Here are all non-vanishing atoms:

P (E,D,¬S,B) = e d q2 , P (E,D,¬S,¬B) = e d q2

P (E,¬D,S,B) = e dβ p2 , P (E,¬D,S,¬B) = e dβ p2

P (E,¬D,¬S,B) = e dβ q2 , P (E,¬D,¬S,¬B) = e dβ q2

P (¬E,D,¬S,B) = e d q2 , P (¬E,D,¬S,¬B) = e d q2 (3.74)

P (¬E,¬D,S,B) = e d δ p2 , P (¬E,¬D,S,¬B) = e d δ p2

P (¬E,¬D,¬S,B) = e d δ q2 , P (¬E,¬D,¬S,¬B) = e d δ q2

Next we learn two items of information, as a result of which our probability
distribution changes from P to P ′. First, we learn that B obtains. Assuming
that the causal structure depicted in Figure 7 does not change, this means that
we learn that

P ′(B) = p′2 d
′ (e′ + e′ δ′) + q′2 (d′ + e′ d′ δ′) = 1 , (3.75)

where we have replaced all variables by the corresponding primed variables and
assumed that also for the new probability distribution the conditions P ′(S∣E,D) =
P ′(S∣¬E,D) = 0 hold. Equation (3.75) only holds for d′, e′ ∈ (0,1), if

p′2 = q
′
2 = 1. (3.76)

Second, we learn the conditional “if Sue passes the exam, then her father invites
her for a ski trip”. We interpret this conditional as a ceteris paribus claim: If no
disabling condition is present, then Sue’s father invites her for a ski trip if she
passes the exam, i.e.

P ′(S∣E,¬D) = β′ = 1. (3.77)

Inserting conditions (3.76) and (3.77) into the analogues of eqs. (3.74), we
can calculate the posterior probability distribution. Again, we only list the non-
vanishing atoms:

P ′(E,D,¬S,B) = e′ d′ , P ′(E,¬D,S,B) = e′ d′

P ′(¬E,D,¬S,B) = e′ d′ , P ′(¬E,¬D,S,B) = e′ d′ δ′ (3.78)

P ′(¬E,¬D,¬S,B) = e′ d′ δ′

We can now show the following theorem (proof in the Appendix).

Theorem 3.4.1 Consider the Bayesian Network in Figure 7 with the prior prob-
ability distribution from eq. (3.74). Let

kd ∶=
p1 p2

q1 p2 + (q1 − d) q2
.
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We furthermore assume that (i) the posterior probability distribution P ′ is defined
over the same Bayesian Network, (ii) the learned information is modelled as
constraints (eqs. (3.76) and (3.77)) on P ′, and (iii) P ′ minimises the Kullback-
Leibler divergence to P . Then P ′(E) > P (E), iff kd > 1. Moreover, if kd > 1 and
p2 > q2, then P ′(D) < P (D).

Hence, under the conditions discussed above, we expect the probability of E
to increase and the probability of D to decrease, which is what we would (or
should) expect in this case. We should not be so sure anymore that a disabling
condition obtained as the best explanation for the observation that Sue bought
a new ski outfit is that she passed the exam (i.e. the probability of E increases)
and that her father therefore invited her for a ski trip. Note, finally that in the
limit d→ 0, Theorem 2 emerges as a special case of Theorem 5.

3.5 Conclusion

We have argued that the Kullback-Leibler divergence minimisation method pro-
vides us with an intuitively correct posterior probability distribution if the causal
structure of the problem at hand is properly taken into account. We have shown
this by giving a detailed account of three challenges and one alleged counterex-
ample that have been discussed in the literature. But does the method also give
the right results if more complicated scenarios are considered? We do not see a
way how to answer this question in full generality. An answer can probably only
be given on a case-by-case basis. We are, however, optimistic that the proposed
method will work for more complicated scenarios (which will involve more than
three variables) as our examples represent all cases of probabilistic dependencies
that can hold between three variables. And so we invite our critics to come up
with clever examples where the proposed method fails.

3.6 Appendix

3.6.1 Three Lemmata

The following three lemmata will be useful for the proofs presented in the re-
mainder of this Appendix.

Lemma 1 Let f(x) ∶= log(ax), g(x) ∶= x log(ax) and h(x) ∶= x log(ax). Then
the first derivatives are: f ′(x) = 1/x, g′(x) = 1+ log(ax) and h′(x) = −1−log(ax).

Proof: Trivial.
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Lemma 2 The function f(x) ∶= x log x
x′ + x log x

x′
has a minimum at x = x′.

Proof Using Lemma ??, we obtain

f ′(x) = log(
x

x
⋅
x′

x′
) .

Setting this expression equal to zero (i.e. the argument of the logarithm equal to
1), one obtains x = x′. As f ′′(x) = 1/(xx) > 0 for all x ∈ (0,1), we have indeed
found the minimum. ◻

Lemma 3 Consider the equation x′/x′ = k ⋅ x/x with k > 0. Then (i) x′ > x iff
k > 1, (ii) x′ = x iff k = 1 and (iii) x′ < x iff k < 1.

Proof This follows from the observation that the function ϕ(x) ∶= x/x is strictly
monotonically increasing for x ∈ (0,1). ◻

3.6.2 Theorem 1

With the prior probability distribution from eq. (3.38) and the posterior proba-
bility distribution from eq. (3.42), we obtain for the Kullback-Leibler divergence
(3.1) between P ′ and P :

DKL(P
′∣∣P ) ∶= ∑

R,W,S

P ′(R,W,S) ⋅ log(
P ′(R,W,S)

P (R,W,S)
)

= r′ log(
r′

r w
) + r′ γ′ log(

r′ γ′

r γ w
) + r′ γ′ log(

r′ γ′

r γ w
)

= r′ log
r′

r
+ r′ log

r′

r
+ r′ (γ′ log

γ′

γ
+ γ′ log

γ′

γ
) + log

1

w

Next, we differentiate this expression with respect to r′ and γ′ and obtain

∂DKL

∂r′
= log(

r′

r′
⋅
r

r
) − (γ′ log

γ′

γ
+ γ′ log

γ′

γ
) (3.79)

∂DKL

∂γ′
= r′ log(

γ′

γ′
⋅
γ

γ
) . (3.80)

Setting the expression in eq. (3.80) equal to zero, we obtain

γ′ = γ. (3.81)
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Substituting this result into eq. (3.79), we obtain

∂DKL

∂r′
= log(

r′

r′
⋅
r

r
) . (3.82)

Setting the expression in eq. (3.82) equal to zero, we finally obtain r′ = r. To
show that we have indeed found a minimum, we calculate the Hessian matrix of
DKL at (r′, γ′) = (r, γ) and obtain

H(DKL)∣r,γ = (
1/r 0
0 r/(γ γ)

) . (3.83)

This matrix is positive definite, which completes the proof of Theorem 3.3.1.

3.6.3 Theorem 2

With the prior probability distribution from eq. (3.45) and the posterior proba-
bility distribution from eq. (3.51), we obtain for the Kullback-Leibler divergence
between P ′ and P :

DKL(P
′∣∣P ) ∶= ∑

B,E,S

P ′(B,E,S) ⋅ log(
P ′(B,E,S)

P (B,E,S)
)

= e′ log(
e′

e p1 p2
) + e′ q′1 log(

e′ q′1
e q1 p2

) + e′ q′1 log(
e′ q′1
e q1 q2

)

= e′ log
e′

e
+ e′ log

e′

e
+ e′ (q′1 log(

q′1p1

q1
) + q′1 log(

q′1p1p2

q1q2
))

+ log
1

p1p2

Next, we calculate the first derivatives of DKL(P
′∣∣P ) with respect to e′ and q′1

and obtain after some algebra:

∂DKL

∂e′
= log(

e′

e′
⋅
e

e
⋅

1

k0
) − q′1 log(

q′1
q′1

⋅
q1 q2

q1 p2
) (3.84)

∂DKL

∂q′1
= e′ log(

q′1
q′1

⋅
q1 q2

q1 p2
) (3.85)

with
k0 ∶=

p1 p2

q1 p2 + q1 q2
. (3.86)

To minimize DKL(P
′∣∣P ) we first set (3.85) equal to zero (noting that e′ ∈

(0,1)) and obtain

q′1 =
q1 p2

q1 p2 + q1 q2
. (3.87)
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With this, we simplify the expression in eq. (3.84) and obtain

∂DKL

∂e′
= log(

e′

e′
⋅
e

e
⋅

1

k0
) . (3.88)

Setting now also the expression in eq. (3.88) to zero, we obtain

e′

e′
= k0 ⋅

e

e
. (3.89)

Using Lemma 3, we conclude that e′ > e iff k0 > 1. This completes the proof of
Theorem 3.3.2. (We skip the proof that the corresponding Hessian is positive
definite if eqs. (3.87) and (3.89) hold.)

Let us now calculate the posterior probability of E after learning B and the
material conditional E ⊃ S ≡ ¬E ∨ S. We obtain

P ∗(E) = P (E∣B ∧ (¬E ∨ S)) =
P (E ∧B ∧ (¬E ∨ S))

P (B ∧ (¬E ∨ S))

=
P (B ∧E ∧ S)

P ((B ∧ ¬E) ∨ (B ∧ S))
=

P (B,E,S)

P (B,¬E) + P (B,S) − P (B,¬E,S)

=
P (B,E,S)

P (B,¬E) + P (B,E,S)
. (3.90)

With the Bayesian Network depicted in Figure 4 and the prior probability dis-
tribution from eq. (3.45), we then obtain

P ∗(E) =
e p1 p2

e p1 p2 + e (q1 p2 + q1 q2)
=

e k0

e k0 + e
≡ e′ = P ′(E). (3.91)

From this equation it is easy to see that P ∗(E) > P (E) iff k0 > 1. Hence, both
procedures yield exactly the same result in this case.

3.6.4 Theorem 3

The proof of Theorem 3.3.3 is analogous to the proof of Theorem 3.3.2. With the
prior probability distribution from eq. (3.55) and the posterior probability dis-
tribution from eq. (3.61), we obtain for the Kullback-Leibler divergence between
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P ′ and P :

DKL(P
′∣∣P ) ∶= ∑

D,G,S

P ′(D,G,S) ⋅ log(
P ′(D,G,S)

P (D,G,S)
)

= d′ log(
d′

dp1 p2
) + d′ q′1 log(

e′ q′1
d q1 p2

) + d′ q′1 log(
d′ q′1
d q1 q2

)

= d′ log
d′

d
+ d′ log

d′

d
+ d′ (q′1 log(

q′1p1

q1
) + q′1 log(

q′1p1p2

q1q2
))

+ log
1

p1p2

Next, we calculate the first derivatives of DKL(P
′∣∣P ) with respect to d′ and q′1

and obtain after some algebra

∂DKL

∂d′
= log(

d′

d′
⋅
d

d
⋅

1

k0
) − q′1 log(

q′1
q′1

⋅
q1 q2

q1 p2
) (3.92)

∂DKL

∂q′1
= d′ log(

q′1
q′1

⋅
q1 q2

q1 p2
) , (3.93)

with
k0 ∶=

p1 p2

q1 p2 + q1 q2
. (3.94)

To minimize DKL(P
′∣∣P ) we first set (3.93) equal to zero (noting that d′ ∈

(0,1)) and obtain

q′1 =
q1 p2

q1 p2 + q1 q2
. (3.95)

With this, we simplify the expression in eq. (3.92) and obtain

∂DKL

∂d′
= log(

d′

d′
⋅
d

d
⋅

1

k0
) . (3.96)

Setting now also the expression in eq. (3.96) to zero, we obtain

d′

d′
= k0 ⋅

d

d
. (3.97)

Using Lemma 3, we conclude that d′ < d iff k0 < 1. This completes the proof
of Theorem 3.3.3. (We skip the proof that the corresponding Hessian is positive
definite if eqs. (3.95) and (3.97) hold.)

Again, using the material conditional yields exactly the same result (and the
calculation is analogous to the one at the end of the proof of Theorem 3.3.2).
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3.6.5 Proposition 1

From the Bayesian Network in Figure 6 and the constraints (3.65), we obtain:

xp1p2 + xq1q2 = 1/4 (3.98)

xp1p2 + xq1q2 = 1/4 (3.99)

xp1p2 + xq1q2 = 1/4 (3.100)

xp1p2 + xq1q2 = 1/4 (3.101)

We now add eqs. (3.98) and (3.99) as well as eqs. (3.100) and (3.101) and
obtain:

xp1 + xq1 = 1/2 (3.102)

xp1 + xq1 = 1/2 (3.103)

Note that eq. (3.103) follows from eq. (3.102). Similarly, by adding eqs. (3.98)
and (3.100) as well as eqs. (3.99) and (3.101), we obtain:

xp2 + xq2 = 1/2 (3.104)

We now solve eq. (3.102) for q1 and eq. (3.104) for q2 and insert the resulting
expressions in eqs. (3.98) to (3.101). In each case, we obtain:

(p1 − 1/2)(p2 − 1/2) = 0 (3.105)

This equation has two solutions, viz. (i) p1 = 1/2 and (ii) p2 = 1/2. Using eqs.
(3.102) and (3.104) completes the proof of Proposition 3.3.1.

3.6.6 Proposition 2

We begin with solution (i) from Proposition 3.3.1 and construct the prior prob-
ability distribution.

P (X,R,S) = 1/2xp2 , P (X,R,¬S) = 1/2xp2

P (X,¬R,S) = 1/2xp2 , P (X,¬R,¬S) = 1/2xp2

P (¬X,R,S) = 1/2xq2 , P (¬X,R,¬S) = 1/2xq2 (3.106)

P (¬X,¬R,S) = 1/2xq2 , P (¬X,¬R,¬S) = 1/2xq2.

With this, we calculate the entropy

S = − ∑
X,R,S

P (X,R,S) ⋅ logP (X,R,S) (3.107)
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and obtain

S = −(x logx + x logx) − x (p2 log p2 + p2 log p2) − x (q2 log q2 + q2 log q2) + log 2.
(3.108)

We want to maximize S under the constraint

xp2 + xq2 = 1/2. (3.109)

To do so, we use the method of Lagrange multipliers and first calculate the
derivates of

L = S − λ (xp2 + xq2 − 1/2) (3.110)

with respect to p2 and q2. We obtain

∂L

∂p2
= −x(log

p2

p2
+ λ) (3.111)

∂L

∂q2
= −x(log

q2

q2
+ λ) . (3.112)

Setting these expressions equal to zero and taking into account that x ∈ (0,1),
we obtain

p2 = q2 =
1

1 + eλ
. (3.113)

Inserting this into eq. (3.109), we obtain

p2 = q2 = 1/2, (3.114)

and hence λ = 0. Inserting all this into eq. (3.110), we obtain

L = 2 log 2 − (x logx + x logx), (3.115)

which maximizes at x = 1/2 (cf Lemma 2).
The calculation for solution (ii) proceeds analogously for reasons of symmetry.

This completes the proof of Proposition 3.3.2.

3.6.7 Theorem 4

Let us first calculate the prior probability distribution over the variables X,R
and S with the parameters given in Proposition 3.3.2:

P (X,R,S) = 1/8 , P (X,R,¬S) = 1/8

P (X,¬R,S) = 1/8 , P (X,¬R,¬S) = 1/8

P (¬X,R,S) = 1/8 , P (¬X,R,¬S) = 1/8 (3.116)

P (¬X,¬R,S) = 1/8 , P (¬X,¬R,¬S) = 1/8
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After receiving the message, the probability distribution changes from P to
P ′. With eqs. (3.67) and (3.68), the posterior probability distribution is given
by:

P ′(X,R,S) = x′ p′1 p
′
2 , P ′(X,R,¬S) = x′ p′1 p

′
2

P ′(X,¬R,S) = x′ p′1 p
′
2 , P ′(X,¬R,¬S) = x′ p′1 p

′
2

P ′(¬X,R,S) = x′ q′1 q
′
2 , P ′(¬X,R,¬S) = x′ q′1 q

′
2 (3.117)

P ′(¬X,¬R,S) = x′ q′1 q
′
2 , P ′(¬X,¬R,¬S) = x′ q′1 q

′
2

The parameters x′, p′1, q
′
1, p

′
2 and q′2 have to be fixed to fit the constraint from

eq. (3.66), i.e.

x′ p′1 p
′
2 + x

′ q′1 q
′
2

x′ p′1 + x
′ q′1

= k (3.118)

or

x′ p′1 (p′2 − k) + x
′ q′1 (q′2 − k) = 0 . (3.119)

With the prior probability distribution from eq. (3.116) and the posterior proba-
bility distribution from eq. (3.117), we obtain for the Kullback-Leibler divergence
(3.1) between the two distributions:

DKL(P
′∣∣P ) = ∑

X,R,S

P ′(X,R,S) ⋅ log(
P ′(X,R,S)

P (X,R,S)
)

= log 8 + x′ logx′ + x′ logx′

+x′ (p′1 log p′1 + p
′
1 log p′1) + x

′ (q′1 log q′1 + q
′
1 log q′1)(3.120)

+x′ (p′2 log p′2 + p
′
2 log p′2) + x

′ (q′2 log q′2 + q
′
2 log q′2)

We want to minimize DKL(P
′∣∣P ) under the constraint (3.119). To do so, we

use the method of Lagrange multipliers and first calculate the derivates of

L =DKL(P
′∣∣P ) − λ (x′ p′1 (p′2 − k) + x

′ q′1 (q′2 − k)) (3.121)

with respect to p′1, p
′
2, q

′
1 and q′2. We obtain

∂L

∂p′1
= x′ (log

p′1
p′1

− λ(p′2 − k)) ,
∂L

∂p′2
= x′ (log

p′2
p′2

− λp′1) (3.122)

∂L

∂q′1
= x′ (log

q′1
q′1

− λ(q′2 − k)) ,
∂L

∂q′2
= x′ (log

q′2
q′2

− λq′1) . (3.123)

To find the minimum, we have to set these expressions equal to zero. We recall
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that x′ ∈ (0,1) and obtain

log
p′1
p′1

= λ(p′2 − k) , log
p′2
p′2

= λp′1 (3.124)

log
q′1
q′1

= λ(q′2 − k) , log
q′2
q′2

= λq′1. (3.125)

To proceed, we assume that p′1, p
′
2, q

′
1 and q′2 are in (0,1) and note that λ ≠ 0,

because λ = 0 and eqs. (3.124) and (3.125) imply that p1 = p2 = q1 = q2 = 1/2,
which contradicts the constraint in eq. (3.119).

We will next solve the second equation in (3.124) for p′1 and insert the result
in the first equation. After some algebra, we obtain

log
p′2
p′2

=
λ

1 + e−λ(p
′
2−k)

. (3.126)

Proceeding in the same way with the two equations in (3.125), we obtain

log
q′2
q′2

=
λ

1 + e−λ(q
′
2−k)

. (3.127)

Comparing eqs. (3.126) and (3.127), we see that p′2 and q′2 satisfy the same
equation. We therefore conjecture that p′2 = q′2. From eqs. (3.124) and (3.125),
we then obtain

p′1 = q
′
1. (3.128)

Inserting this into eq. (3.119), we obtain

p′2 = q
′
2 = k (3.129)

and hence, from eqs. (3.124) and (3.125), that

p′1 = q
′
1 = 1/2. (3.130)

From eq. (3.126), we then obtain λ = 2 log(k/k). Let us now insert eqs. (3.128)
and (3.129) into eq. (3.121). The expression L then simplifies to

L = log 4 + x′ logx′ + x′ logx′ + k log k + k log k , (3.131)

from which we infer that the minimum is at

x′ = 1/2, (3.132)

hence, x′ = x. We have therefore shown that p′1 = q′1 = 1/2, p′2 = q′2 = k and
x′ = 1/2 minimises DKL(P

′∣∣P ). For these parameter values, we obtain that
P ′(R) = x′p′1 + x

′q′1 = xp1 + xq1 = P (R), which is the desired result.
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To complete the proof, we have to show that there is no other set of parameters
(p′1, q

′
1, p

′
2, q

′
2 and x′) which minimises DKL(P

′∣∣P ). Let us first ask whether there
is such a parameter set which does not satisfy the condition p′2 = q

′
2 = k. That is,

are there parameter sets for which either (i) p′2 > k and q′2 < k, or (ii) p′2 < k and
q′2 > k, or (iii) p′2 > k and q′2 > k, or (iv) p′2 < k and q′2 < k, or (v) p′2 = k and q′2 ≠ k,
or (vi) p′2 ≠ k and q′2 = k? Options (iii), (iv) to (vi) drop out as they violate the
constraint (3.119), because we assume that p′1, q

′
1, p

′
2, q

′
2 > 0. This leaves us with

options (i) and (ii). Next, we define

α ∶= −
p′1
q′1

⋅
p′2 − k

q′2 − k
. (3.133)

From options (i) or (ii) we conclude that α > 0. The constraint (3.119) then
implies that x′ = αx′ and therefore

x′ =
1

1 + α
and x′ =

α

1 + α
. (3.134)

We also introduce the new variables

φp ∶= p′1 log p′1 + p
′
1 log p′1 + p

′
2 log p′2 + p

′
2 log p′2

φq ∶= q′1 log q′1 + q
′
1 log q′1 + q

′
2 log q′2 + q

′
2 log q′2 (3.135)

and express DKL in terms of the new variables α,φp, φq and the old variable q′2.
As we will see, DKL does not explicitly depend on q′2. (Note that we could have
chosen any one of the four variables p′1, q

′
1, p

′
2 and q′2.)

DKL = log 8 − log(1 + α) +
1

1 + α
(α logα + φp + αφq) (3.136)

We differentiate with respect to α and obtain

∂DKL

∂α
=

1

(1 + α)2
⋅ (logα − φp + φq) . (3.137)

Setting this expression equal to zero yields

α = eφp−φq , (3.138)

which we insert into eq. (3.136) to obtain

DKL = log 8 + φp − log(1 + eφp−φq). (3.139)
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To find the minimum of this expression, we differentiate with respect to φp, φq
and q′2:

∂DKL

∂φp
=

1

1 + eφp−φq
(3.140)

∂DKL

∂φq
=

eφp−φq

1 + eφp−φq
(3.141)

∂DKL

∂q′2
=

∂DKL

∂φq
⋅
∂φq

∂q′2
=

eφp−φq

1 + eφp−φq
⋅ log

q′2
q′2

(3.142)

To find a minimum, we set these derivatives equal to zero. Note, however, that
since −2 log 2 ≤ φp, φq < 0, we have 1/4 < eφp−φq < 4. Hence, all derivatives are
positive and DKL has no minimum if, as we assumed, either (i) p′2 > k and q′2 < k
or (ii) p′2 < k and q′2 > k holds. Hence, all parameter sets which minimise DKL

satisfy the condition p′2 = q′2 = k. Since λ ≠ 0, we infer from the first equations
in (3.124) and (3.125) that p′1 = q′1 = 1/2 and, following the same reasoning as
above, that x′ = 1/2. This completes the proof of Theorem 3.3.4. (We skip the
proof that the corresponding Hessian is positive definite if eqs. (3.129), (3.130)
and (3.132) hold.)

In closing, we note that to show that P ′(R) = P (R), it would have been
enough to show that p′1 = q′1. In future work we will examine whether this
conclusion obtains for the weaker assumptions formulated in Proposition 3.3.1.

3.6.8 Theorem 5

With the prior probability distribution from eq. (3.74) and the posterior proba-
bility distribution from eq. (3.78), we obtain for the Kullback-Leibler divergence
between the two distributions:

DKL(P
′∣∣P ) ∶= ∑

E,D,S,B

P ′(E,D,S,B) ⋅ log(
P ′(E,D,S,B)

P (E,D,S,B)
)

= (e′ log
e′

e
+ e′ log

e′

e
) + (d′ log

d′

d
+ d′ log

d′

d
) + d′ log

1

q2

+ e′ d′ log
1

β p2
+ e′ d′ (δ′ log

δ′

δ p2
+ δ′ log

δ′

δ q2

)

Next, we calculate the first derivative of DKL(P
′∣∣P ) with respect to δ′ and obtain

∂DKL

∂δ′
= log(

δ′

δ′
⋅
δ

δ
⋅
q2

p2
) . (3.143)
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Setting this expression equal to zero yields

δ′ =
δ p2

δ p2 + δ q2

. (3.144)

Note that δ′ > δ for p2 > q2. Plugging eq. (3.144) into eq. (3.143), we obtain:

DKL(P
′∣∣P ) = (e′ log

e′

e
+ e′ log

e′

e
) + (d′ log

d′

d
+ d′ log

d′

d
) + d′ log

1

q2

+ e′ d′ log
1

β p2
− e′ d′ log(δ p2 + δ q2)

Next, we differentiate this expression with respect to e′ and d′ and obtain after
some algebra and after using eqs. (3.73):

∂DKL

∂e′
= log(

e′

e′
⋅
e

e
) − d′ log kd (3.145)

∂DKL

∂d′
= log(

d′

d′
⋅
∆

∆
) + e′ log kd (3.146)

with
kd ∶=

p1 p2

q1 p2 + (q1 − d) q2
(3.147)

and

∆ ∶=
d q2

d q2 + d (δ p2 + δ q2)
. (3.148)

Using Lemma 3, eqs. (3.145) and (3.146) then entail that e′ > e and d′ < ∆ iff
kd > 1. If kd > 1 and additionally also p2 > q2, then it also holds that d′ < d,
because ∆ < d if p2 > q2. This completes the proof of Theorem 3.4.1. (We skip
the proof that the corresponding Hessian is positive definite.)



Chapter 4

Voting, Deliberation And
Truth

4.1 Introduction

Consider a group aiming to make a collective decision on a binary choice prob-
lem. There are countless examples of such scenarios and different methods and
procedures have been proposed and practiced for this purpose in large and small
scales. The most suitable procedure will no doubt depend on the type of the
group, the kind of problem that the group deals with and the purpose of the col-
lective decision. Thus let’s consider a group of autonomous, independent decision
makers who make non-strategic individual judgments and who wish to arrive at
a collective decision that best approximates some objective truth and, without
any attempt to give a precise definition or characterisation of democracy, let’s
assume that the group wishes to make the decision democratically.

There are at least two ways for the group to come to a collective decision:
they can each cast a vote and then use some voting rule to aggregate the votes
into a collective choice. The majority rule is one example (probably the most
widely practiced example) of a democratic voting rule. Alternatively, the group
members can deliberate, they present their arguments and reasons to the others,
and eventually arrive at a unanimous verdict – a consensus.

Many examples of collective decision making deal with the aggregation of
preferences with no external or objective reference for evaluation. In such cases
the decision making procedure is hence preferred on the basis of some collectively
agreed upon desiderata. There are, on the other hand, instances that the decision
makers aim, or are expected to aim, at the best approximation of some fact or
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truth. Juries in court are relevant examples of this: They are expected to convict
the guilty, and only the guilty. Expert committees (e.g. on environmental issues)
are other cases in point. In these cases, the chosen decision making procedure
should facilitate this goal.

Hence, there are (at least) two distinct conceptions of how collective deci-
sion rules can be evaluated and justified: the proceduralist conception and the
epistemic conception. According to proceduralist view, the merit of a decision
making procedure depends only on its procedural characteristics. The work of
Kenneth Arrow and his followers is a famous case in point. According to this view
the desirability of a collective decision stems from the procedural characteristics
of the method itself and from the desiderata satisfied by the procedure, without
any concerns of tracking some independent truth. According to the epistemic
conception, on the other hand, the procedural characteristics are not enough for
legitimising a decision making procedure. Here the main concern is to apply a
method that provides reliable and correct outcomes and a decision making pro-
cedure is preferred on the basis of its ability to do just this. One widely debated
way to put this comparison in perspective in to ask: What should constitute our
main criteria for collective decision making? – The fairness of the procedure or
the correctness of the resulting decision?

Deliberative accounts of democratic decision making (deliberative democracy)
present an immediate advantage over voting from the proceduralist point of view.
This advantage is summarised in the formation of a group consensus. It eliminates
the necessity for a compromise that is inevitable in voting scenarios. Indeed the
prospect of a collective consensus on which all the group members agree upon
is an attractive ideal of the proceduralist account. In this sense the deliberative
account performs more favourably than voting from the proceduralist perspective.

On the other hand, voting has strong epistemic support. The literature on the
epistemic characteristics of majority voting is extensive, much of which is built on
the Condorcet Jury Theorem. In its original form the Condorcet Jury Theorem
asserts that for a group of independent voters with reliabilities above 50% who
are faced with a binary choice problem, the probability that the majority vote
coincides with the correct choice increases strictly monotonously with the size of
the group and approaches 1 asymptotically. This result has since been improved
in the work of social choice theorists who have generalised and modified it to
relax the assumptions. For example, List & Goodin generalised the theorem to
cases with more than two choice options (List & Goodin 2001). It has also been
shown that the conclusion of the theorem holds if one requests that the average
reliability of all (independent) group members is greater than 0.5, and in recent
work Dietrich and Spiekermann proved a modified version of the Condorcet Jury
Theorem where they differentiate between individual dependencies and depen-
dencies on a common cause, (Douven 2012). There is, however, as mentioned
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above, a procedural disadvantage to majority voting, namely that the process of
voting does not affect the epistemic state of the voters. With this consideration
the majority voting will always result in a minority that should comply with the
vote of the majority as the collective decision while maintaining their original be-
liefs. As such it will inevitably result in a compromise or possibly in a persisting
conflict.

Our goal in this study is to investigate the deliberative account from an epis-
temic point of view. We ask: is it also epistemically advantageous to deliberate,
or is this procedure only preferable from a proceduralist point of view? The ques-
tion is whether or not the procedural advantages of the deliberation process can
be backed with epistemic support to compare with majority voting. The idea of a
deliberation process is to give the group members the opportunity to revise their
beliefs in the light of the information they receive from their fellow group mem-
bers, and ideally, come to an agreement on what the collective decision should be.
There is an extensive literature on the epistemic analysis of deliberation, devel-
oped in the works of scholars such as Joshua Cohen, David Estlund, and Carlos
Nino.1 This literature is concerned with justifying the deliberative account by
claiming epistemic advantage for the decisions made through a deliberation by
adhering to the qualitative properties of the process in general; properties such
as better availability of information, facilitation of the analysis of arguments and
reasons resulting in a higher chance of identifying mistakes and errors, reducing
the chance of manipulation by controlling the flow of information, etc.2

An important aspect, however, that bears on the epistemic analysis of de-
liberation, is the way that the deliberation process is carried out. There are of
course different ways in which the group members can update their belief based
the opinions of others and there are also different attributes of decision makers
that can be regarded relevant to the deliberation process. To make an investiga-
tion of the epistemic behaviour of the deliberation one thus needs to first decide
on how to formulate the deliberation procedure in detail.

There are several attempts in the literature for developing
a formal account of rational deliberation, including the Lehrer-
Wagner model (Lehrer & Wagner 1981), the Hegselmann-Krause model
(Hegselmann & Krause 2002), and more recently the Laputa model developed
at Lund University. These models focus on different characteristics of the delib-
erating group members and deal with different contexts of decision making, but
only the Laputa model, amongst these, is built on Bayesian foundations. Olsson
and co-authors have developed a detailed Bayesian model for the epistemic

1See (Cohen 1989a; Cohen 1989b), (Estlund 1993; Estlund 1994; Estlund 1997),
(Manin 1987), and (Nino 1996).

2See (Bohman & Rehg 1997), (Cohen 1989a), (Dryzek 1990), (Elster 1998), (Fearon 1998),
(Marti 2006), and (Nino 1996).
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interaction between the group members in which they allow for consideration of
any particular network configuration governing the flow of information in the
group. In particular group members might only receive messages from some
other group members or have different chances of receiving information from
one group member as opposed to another. The model also allows for some
personal characteristics of the group members outside the social network, viz.
the chance that they would engage an enquiry concerning the matter from some
outside source (their activity) and the chance that such enquiry would provide
them with the right answer (their aptitude). This model provides an excellent
framework for studying epistemic interactions in cases where group members
have limitations (imposed by some network configuration) in accessing each
others’ opinions. Of course the case where group members receive information
from all others is a special case of the model. Here we will not give an overview
of the intricacies of the Laputa model and its applications and refer the reader
to the literature.3

In our own model, however, we focus on cases where the group members
receive no information from any outside source and the communication between
the different group members is open to all. This is in particular the case for
jurors in court or experts on expert panels who are solely interested in making
the right decision and who do not make any strategic moves. We will indeed see
below that our model of deliberation is inspired by a well-known movie that is set
behind the closed doors of the Criminal Court Jury Room: Twelve Angry Men
(1957). We furthermore introduce another characteristic of the group members in
addition to their individual reliability to capture their reliability in assessing the
(first order) reliabilities of the other group members (“second order reliability”).
Investigating the deliberation process on the basis of these characteristics is the
main undertaking of the present study.

Our study is concerned with the epistemic characteristics of the deliberation
process and its ability to correctly track the truth. The model works in the con-
text of iterated belief revision where the group members update their opinions in
each round by considering the opinions presented by their fellow group members
in the previous round and share with the group their updated beliefs repeatedly
until the group reaches a consensus. An important justification for the iteration
of the updating procedure in our model is the assumption that the group members
become increasingly better in assessing the opinions of others in the course of de-
liberation. The idea is that during the deliberation the individual group members
discuss their arguments and reasons based on which they can make an assessment
of how reliable their fellow group members are. This assessment improves as the
deliberation proceeds (as they get more and more information about the others)
which in turn makes the iteration of the updating procedure meaningful even if

3See (3), (57; Olsson 2011), and (58).
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the opinions remain unchanged from one round of deliberation to the next.
The details of the relevant attributes of the decision makers in our model

and the updating procedure by which the group members take into account each
others’ opinions will be presented in details shortly. We would, however, like
to emphasise the context for which this process is developed. An important
contextual assumption of our model is that group members receive no private
information or evidence from any outside source. This means, in particular, that
all the group members have access to all the information relevant to the decision.
Hence the purpose of the deliberation is to allow the group members to come to
a shared interpretation of the evidence by learning and weighting the opinions of
their fellow group members and to revise their initial belief so the group converges
on a collective decision as a single entity. The case of juries in court can be thought
of as an archetypal example of the scenarios we have in mind. If different group
members have different evidence bases or if new evidence is fed in during the
deliberation, then our model does not apply and other deliberation models have
to be constructed to study these scenarios.

The remainder of this paper is organised as follows. In Section 4.2 we will
introduce our new Bayesian model of deliberation. In Section 4.3 and 4.4 we will
present our main results on the emergence of consensus and the truth tracking
properties of the process and will give a comparison of this deliberation pro-
cess with majority voting from an epistemic point of view. Finally, Section 4.5
concludes and highlights some questions for future research.

4.2 A Bayesian Model of Deliberation

Our aim is to capture the scenario in which a group wishes to deliberate on a
binary factual question, say the truth or falsity of some hypothesis. The group
members start with some subjective belief based on which every one of them casts
a yes/no vote for or against the hypothesis. These verdicts are made public, and
every group member gets the chance to present her reasons and arguments for
her judgment. These reasons and arguments may lead some group members to
revise their initial beliefs based on an evaluation of the reasons and arguments
presented by the other group members. In the next round of deliberation, every
group member casts a yes/no vote for or against the hypothesis on the basis of
her revised beliefs. Again, every group member get the chance to present her
reasons and arguments, people revise their beliefs, and so on until a consensus is
reached. It should be clear by now that the proposed procedure resembles the
one shown in the movie Twelve Angry Men.

Let us now start formalising things a bit more: we consider a group of n
members which we denote by a1, . . . , an, who deliberate on the truth or falsity
of some hypothesis. To proceed we introduce a binary propositional variable H
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with the values, H: the hypothesis is true, and ¬H: the hypothesis is false. For
reasons of symmetry that will become apparent immediately, we assume that the
hypothesis is true. The group members express their individual verdicts in terms
of a yes/no vote. The votes are represented by binary propositional variables Vi
(for i = 1, . . . , n) with the values: Vi: Group member ai votes that the hypothesis
is true, and ¬Vi: Group member ai votes that the hypothesis is false.

We start by the same assumptions made for majority voting in the Condorcet
Jury Theorem. First, we assume that the votes are independent, given the truth
or falsity of the hypothesis, i.e.

Vi �� V1, . . . , Vi−1, Vi+1, . . . , Vn∣H ∀i = 1, . . . , n. (4.1)

Second, we assume that each group member ai is partially reliable with a relia-
bility ri defined as follows:

ri ∶= P (Vi∣H) = P (¬Vi∣¬H). (4.2)

That is, we focus on the special case where the rate of false positives equals the
rate of false negatives. (This assumption can, of course, be easily relaxed.)

Given this setting, majority voting can be studied and it is easy to see that
the probability that the probability that the majority makes the right judgment
is given by

PV =
n

∑
k=n+12

∑
{aj1 ,...,ajk }
⊂{a1,...,an}

∏
t∈

{j1,...,jk}

rt ∏
t∉

{j1,...,jk}

(1 − rt) . (4.3)

If all group members are equally likely to make the right individual judgment,
i.e. if ri =∶ r for all i = 1, . . . , n, then the expression in eq. (4.3) simplifies to

PV =
n

∑
k=(n+1)/2

(
n

k
) rk(1 − r)n−k . (4.4)

With the help of eqs. (4.3) and (4.4), we can explore the truth-tracking prop-
erties of the majority voting procedure. According to the well-known Condorcet
Jury Theorem, the expressions in eqs. (4.3) and (4.4) strictly monotonically in-
crease with n and converge to 1, for r > 0.5 in eq. (4.4) or when the average of
the ri’s is greater than 0.5 for the expression in eq. (4.3).

4.2.1 The Deliberation Procedure

Our deliberation model is defined as a process of iterated belief revision and relies
on two characteristics of the decision makers: the (first order) reliabilities (ri)
and the second order reliabilities (ci). The (first order) reliabilities indicate how
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competent the group members are in making the right judgment. This is the
same reliability that is used in calculating the probability of correct judgment
for the majority voting, which will be useful when we will later compare the
voting procedure with the deliberation procedure. The second order reliabilities
are considered to characterise the group members’ competence in assessing the
(first order) reliabilities of the other group members. In the process of deliber-
ation each group member assigns reliabilities to her fellow group members and
update her opinion based on these reliabilities (and of course the verdicts of the
other group members). A high second order reliability for aj indicates that the
estimated reliabilities that aj assigns to her fellow group members are closer to
their objective reliabilities given by the ri’s. In an ideal situation with cj = 1, for
example, the reliability assigned by aj to her fellow group member ai will equal
ai’s objective reliability, i.e. ri.

We assume that the values of the ri’s and ci’s are independent of each other.
Thus we assume that an individual’s ability in assessing the reliabilities of other
group members does not depend on her ability to asses the truth or falsity of the
hypothesis in question.4 Moreover, we assume that the group members’ reliabili-
ties remain fixed during the course of the deliberation. This means, in particular,
that we assume that the group members do not acquire any information from
sources outside the group.

Our model is formulated in a Bayesian framework and works as follows: First,

every group member casts an initial vote, V
(0)
i or ¬V

(0)
i , for or against the hy-

pothesis in question. We introduce parameters p
(k)
i and set p

(k)
i = 1 if V

(k)
i and

p
(k)
i = −1 otherwise. These initial votes, for each person, come from an initial

probability assignment P
(0)
i (H). We assume that group member i will initially

vote Vi if P
(0)
i (H) ≥ 0.5 and ¬Vi otherwise. This relates to the reliabilities in an

obvious way, that is, the group member with reliability ri will assign an initial
probability greater or equal to 0.5 (and thus vote correctly) with probability ri.
Next, every member ai estimates the reliability rj of her fellow group members
aj , viz.

r
(0)
ij ∶= P

(0)
i (Vj∣H) = P

(0)
i (¬Vj∣¬H). (4.5)

The higher ai’s second order reliability, the better is ai’s assessment of the reli-

ability of aj , i.e. the closer is r
(0)
ij to rj . For c

(0)
i = 0, ai randomly assigns some

reliability from the uniform distribution over (0,1) to aj (for j = 1, . . . , n), and

for c
(0)
i = 1, we obtain that r

(0)
ij = rj . Using these reliability estimates, each group

4Of course this can be debated. One might argue that someone with a high (first order)
reliability has a better knowledge of the issue under discussion and therefore also has a better
chance of telling more or less reliable fellow group members apart.



88 CHAPTER 4. VOTING, DELIBERATION AND TRUTH

member ai calculates the likelihood ratios5

x
(0)
ij ∶=

P
(0)
i (Vi∣¬H)

P
(0)
i (Vi∣H)

=
1 − r

(0)
ij

r
(0)
ij

. (4.6)

The revision process is carried out on the basis of the votes casted by the other
group members and their estimated likelihood ratios:

P
(1)
i (H) = P

(0)
i (H∣Vote

(0)
1 , . . . ,Vote

(0)
i−1,Vote

(0)
i+1, . . . ,Vote(0)n )

=
P
(0)
i (H)

P
(0)
i (H) + (1 − P

(0)
i (H)) ∏

n
k≠i=1 (x

(0)
ik )

pk (4.7)

Here Vote
(0)
i ∈ {Vi,¬Vi}. To derive eq. (4.7), we have assumed independence

(which is also assumed in the derivation of the Condorcet Jury Theorem, cf. eq.
(4.1)).

The group members will then vote again based on their updated probabilities.
As before, a group member votes for the hypothesis if her updated probability is
greater than or equal to 0.5, otherwise she votes against it. The next round of

deliberation will then start with P
(1)
i (H) as prior probabilities, and everybody

repeats updating her probability assignments as before considering the new votes.
And so on until the votes converge.

4.3 Homogeneous Groups

Let G be a homogeneous group of n members, i.e. a group where all group
members have the same reliability. This group deliberates on the truth or falsity
of the hypothesis H. We assume that each group member has access (through
some shared history for example) to each others’ reliabilities (corresponding to
ci = 1, i = 1, . . . , n). We furthermore assume that the group members revise their
probability assignment for the truth of the hypothesis using the above proce-
dure. Without loss of generality we assume the hypothesis to be true. Then the
following theorem holds.

Theorem 4.3.1 For a homogeneous group G with reliable group members (i.e.
for r > 0.5), the following three claims hold:

5We follow the convention used in (Bovens & Hartmann 2003). Note that r
(0)
ij ≥ 1/2 implies

that 0 ≤ x
(0)
ij ≤ 1 and r

(0)
ij ≤ 1/2 implies that x

(0)
ij ≥ 1.
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(i) The probability that the group reaches a consensus in finitely many steps
increases with the size of the group and approaches 1 as the size of the
group increases.

(ii) If the majority of the group members vote correctly in the first round, the
subjective beliefs will stabilise on the truth in finitely many steps, i.e. after
finitely many steps, each group member assigns subjective probability 1 to
the truth of the hypothesis after which the deliberation process will no more
change the probability assignments.

(iii) If the majority of the group members vote incorrectly in the first round, the
subjective beliefs will stabilise on the wrong belief in finitely many steps, i.e.
after finitely many steps, each group member assigns subjective probability
0 to the truth of the hypothesis after which the deliberation process will no
more change the probability assignments.

Proof See Appendix A1.

For a homogeneous group G with unreliable members, i.e. when all group
members have a reliability r < 0.5, the situation is more complicated and the
emergence of a consensus depends strongly on the size of the group and the
initial probabilities. To see this notice that for r < 0.5 we will have x > 1 and

thus x∑
n
j=1 p

(0)
j < 1 if and only if ∑

n
j=1 p

(0)
j < 0, i.e. if the majority of the group

members vote incorrectly in the first round. Using the same argument as in the
Condorcet Jury Theorem the chance that the majority of the group members
(with reliability less than 0.5) will vote incorrectly increases with the size of the
group and approaches 1. Thus using the argument in the proof of Theorem 4.3.1
if the majority of the group members start with initial subjective probabilities of
less than 0.5 for H and hence vote incorrectly in the first round, the probability
assignments will increase in the next round and this continues until at some point,
say at round t, the majority assigns a probability greater than 0.5 for H and thus
votes correctly. After this stage the process will reverse and the probabilities

will start to decrease since ∑
n
j=1 p

(t)
j > 0 and thus x∑

n
j=1 p

(t)
j > 1. If the size of the

group, the likelihoods and the initial probabilities are such that at some round
s − 1 the majority assign probabilities less than 0.5 (and thus vote incorrectly)
but the probabilities increase in such a way that in round s all the probability
assignments are above 0.5 then the group reaches a consensus at this round s.
On the other hand if the probability assignments increase until at some round
s−1 the majority but not all group members assign a probability above 0.5 (so the
probabilities decrease in the next round) and in round s all probabilities decrease
to less than 0.5 then the group will again reach a consensus but this time on the
wrong answer. Otherwise the group can oscillate (not necessarily in consecutive
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rounds) between the case where a majority vote correctly and the case where
the majority vote incorrectly. In any case, the subjective beliefs of the group
members will not stabilise for unreliable groups.

Theorem 4.3.2 For a homogeneous group G with unreliable group members (i.e.
for r < 0.5), the subjective beliefs of the group members will not stabilise even if
the group reaches a consensus.

Proof See Appendix A2.

Notice that in the proof of Theorem 4.3.1, the actual value of x is not rele-
vant. All that matters is whether x > 1 or x < 1. This allows for an immediate
generalisation of these results.

Corollary 4.3.1 For a homogeneous group G with first order reliability r, let the
second order reliabilities ci for i = 1, . . . , n be less than 1 (so the group members
won’t have access to each others’ actual reliabilities) but high enough so that the
group members can correctly assess whether or not the other group members are
reliable, that is let ci be high enough so that rij > 0.5 if and only if rj > 0.5 for
j = 1, . . . , n. Then the results in Theorems 4.3.1 and 4.3.2 still hold.

The situation in Theorems 4.3.1 and 4.3.2 is highly idealised as we assume
that the second order reliability is 1, which means that the group members have
access to each others’ objective reliabilities. In such a context it will be hard to
justify the iteration of the deliberation process after the second round. Assuming
that group members are able to weight each others opinion by the actual objective
reliabilities there is no room for improvement of such opinions by iteration of the
deliberation process more than once. Corollary 4.3.1 on the other hand, allows
a generalisation that makes the iteration of the deliberation process meaningful.
For groups with lower second order reliabilities, the assessment of the reliabilities
improve in each round of the deliberation. The iteration of the deliberation
process will thus improve these second order reliabilities until the assumption of
Corollary 4.3.1 is satisfied and the emergence of convergence is guaranteed.

4.3.1 Comparison with Majority Voting

We will now compare our deliberation model with majority voting. Let X =
{(±V1, . . . ,±Vn) ∣ + Vi = Vi,−Vi = ¬Vi} be the set of all possible voting profiles
for a group of size n. A decision rule on X is a function f ∶ X → {V,¬V },
that for each voting profile returns a (collective) vote for the hypothesis. As
argued in details in (Dietrich 2006) the epistemically optimal decision rule is
the weighted average where the weights are given by the likelihood ratios. For
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homogeneous groups this weighted average is reduced to simple majority voting
as all group members have the same likelihood ratio and thus the same weight
in the averaging process. For groups with very high second order reliabilities the
estimated likelihood ratios correspond to the correct values and as one can notice
from Theorem 4.3.1, for reliable homogeneous groups, the deliberation process
will result in a group consensus on the correct (respectively, wrong) answer if
and only if the majority of group members vote correct (respectively, wrong)
initially. By the same theorem the subjective beliefs will stabilise on the true
belief (respectively, wrong belief) if and only if the majority of group members
vote correctly (respectively, wrongly) in the beginning. Thus:

Proposition 4.3.2 For a reliable homogeneous group G with high second order
reliabilities, the deliberation process has no epistemic advantage to majority voting
and vice versa.

The advantage of the deliberation process for these groups, however, is that
the group will arrive at a consensus and all group members agree on the collective
decision. This is in contrast to majority voting where a minority has to accept
the resulting compromise without actually endorsing it. Hence, the advantage
of deliberation to majority voting for these groups is merely procedural. For
unreliable homogeneous groups, however, the deliberation process comes with
some epistemic advantage. For these groups the majority voting is doomed to
end with the wrong choice for large groups by the same argument as in the
Condorcet Jury Theorem. The deliberation process, however, may converge to
the correct answer (depending on the group size and the initial probabilities).
For groups with lower second order reliabilities, however, one would expect the
majority voting to preform better than the deliberation procedure.

4.4 Inhomogeneous Groups

In this section we will use computer simulations to investigate inhomogeneous
groups with second order reliabilities less than 1. In Section 4.4.1 we will see that
the simulation results suggest that the deliberation process correctly tracks the
truth in these cases as well. We shall also present an illustration of Theorem 4.3.2
and the argument preceding it. Finally, in Section 4.4.2 we will explore which
of the two procedures – voting and deliberation – performs better on epistemic
grounds.

Recall that in the deliberation procedure, each group member ai has to es-
timate the reliability of her fellow group members aj (j ≠ i) and to assign a
corresponding value to rij . To determine these values we use the (initial) second

order reliabilities c
(0)
i ∈ (0,1). Group members with a high value of c

(0)
i give a
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more accurate assessment of rj ’s. To model this, we assume that the reliability

r
(0)
ij is calculated from a β-distribution translated to an interval around rj . The

length of this interval is defined by the c
(0)
i . Higher values of c

(0)
i will result in

smaller intervals surrounding rj and thus a more accurate estimation. To do so
we consider a β-distribution with parameters6

α = 2 , β =
min(1, rj − c

(0)
i + 1) −max(0, rj + c

(0)
i − 1)

rj −max(0, rj + c
(0)
i − 1)

in [0,1] which is then linearly transferred to the interval

[max(0, rj + c
(0)
i − 1),min(1, rj − c

(0)
i + 1)]. See Figure 1. The values α

and β are set such that the β-distribution has the mode rj after it is transferred
to the required interval.

Table 1

0 0 0

0,01 0,04776360944 1

0,02 0,0948026102 2

0,03 0,141114226

0,04 0,1866956326

0,05 0,2315439569

0,06 0,275656275

0,07 0,3190296107

0,08 0,361660934

0,09 0,403547161

0,1 0,4446851479

0,11 0,4850716943

0,12 0,524703538

0,13 0,563577355

0,14 0,601689755

0,15 0,639037282

0,16 0,67561641

0,17 0,711423543

0,18 0,746455009

0,19 0,780707062

0,2 0,814175873

0,21 0,846857534

0,22 0,878748052

0,23 0,909843344

0,24 0,940139237

0,25 0,969631462

0,26 0,998315652

0,27 1,026187338

0,28 1,053241944

0,29 1,079474784

0,3 1,104881056

0,31 1,129455838

0,32 1,153194083

0,33 1,176090615

0,34 1,198140121

0,35 1,219337146

0,36 1,239676087

0,37 1,259151185

0,38 1,277756522

0,39 1,295486005

0,4 1,312333368

0,41 1,328292156

0,42 1,343355718

0,43 1,357517197

0,44 1,370769521

0,45 1,383105389

0,46 1,39451726

0,47 1,404997342

0,48 1,414537573

0,49 1,423129609

0,5 1,43076481

0,51 1,437434217

0,52 1,443128535

0,53 1,447838115

0,54 1,451552928

0,55 1,45426254

0,56 1,455956088

0,57 1,456622251

0,58 1,456249214

0,59 1,454824636

0,6 1,452335611

0,61 1,448768627

0,62 1,444109515

0,63 1,4383434

0,64 1,431454645

0,65 1,42342678

0,66 1,41424244

0,67 1,403883275

0,68 1,392329866

0,69 1,37956162

0,7 1,365556656

0,71 1,350291674

0,72 1,3337418

0,73 1,315880423

0,74 1,296678988

0,75 1,276106769

0,76 1,254130605

0,77 1,230714577
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Figure 4.1: The β-distribution with parameters α = 2 and β = 1.625 corresponding
to rj = 0.75 and ci = 0.6.

We furthermore assume that the group members become more competent in
estimating the reliabilities of others. Thus, in each round, we also update the
estimated reliability values so that they come closer to the objective values. That
is we recalculate the estimated reliabilities from a β-distribution transferred to
a smaller interval defined by an updated value of the second order reliabilities.

More specifically, we assume that the second order reliability c
(k)
i in round k

increases linearly as a function of the number of rounds until a maximum value

6It turns out that our results do not vary much with the value of α. What counts is that

the β-distribution has the mode rj after it is transferred to the interval defined by rj and c
(0)
i .
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Ci ≤ 1 is reached after M rounds. Afterwards, c
(k)
i remains constant. Hence,

c
(k)
i = {

(Ci − c
(0)
i ) ⋅ k/M + c

(0)
i ∶ 0 ≤ k ≤M
Ci ∶ k >M

. (4.8)

4.4.1 Truth Tracking

Figure 4.2, shows the probability of tracking the truth in the deliberation as
a function of group size. We examine inhomogeneous groups with unreliable
members comprising the minority (Figure 4.2 (a)) and the majority (Figure 4.2
(b)) of the group members. As the simulation results suggest, in both cases
the deliberation tracks the truth for large group sizes. Notice that the group in
Figure 4.2 (b) has an average reliability of less than 0.5 but given the low second
order reliabilities the group members do not have access to each others correct
likelihood and only estimate these values in a rather large interval.
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Figure 4.2: PD for inhomogeneous groups as a function of the group size. (a)
1/4 of the group members has a reliability of 0.25, the rest has a reliability of 0.7
(solid line). (b) 1/4 of the group members has a reliability of 0.7, the rest has a
reliability of 0.25 (dotted line).

In Figure 4.3 we consider an unreliable homogeneous group. As we argued
above the probability of reaching a consensus on the correct answer can oscillate
as the group moves from the case where the majority vote correctly to the case
where the majority vote incorrectly.

We conclude that the deliberation procedure (as modelled above) is truth-
conducive under similar conditions that hold for the Condorcet Jury Theorem,
but we note that we do not have an analytical proof for this. The statement is
only suggested by the results of our simulations.
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Figure 4.3: PD for a homogeneous group as a function of the group size. Each
group member has a reliability of 0.4.

4.4.2 Comparison with Majority Voting

We have already argued that the deliberation process presents no epistemic ad-
vantage over majority voting for homogeneous groups with high second order
reliabilities and that for homogeneous groups with low second order reliabilities
majority voting does better than our deliberation procedure. Let us now compare
both procedures for various inhomogeneous groups.

In what follows, let PD and PV denote the probability of converging to the
correct result through deliberation and voting respectively and let

∆ = PD − PV .

Unless otherwise stated, we plot ∆ as a function of the group size n. Unless ex-
pressed differently, in all the simulations the second order reliability of the group
members start from 0.6 and is increased linearly, notice that the second order
reliability of 0.6 defines an interval of maximum length 0.8 centred around each
rj (cut at zero or one when necessary) thus allowing for possibly very inaccurate
estimations. To control the noise, we set the number N of simulations to 105 and
in some case to 106.

In Figures 4.4(a) and 4.4(b), the majority of the group members (2/3 and 4/5,
respectively) has a high reliability and the rest has a low reliability. In Figures
4.4(c) and 4.4(d) the situation is reversed while in all cases the average reliability
is above 0.5. The simulation results suggest that for inhomogeneous groups the
deliberation procedure shows epistemic advantage over majority voting. The
difference, however, is more visible for small and medium size groups and becomes
smaller as the size of the group increases.7 Figure 4.5 shows the comparison

7This is, of course, not surprising as PV (pace Condorcet Jury Theorem) and PD (as sug-
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Figure 4.4: ∆ as a function of the group size.

between the deliberation procedure and majority voting for two inhomogeneous
groups with average reliabilities of less than 0.5.

The comparison of the deliberation procedure and the voting procedure also
depends the second order reliabilities. The probability of the correct choice in de-
liberation is positively correlated with the second order reliabilities while voting
depends only on the first order reliabilities. Thus the difference between deliber-
ation and voting increases for the higher values of second order reliabilities and
decreases for lower values.

Figure 4.6 shows the difference between truth tracking in deliberation and
voting as a function of the (initial) second order reliability for three different
groups sizes (n = 15,27 and 33) with the same distribution of (first order) reli-
abilities: 2/3 of the group has reliabilities of 0.6 and the rest has reliabilities of
0.75.

As the graph suggests, the result of the comparison depends highly on the

gested by our simulations) coverage to 1.
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Figure 4.5: ∆ as a function of the group size.
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Figure 4.6: ∆ as a function of the (initial) second order reliability for different
group sizes n: n = 15 (dotted line), n = 27 (solid line), and n = 33 (dashed line).

(initial) second order reliabilities. Initial second order reliabilities greater than
0.6, 0.5 and 0.4 make the deliberation procedure epistemically better for groups
of size n = 15,27 and 33, respectively, while for lower (initial) second order relia-
bilities the voting procedure performs better.

Finally, Figure 4.7 shows a group with one highly reliable member where the
other group members have near average reliabilities.

4.5 Conclusions

Voting and deliberation are two standard procedures to reach a group decision.
The goal of this paper was (i) to present a new Bayesian model for non-strategic
rational deliberation, (ii) to study the emergence of consensus and its truth track-
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Figure 4.7: ∆ for a group with only one highly reliable member. One member
has a reliability of 0.9, the rest has a reliability of 0.55. The (initial) second order
reliability is 0.85.

ing properties, and (iii) to compare this deliberation process with majority voting
in terms of their truth-tracking properties. To this end, we proposed a Bayesian
model which allows for such a comparison. The model is based on two attributes
of the group members: we assumed that each group member has a (first order)
reliability to make the right decision, which equals the Condorcet reliability, and
a second order reliability to assess the (first order) reliability of the other group
members. We furthermore assume that each group member updates her proba-
bility that the hypothesis is true in each deliberation round based on the previous
verdicts of the other group members.

We have shown that the deliberation process results in a consensus and cor-
rectly tracks the truth for groups of large size inn the following cases: (i) homoge-
neous groups with a first order reliability greater than 0.5 and with a high second
order reliability. (ii) inhomogeneous groups with average reliabilities above 0.5
and with a high (initial) second order reliability. In this sense the deliberation
procedure manifests the same epistemic properties as the majority voting while
adding the benefit of a group consensus which for groups with average reliabili-
ties above 0.5 and high (initial) second order reliabilities will make sure that all
group members reach a stable correct belief about the hypothesis in finitely many
steps. We furthermore provided some simulation results that indicate that the
deliberation procedure tracks the truth even in cases that do not fall under the
conditions stated in the Condorcet Jury Theorem for majority voting as well as
for groups with low second order reliabilities.

Clearly, these results are consequences of our assumptions. But how robust
are the results? Do they also hold if we make changes in our deliberation model
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and relax some of its idealisations? In future work, we would especially like to
study the effect of relaxing the independence assumption. While it makes sense
for voting, the independence assumption is questionable for deliberations as more
and more links between the group members are established in the course of de-
liberation which make the group members (and henceforth also their verdicts)
dependent on each other. At the end of the deliberation process, when a con-
sensus is reached, it is as if the original assembly of independent individuals has
become one homogeneous entity, with all group members endorsing the consen-
sus. The challenge, then, is to model how a social network emerges in the course
of the deliberation process and to explore how it becomes (under conditions to
be explored) increasingly dense as the process proceeds.

Other issues that require further work concern the investigation of groups
with low second order reliabilities and the study of mechanisms for updating
the second order reliabilities in the course of deliberation. The justification for
updating the second order reliabilities is that through the course of deliberation
group members will get a chance to evaluate each other’s arguments and form a
better judgment of each other’s reliability. But this would also suggest that those
with higher first order reliabilities are in a better position to judge the validity of
others’ arguments. As such the second order reliabilities of these members should
increase faster than those with a lower first order reliability. This suggests that
the process of updating the second order reliability of a group member should
take her first order reliability into account.

4.6 Appendix

A1. Proof of Theorem 4.3.1

First notice that since all group members have the same reliability ri = r and the
same second order reliability ci = 1, the estimated reliabilities in each round will
be equal to the actual reliabilities and the likelihood ratio will be the same for

all group members in each round, i.e. x
(k)
ij =∶ x = (1 − r

(k)
ij )/r

(k)
ij = (1 − r)/r. So

P
(k+1)
i (H) = P

(k)
i (H∣Vote

(k)
1 , . . . ,Vote

(k)
i−1,Vote

(k)
i+1, . . . ,Vote(k)n )

=
P
(k)
i (H)

P
(k)
i (H) + (1 − P

(k)
i (H)) ∏

n
j≠i=1 (x

(k)
ij )

p
(k)
j

=
P
(k)
i (H)

P
(k)
i (H) + (1 − P

(k)
i (H))x∑

n
j≠i=1 p

(k)
j

, (4.9)
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where p
(k)
j ∈ {0,1} is the vote of group member aj in round k and p

(k)
j = 1 if

V ote
(k)
j = Vj , i.e. if group member aj has voted (correctly) for the truth of

the hypothesis and p
(k)
j = −1 otherwise. Simplifying this we have P

(k+1)
i (H) >

P
(k)
i (H) if and only if x∑

n
j≠i=1 p

(k)
j < 1.

The votes in the first round are given by the initial probability assignments
that arise from the group members’ reliabilities r. This means that group member

aj will start by initially voting correctly, i.e. p
(0)
j = 1 (or equivalently P

(0)
j (H) ≥

0.5) with probability r and incorrectly, i.e. p
(0)
j = −1 (or equivalently P

(0)
j (H) <

0.5) with probability 1− r. Thus P
(1)
i (H) > P

(0)
i (H) if and only if x∑

n
j≠i=1 p

(0)
j < 1.

Since r > 0.5 and x < 1, x∑
n
j≠i=1 p

(0)
j < 1 if and only if ∑

n
j≠i=1 p

(0)
j > 0 that is if the

majority of the group members (excluding ai) vote correctly in the first round.

Notice that if the majority of the group members votes correctly in some

round, say in round t, and if p
(t)
i = −1 then the majority of the group excluding

ai has voted correctly in round t and thus ∑
n
j≠i=1 p

(t)
j > 0. If, however, p

(t)
i = 1 it

is possible that ∑
n
j≠i=1 p

(t)
j = 0 that is when there are exactly the same number of

correct and incorrect votes in the rest of the group. In this later case P
(t+1)
i (H) =

P
(t)
i (H). However, since the probability assignment for any member who has

voted incorrectly in round t strictly increases, after some finite number of rounds,
say l, the probability assignment for at least one of these group members, say

as, will increase enough such that p
(t+l)
s = 1 and from then on we have that the

number of correct votes in the whole group is at least two more than the number

of incorrect ones and thus ∑
n
j≠i=1 p

(t+l)
j > 0 for i = 1, . . . , n. Thus for simplicity of

notation and without loss of generality we can assume that when the majority
of the group votes correctly initially, the number of correct votes is at least two

more than the number of incorrect votes. Thus ∑
n
j≠i=1 p

(0)
j > 0 for i = 1, . . . , n and

so P
(1)
i (H) > P

(0)
i (H) for i = 1, . . . , n. Similarly when we consider the case where

the majority of the group members vote incorrectly in the first round we shall
assume that the number of incorrect votes is at least two more than the number
of correct ones.

In the second round of the deliberation the votes will be casted on the basis of
the updated probability assignments. Thus if P

(1)
i (H) > P

(0)
i (H) for i = 1, . . . , n

then ∑
n
j≠i=1 p

(1)
j ≥ ∑

n
j≠i=1 p

(0)
j > 0 since each group member j who had voted for

the truth of the hypothesis on the basis P
(0)
j (H) will still vote the same on the

basis of the equal or higher probability P
(1)
j (H) while some of the group members

who had voted against the hypothesis may change their vote if their subjective

probability has been raised to a value above 0.5. Hence from ∑
n
j≠i=1 p

(1)
j > 0 we
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have P
(2)
i (H) > P

(1)
i (H) for i = 1, . . . , n.

Repeating the same argument the subjective probabilities of the group mem-
bers (for the truth of the hypothesis) will increases in each round and will be
greater or equal to 0.5 in finitely many steps. Thus if the majority of the group
members vote correctly in the first round the group will reach a consensus on the
correct answer in finitely many steps. If the group members keep repeating the
deliberation process (possibly even after the consensus is reached) the probabili-

ties will increase until at some round t, we have P
(t)
i (H) = 1 for i = 1, . . . , n after

which repeating the deliberation process will no more change the probabilities.
This proves part (ii).

By the same argument, if the majority of the group members vote incorrectly
in the first round the probability assignments will decreases until after finitely
many steps all group members will assign probability zero to H and the group will
reach a consensus and the subjective beliefs will stabilise (on the wrong belief)
and this gives the result for part (iii). Parts (ii) and (iii) will together imply part
(i), as it is either the case that the majority have voted correctly in the first round
or that the majority have voted incorrectly and in either case the group will reach
a consensus in finitely many rounds (on the correct answer and incorrect answer
respectively).

If r ≥ 0.5 then by the Condorcet Jury Theorem the probability that the
majority of the group members would vote correctly in the first round (and thus
the group reaches a consensus on the correct answer), increases with the size of
the group and approaches 1 as the size of the group increases. Similarly if r < 0.5
by the same argument as in the Condorcet Jury Theorem the probability that
the majority of the group members would vote incorrectly in the first round (and
thus the group reaches a consensus on the wrong answer), increases with the size
of the group and approaches 1 as the size of the group increases. This proves
part (i).

A2. Proof of Theorem 4.3.2

Since r < 0.5 and thus x > 1, by the argument in the proof of Theorem 4.3.1,
if the majority of the group members start by voting incorrectly we have that

∑
n
j≠i=1 p

(0)
j < 0 and thus x∑

n
j≠i=1 p

(0)
j < 1 and the probability assignments increases

until the majority will assign a subjective probability above 0.5 to hypothesis

at some round t (and thus vote correctly) after which x∑
n
j≠i=1 p

(t)
j > 1 and the

subjective probabilities will decrease and this will repeat. Similarly if the majority
start by voting correctly the subjective probabilities will decrease until at some
stage the majority will assign a probability less than 0.5 to the hypothesis after
which they will vote incorrectly and thus the probability assignments will start
to increase, etc.



Chapter 5

Anchoring In Deliberations

5.1 Introduction

There are numerous instances of group decision making in everyday practice.
Families have to decide where to go on holiday, funding agencies have to decide
which research projects to support, and juries in court have to decide whether a
defendant is guilty or not. Sometimes a decision is made in the light of different
preferences (and each group member wants to get the best out for herself), and
sometimes all group members share the conviction that the resulting decision
should be best in some sense that is commonly agreed upon. Juries in court, for
example, want to make the right decision. Everybody wants that a guilty per-
son is convicted, and no one wants that an innocent is sent to prison. Likewise,
committees such as the IPPC deliberate to arrive at the best far-reaching policy
recommendations.

There are many different ways that a group can make such decisions. When
deciding in light of different preferences, for example, the goal is naturally to
minimise the average compromise and leave the decision makers as happy as pos-
sible with the final decision and when deciding toward some objective truth the
goal is to approximate the correct decision as close as possible. Different decision
making process are, thus, chosen based on which characteristics they manifest
the best.

Deliberation is one extensively practiced approach to decision making in both
such scenarios. It provides an advantage of allowing the decision makers to revise
and change their opinion and thus stabilising a dynamics that can ideally lead
the group to a collective consensus on which the group agrees as a unanimous
entity. This is indeed a sought after characteristic for a group decision making
procedure to leave all the participant in agreement and convinced of the final

101
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decision. On the other hand, the possibility of learning other opinions paves the
way for easier recognition of mistakes and better availability of information which
help to better estimate the correct decision when such exists.

Adding the interactive component to the decision making, however, does also
introduce a whole spectrum of other relevant factors, including those associated
with the psychological aspects of social interactions. There are many factors
that can affect how people influence each other in their interactions, from the
way that one reacts to the opinions of those from different social, economical
or educational classes to the intricate and complex dynamics of power in social
networks. Phenomena resulting from such factors, including information cas-
cades, pluralistic ignorance, anchoring, etc., have been studied by psychologist
for a rather long time to varying degrees. Some are well understood, analysed
and agreed upon but most have proved hard to characterise in an uncontrover-
sial way or even harder to do so in a manner exact enough to be account for in
technical formalisations. Nevertheless, there is an increasing tendency in social
scientists and psychologists toward development and adoption of formal models,
and to our opinion, very rightly so.

This does not ,by any means, intended to suggest that we believe that the
subtlety of the psychological (and socio-psychological) phenomenons can be com-
pletely and adequately captured in some mathematical and formal apparatus.
Rather it is meant to emphasise on the fact that such formalisations, even with
the necessary idealisations and abstractions that are inevitable in devising formal
models, can surface persisting patterns and trends and shed light on general char-
acteristics, aspects, and correlations between the relevant factors to be studied in
more details (in possibly non-formal approaches). In this regard, the newly es-
tablished links between the Bayesian Epistemology, as our best theory of graded
belief, and the concepts in psychology (and socio-psychology) should be cele-
brated and carefully attended.

One such psychological phenomenon that is relevant to interaction of group
members and the formation of a collective consensus is the anchoring effect. This
is a social-psychological instance of an effect that is widely discussed in the heuris-
tics and biases program in cognitive psychology, (Tversky & Kahneman 1974),
(Kahneman et. al. 2006). In general anchoring is a cognitive bias that describes
the common human tendency to rely heavily on some (usually irrelevant) piece
of information when making decisions.

There are many different instances of anchoring effect arising even in an indi-
vidual decision making. As it relates to the deliberation process, anchoring occurs
when the group consensus depends, for example, on the order in which the group
members present their views in the course of a deliberation. More specifically,
the experiments suggest that the group member who speaks first will typically
have the highest impact on the decision on which the group eventually settles. In
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such cases the first speaker is said to have anchored the deliberation. The effect
is particularly important for the epistemic analysis of the deliberation as it opens
the way to possible manipulation of the process and thus bears negatively on the
epistemic characteristic of the final decision.

The reasons for the emergence of the anchoring effect are usually associated
with what is known as the bounded rationality. These are the cognitive limita-
tions of the decision makers including, short attention span, memory loss, loose
of cognitive ability by fatigue, etc. That the effect can happen as a result of
such limitations seems clear. So the question we will ask here is whether or not
such cognitive limitations are the only causes for this bias? In other words we
ask whether the anchoring effect can also occur in a group of truth-seeking, fully
rational members, who update their beliefs according to plausible rules, simply
as a result of the updating procedure.

To address this question, the remainder of this paper is organised as follows.
We shall first proposes an incremental model for deliberation, inspired by the
well-known Lehrer-Wagner model in Section 5.2. Using this model, we study the
anchoring effect in Section 5.3 and will conclude in Section 5.4.

5.2 Modeling Anchoring

To study the emergence of the anchoring effect, we will first need a formalisation
of the deliberation process. There are several models of deliberation studied in
the literature including two Bayesian models developed by Angere and Olsson,
(3), (Olsson 2011), and Hartmann and Rafiee Rad (Chapter 4). Both these
models, however, make a crucial independence assumption by which the order in
which the evidence comes in will be inconsequential. Thus it will not be possible
to study the path-dependence of the deliberation process with these models.

Next are the Lehrer-Wagner model, (Lehrer 1976), (Lehrer & Wagner 1981),
and Hegselmann-Krause model (Hegselmann & Krause 2002;
Hegselmann & Krause 2006; Hegselmann & Krause 2009). The Lehrer-Wagner
model is probably the most well known model in the literature for collective
consensus which focuses on deliberating groups that have to fix the value of a
real-valued parameter. According to the model, each group member submits
her initial assignment and assigns normalised weights to all group members,
including herself. The revised assignment of each group member will be the
weighted average of all initial submissions using the assigned weights. It is not
hard top show that, if the process is iterated, under rather weak conditions the
values will converge. This model, however, assumes that all assignments in each
round are made simultaneously, and so again the supposed path-dependence of
the deliberation cannot be accounted for in this model. The Hegselmann-Krause
model has a similar problem. According to this model, each agent takes into
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account only those judgments that are sufficiently close to her own initial
assignment and the updating procedure happens on the full profile of all such
opinions at the same time.

It is important to note, however, that these models are all intended as
normative models for rational deliberation developed in such a manner to avoid
such biases as the anchoring. To study the emergence of this effect we will need
a descriptive model for deliberation or one closer to how the actual deliberations
are carried out in groups. In real deliberations the group members are hardly
independent, and even if they start as such, during the course of the deliberation
dependencies will form and become more and more complicated as the process
goes on. It is also usually not the case that people would wait to hear all the
opinions before updating theirs and every opinion and argument does leave
some influence as it is presented. We will next propose a simple formalisation
of the deliberation process (a modified version of the Lehrer-Wagner model)
that captures this intuition and allows fro the study of path-dependence in
deliberation. As in the Lehrer-Wagner model we consider a group aiming to
estimate the value of a real valued parameter x through deliberative process.
The model works on the following premises:

• Each group member is assumed to have a first order reliability that cap-
tures his competence in giving the correct judgement and a second order
reliability that captures his ability to estimate the competence of his fellow
group members.

• Each group member estimates the reliability of her fellow group members
and use these estimated reliabilities to weight the opinions of others.

• The updating procedure proceeds in an incremental manner, that is, the
group members update their opinion after each announcement. Thus each
round of deliberation in a group of n agents, consists of n steps. In each
step a group member announces her opinion and everyone updates based
on this announcement.

• The way each group member updates her opinion depends on the reliability
that she assigns to speaker in relation to the reliability she assigns to herself.

• People’s ability to estimate the competence of others improve during the
course of deliberation.

So here is the sketch of how the model works; Consider a group of n members
who have to fix the value of a real-valued parameter x and let’s order the group

members from 1 to n. Initially, each group member i submits an initial value x
(0)
i

and fixes a value for the reliability of her judgment. In round 1, step 1, the first
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group member presents her arguments for her assignment (i.e. for x
(0)
1 ). Based on

this, the other group members (i) assign a reliability to her and then (ii) update
their original submissions. Thus the ith group member updates her initial value

(i.e. x
(0)
i ) taking x

(0)
1 as well as her own reliability and the reliability she assigns to

the first group member into account. In the next step, the second group member
presents her arguments for her (now already once updated) assignment, and group
members 1,3, . . . , n update their assignments based on this and so on. In the
second round of deliberation, the same procedure repeats. We assume, however,
that the reliability assignments improve, i.e. that the group members become
increasingly better in judging the reliability of their fellow group members.

Let’s now formalise this procedure. To do so, we fill in the details for the
updating procedure and the process of estimating the reliabilities.

5.2.1 The Estimation of Reliabilities

We assume that every group member i (for i = 1, . . . , n) has an objective reliability
ri. While these are real numbers in (0,1), the reliabilities that are actually used
by the group members have discrete values. More specifically, we assume (for
simplicity) that there are only three possible reliability values: H (high), M
(medium) and L (low). We furthermore assume that every group member i has
access to her own objective reliability and assigns herself a reliability of H if
ri ≥ 2/3, L if ri ≤ 1/3 and M otherwise.1

Next, The group members estimate each others’ reliabilities. To do so, we
assume that everybody has a second order reliability ci ∈ (0,1) that captures
their competence in assessing the reliability of others. Individuals with a high
value of ci give a more accurate assessment of rj ’s (reliabilities of other group
members) than those with a low value of ci. To be more precise we assume that
the group member i estimates the reliability of the group member j, rij , from a
β-distribution on an interval with the length 2(1 − ci) around rj .

r
(0)
ij = β −Distribution [max(0, rj + ci − 1),min(1, rj − ci + 1)] (5.1)

Thus, for ci = 0, the β-distribution extends over the whole interval (0,1). And

for ci = 1, we obtain r
(0)
ij = rj . Using these estimated reliabilities, each group

member i, assigns an effective reliability to the group members j: H if rij ≥ 2/3,
L if rij ≤ 1/3 and M otherwise.We also assume that the estimation of the
reliability improve in each round of the deliberation. That is, in each round,

1 This is a strong assumption and can of course be relaxed. Indeed, psychological evidence
suggests that people are not good at assessing their own reliabilities. Notice however that since
the group members use only the reliability brackets High, Medium and Low, we only need to
assume that each group member has access to her reliability bracket as opposed to exact value
of her objective reliability.
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we also update the estimated reliability value so that they come closer to the

actual values. More specifically, we assume that the competence c
(k)
i in round

k increases linearly as a function of the number of rounds until a maximum

value Ci ≤ 1 is reached after K rounds. Afterwards, c
(k)
i remains constant. Hence,

c
(k)
i = {

(Ci − ci) ⋅ k/K + ci ∶ 0 ≤ k ≤K
Ci ∶ k >K

. (5.2)

Note that updating the reliabilities justifies that the deliberation process pro-
ceeds in several rounds. In each round, the group members learn something more
about the reliability of their fellow group members. And this is why they will
keep on updating. However, it seem natural to stop the updating procedure after
some finite number of rounds, say K. Clearly, the value of K will depend on
contextual factors such as how patient the individuals are. If no consensus is
reached after round K, then the straight average will be taken.

5.2.2 The Updating Procedure

We should now define the updating procedure. In step 1 of round 1, group
member 1 presents her arguments. In this step, she does not change her
original submission, and she does not change her own reliability assignment.
All other group members update their original assignments and their own
reliability assignment according to the following rules that are inspired by Elga’s,
(Elga 2007), discussion of reflection and disagreement. Presented in first person
perspective, the updating proceeds as follows,

1. I am H (M , or L)2 and the presenter is my peer, i.e. she is also H (M , or L).
In this case, my new assignment is the straight average of her assignment
and mine:

x
(1)
i =

1

2
(x
(0)
i + x

(0)
1 ) .

My reliability value remains H (M , or L).

2. I am H, the presenter is L. In this case I disregard the opinion of the
presenter and stick to my original judgment:

x
(1)
i = x

(0)
i .

My reliability remains H.

2For ease of writing, we assume that I (i.e. group member i) am one of the other group
members, i.e. “I am H” is short hand for “My reliability value is H” etc.
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3. I am L, the presenter is H. In this case I accept the opinion of the presenter:

x
(1)
i = x

(0)
1 .

My reliability changes to H.

4. I am H (M), the presenter is M (L). In this case, my new assignment is
the weighted average of her and my original assignment:

x
(1)
i =

1

4
(3x

(0)
i + x

(0)
1 ) .

My reliability value remains H (M).

5. I am L (M), the presenter is M (H). In this case, my new assignment is
the weighted average of her and my original assignment:

x
(1)
i =

1

4
(x
(0)
i + 3x

(0)
1 ) .

My reliability value changes to M (H).

Rule 1 expresses the Equal Weight View, (Elga 2007). Rules 2 and 3 are
inspired by Elga’s discussion of the guru case. Rules 4 and 5 use weights that
reflect that the reliability assignments in question are one step apart from each
other. Note however that the exact values of the weights in Rules 4 and 5 are
not important and they have been chosen for the ease of calculation. The only
crucial point here is to assign a higher weight to the opinion that corresponds
to the higher reliability bracket. In step 2, group member 2 presents and the
other group members update according to the above rules and so on. After n
steps, every group member has presented once and round 1 is over. Perhaps a
consensus is already reached. If not, the group might decide to deliberate for a
second or third round.

Although the model introduced here is overly simple it does indeed provide the
necessary setting for our study in so far that it allows formation of inhomogeneous
groups with different weights of opinion and an incremental updating procedure
that reflects these differences.

5.3 The Anchoring Effect in Deliberations

We shall study two types of grouse separately. The homogeneous group where
the group members consider each other as epistemic peers and inhomogeneous
groups where the group members have different reliabilities. For the first case we
shall give analytical results for the emergence of anchoring and for the second
case we will use computer simulations and numerical analysis.
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5.3.1 Homogeneous Groups

There are generally two approaches to how one should take the opinion of her
epistemic peers into consideration. The first approach advocates assignment of
equal weights (or almost equal weights) as in the updating procedure we shall use
here. The second, requires one to hang on to her own belief and refrain from any
updating in case of a disagreement with epistemic peers. The latter, however,
does not go well with the spirit of deliberation. Refusing to update one’s opinion
in case of disagreement among epistemic peers will prevent such groups from
meaningful deliberation and reaching a consensus. With the former approach, in
a group of epistemic peers, after the ith speaker announces his value the group
members will all consider this opinion by giving it the same weight as they give
to their own and thus simply averaging their assignment with the one announced
by the speaker. To formalise this, if the current values estimated by the group
members for the value of the parameter in question is given by V⃗ , the updated
values after the ith speaker’s announcement will be

V⃗ ′ = 1/2Bin.V⃗ ,

Bin = A
i
n + In,

where Ain is an n×n matrix with 1’s on the ith column and zeros else where and
In is the unit n×n matrix. In this fashion the values in V ′ will be the average of
values in V and the announcement of the ith speaker, that is < V⃗ >i. So, starting
from the initial assignments given by V⃗ (0), the result of one round of deliberation
will be given by

V⃗ (1) =
1

2n
(Bnn .B

n−1
n . . . . .B1

n) .V⃗
(0),

and after k rounds,

V⃗ (k) =
1

2nk
(Bnn .B

n−1
n . . . . .B1

n)
k
.V⃗ (0).

To show the anchoring effect we should show that the initial opinion of the
first speaker receives a higher weight (in V⃗ (k)) compared to other group members.
We should note that this would still be the case even if the the group members
use a non-equal but uniform assignment of weights. So, for example, if every one
assigns higher weight, say 2/3, to her own opinion and 1/3 to the speaker. With
the way that the updating procedure takes place, the first speaker will inevitably
receives a higher weight. We shall make this precise in the following two theorems
before moving to the case of inhomogeneous groups.

Theorem 5.3.1 The process of deliberation described above will converge to a
consensus.
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Proof Notice that the matrix representation of the updating in each round of
deliberation,

1

2n

n

∏
i=1

Bin

is essentially a weight matrix in the sense of Lehrer-Wagner model. The conver-
gence (in the limit) thus follows from the same argument as for the Lehrer-Wagner
model. ◻

Theorem 5.3.2 In the consensus value reached by a homogeneous group through
the process of deliberation described above, the opinion of the first speaker receives
a higher weight than any other group member. Moreover the opinion of the ith

speaker receives a higher weight than all those who speak after her.

Proof. See appendix.
We shall discuss the stability of this result in the appendix where we will

show that with small deviation from the equal weight assignment, the results
from Theorem 5.3.2 still holds. In that case the assignment of weights will be
taken to be 1+ε

2
and 1−ε

2
. Depending on whether the ε is positive or negative the

group members can assign a higher reliability to themselves or to the speaker.
(See the Appendix B for details.)

5.3.2 Inhomogeneous Groups

There are two main differences between the homogeneous and inhomogeneous
groups. First, since the group members are not epistemic peers anymore they
cannot consider all the group members (including themselves) as equally reliable.
Instead, they need to decide their stand in relation to other group members by
assigning reliabilities to themselves and to others. Second, the updating proce-
dure will be based on these reliability assignments which will no more amount
to simply averaging the values. The actual distribution of reliabilities will play
a crucial role here as will the placement of the group members with higher relia-
bilities.

We will investigate the emergence of anchoring effect in these groups using
computer simulations. We will look at the groups consisting a mixture of relia-
bilities and, in particular, groups in which the first speaker has lower reliability
than the rest of the group as well as the groups in which there are members
more reliable than the first speaker and members that are less reliable. There
are of course group combinations where the emergence or non-emergence of the
effect is trivial. If the first speaker is highly reliable while the rest of the group
have very low reliabilities then they will all simply adopt his assignment and the
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anchoring effect is inevitable. The same way the anchoring will not emerge if the
first speaker is of extremely low reliability and the rest of the group are all highly
reliable. Thus the interesting cases are those groups with mixed reliabilities of
high, medium and/or low in such a way that a considerable part of the group
will not abandon their own assignment in favour of that of the first speaker nor
will they discard her opinion all together. It is in particular interesting to see
the emergence of anchoring effect in groups where a large part of the group have
reliabilities higher than the first speaker (but not higher enough to completely
discard her opinion). For the purpose of simulations

• for the assignment of reliability rij , assigned by group member i to the
group member j, we will take a β-distribution in [0,1] with parameters

α = 2 , β =
min(1, rj − ci + 1) −max(0, rj + ci − 1)

rj −max(0, rj + ci − 1)

these will then be translated into reliability brackets.

• we will set the second order reliabilities to 0.8 which increase in each round
of the deliberation linearly until a maximum value of 0.9 is reached where
they remain fixed.

5.3.2.1 The Algorithm

The general sketch of the algorithm used for simulation is as follows:

1. Fix all relevant parameters: n = number of people; ri = reliabilities; ci =
initial second order reliabilities; N = number of runs; C= the maximum
second order reliabilities; K= number of deliberation rounds.

2. Simulate the process of deliberation: (a) Initialise the prior values assigned
by the individuals using a chance mechanism. (b) Calculate estimated re-
liabilities using the beta distribution and second order reliabilities. (c) cal-
culate estimated reliability brackets. (d) Start deliberation steps 1, . . . , n:
where in step i each individual updates her assignment as well as her re-
liability ranking based on the assignment of the ith individual. (e) If a
consensus is reached, stop. If there is no consensus repeat the delibera-
tion steps 1, . . . , n. (f) Repeat (e) at most K times. (g) If a consensus is
reached calculate the difference between the consensus value and the initial
assignments. (h) Add 1 to a counter if the consensus is closest to the value
assigned by the first individual. do nothing otherwise. (i) After N runs,
compute the probability that the consensus is closest to the value assigned
by the first individual.
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To decrease the errors in the simulations the probabilities under discussion are
calculated from samples of 105 simulations or more.

5.3.2.2 Results

In this section we will present simulations of the deliberation process for different
groups. We will calculate the probability that the final consensus of the group
is closest to the initial estimation of the first speaker and plot the results as a
function of the group size unless stated otherwise. The second order reliabilities
are assumed to be the same for all group members. Notice that a second order
eligibility of 0.8 means that the estimation are made in intervals of length at least
0.2. This means that the group members can possibly assign wrong reliability
brackets to their fellow group members.

The first plot shows the anchoring effect for a group in which the first speaker5 0,336
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Figure 5.1: The anchoring effect as a function of the group size. First speaker’s
reliability of 0.85, and the rest of the group with reliabilities 0.75 and 0.4.

has reliability 0.85 and the rest of the group have reliabilities 0.75 and 0.4, equally
distributed. So at least half of the group have reliabilities close to that of the
first speaker. Given the assignment of reliability brackets, The first speaker will
on average be assigned high reliability, half of the group will be given reliabilities
high or medium and and other half will be given reliabilities medium or low. The
plots shows the anchoring effect as a function of the group size.

Figures 5.2(i) and 5.2(ii) show the same group as in Figure 5.1, where the
group member with high reliability (0.85) is the middle speaker and the last
speaker respectively. The plots in Figure 5.2(i) and 5.2(ii) show the probability
that the final consensus (if reached) is closest to the original submission of this
group member (the middle speaker and the last speaker respectively).
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Group Size
5 9 13 17 21 25 29 33 37 41 45 49 53 57

Figure 5.2: The anchoring effect for the middle and last speakers as a function
of the group size. i) Dashed line for the middle speaker with reliability 0.85 and
the rest 0.75 and 0.4. ii) Continuous line for last speaker with reliability 0. 0.85
and the rest 0.75 and 0.4.

Comparing Figure 5.1 with Figures 5.2(i) and 5.2(ii), shows how the anchoring
effect depends on the speakers position in the group. In particular, the compar-
ison of the plots suggests that anchoring effect depends more on the speaker’s
position in the group compared to her reliability as the same member placed in
the middle or as the last speaker will impose a much smaller anchoring effect. To
see this more clearly one can compare the anchoring effect for the first speaker
in Figure 5.1 with that of the middle and the last speaker in Figures 5.3(i) and
5.3(ii) respectively, where the middle and the last speakers have significantly
higher reliabilities than the rest of the group.

5 0,248 0,187
7 0,216 0,125
9 0,144 0,099

11 0,090 0,081
13 0,074 0,070
15 0,079 0,060
17 0,061 0,053
19 0,056 0,049
21 0,049 0,045
23 0,042 0,041
25 0,040 0,037
27 0,036 0,036
29 0,033 0,033
31 0,031 0,030
33 0,030 0,030
35 0,028 0,027
37 0,026 0,025
39 0,025 0,025
41 0,024 0,024
43 0,021 0,02245
45 0,022 0,02157
47 0,020 0,02038
49 0,020 0,01995
51 0,020 0,0191
53 0,018 0,01909
55 0,017 0,01768
57 0,017 0,01687

P(
A)

0,00

0,08

0,15

0,23

0,30

Group Size
5 9 13 17 21 25 29 33 37 41 45 49 53 57

Figure 5.3: The anchoring effect for the middle and the last speakers as a function
of the group size. i) Dashed line for middle speaker with reliability 0.85 and the
rest 0.55 and 0.4. ii) Continuous line for last speaker with reliability 0.85 and the
rest 0.55 and 0.4.
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Next we will see how the first speaker’s reliability can influence the anchoring
effect. The first speaker in Figure 5.1 has higher reliability than the rest of the
group. This, however, is not necessary for the anchoring effect and the effect
emerges even when the first speaker is not particularly reliable in comparison
with others. Figure 5.4 shows the anchoring effect for two groups in which all
(Figure 5.4(i)) or a considerable number of group members (Figure 5.4(ii)) have
reliabilities higher than that of the first speaker.

5 0,29418 0,315 0,351 0,333
7 0,15934 0,301 0,262 0,281
9 0,14352 0,244 0,192 0,218

11 0,147 0,167 0,172 0,169
13 0,131 0,152 0,145 0,149
15 0,104 0,128 0,128 0,128
17 0,073 0,120 0,109 0,114
19 0,072 0,105 0,087 0,096
21 0,062 0,108 0,065 0,086
23 0,066 0,073 0,084 0,079
25 0,058 0,086 0,057 0,071
27 0,054 0,081 0,077 0,079
29 0,048 0,076 0,065 0,071
31 0,051 0,074 0,064 0,069
33 0,040 0,060 0,058 0,059
35 0,038 0,065 0,063 0,064
37 0,043 0,065 0,042 0,053
39 0,037 0,050 0,054 0,052
41 0,032 0,055 0,037 0,046
43 0,030 0,05185 0,04985 0,051
45 0,040 0,04706 0,03356 0,040
47 0,033 0,04688 0,03431 0,041
49 0,032 0,04261 0,03829 0,040

P(
A)

0,00

0,10

0,20

0,30

0,40

Group Size
5 9 13 17 21 25 29 33 37 41 45 49

Figure 5.4: The anchoring effect for groups with first speaker less reliable than all
or considerable part of the group. i) Dashed line for first speaker with reliability
0.65 and the rest 0.9. ii) continuous line for first speaker with reliability 0.75 and
the rest 0.85 and 0.5.

0,25 0,091
0,35 0,096
0,45 0,1
0,55 0,120
0,65 0,154
0,75 0,187
0,85 0,207
0,95 0,198 P(

A)

0,00

0,08

0,15

0,23

0,30

Group Size
0,25 0,35 0,45 0,55 0,65 0,75 0,85 0,95

Figure 5.5: The anchoring effect as a function of the first speaker’s reliability.
Group size 11 with five members with reliability 0.7 and five members with reli-
ability 0.5.

Although the anchoring effect is not particular to the first speakers with high
reliability, the comparison of Figures 5.1 and Figure 5.4 suggests a positive corre-
lation between the reliability of the first speaker and the intensity of the anchoring
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effect as one would expect. To see this more clearly, we will plot in Figure 5.5
the anchoring effect as a function of the first speaker’s reliability for a group of
size 9 where the rest of the group members have reliabilities 0.7 and 0.5.
Finally in the next two graphs we plot the anchoring effect for two groups with
random distribution of reliabilities. In the first, Figure 5.6, the reliabilities of the
group members are coming from a uniform distribution in (0 1) and in Figure 5.7
the reliabilities are assigned through a β-distribution with parameters α = β = 2
in (0 1). In both cases the first speaker has the reliability 0.5. In Figures 5.6 and

Figure 5.6: Anchoring effect as a function of the group size. Reliabilities uni-
formly distributed. First speaker 0.5.

Figure 5.7: Anchoring effect as a function of the group size. Reliabilities coming
from a β-distribution. First speaker 0.5.

5.7 the left bar shows (for each group size) the probability that the final result
is expected to be closest to that of the first speaker (average) and the right bar
shows the result of simulations.

As the simulation results suggest, the anchoring effect happens for the inho-
mogeneous groups as well as the homogeneous ones. Here again the incremental
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process of updating will result in the first speaker receiving the highest weight in
the formation of the group’s consensus. Of course the anchoring effect is much
more apparent in the homogeneous groups and as the inhomogeneity of the group
increases the anchoring effect decreases. In particular the effect will become less
evident if we move to a deliberation model with a more fine graded assessment
of reliabilities that is a model with a higher number of reliability brackets.

5.4 Conclusion

The model we propose here is a simple incremental updating procedure which
seems close (for our purpose) to how the deliberations proceed. It is inspired by
the Lehrer-Wagner model and presents a way how to calculate the Lehrer Wagner
matrix. To wit, after the first round, a Lehrer Wagner matrix is generated and it
is easy to see that it satisfies the normalisation condition. The results suggest that
the such updating procedures will indeed result in the emergence of anchoring
effect even for fully rational agents with no cognitive limitations.

Since anchoring effect is in most cases an undesired bias of the deliberation
process, it would be relevant to investigate ways to prevent it which we hope to
do in future work. There are a couple immediate strategies that come to mind
in this regard.

• One option is to decide randomly who will speak first, second, and third etc.
This does not however prevent the anchoring effect, but it will be avoided
that a specific group member can get the chance to affect the final result
of the deliberation by strategically speaking first.

• A second option is to give those who speak earlier a lower weight, so that
their initial assignment does not have too much of an impact. One way to
model this is to assign weights which are inversely proportional to the step
in the corresponding round. A justified process to do so without introducing
new unpleasant characteristics however, is by no means obvious.

5.5 Appendix

5.5.1 Proof of Theorem 5.3.2

In this appendix we give the proof of the Theorem 5.3.2.

Lemma 5.5.1 For 1 ≤m ≤ n,

Bmn .B
m−1
n . . . . .B1

n = (
B̄m 0
Cm In−m

) ,
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where

B̄m =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

2m−1 + 1 2m−2 ... 20

2m−1 2m−2 + 1 ... 20

2m−1 2m−2 ... 20

. . . .

. . . .

. . . .
2m−1 2m−2 ... 20 + 1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠
m×m

0 is an m× (n−m) zero matrix, In−m is the unite (n−m)× (n−m) matrix and

Cm =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

2m−1 2m−2 ... 20

2m−1 2m−2 ... 20

. . . .

. . . .

. . . .
2m−1 2m−2 ... 20

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠
(n−m)×m

Proof For m = 1 the result is trivially true. Suppose it is true for m and we shall
show that it holds for m + 1.

Bm+1
n .Bm−1

n . . . . .B1
n = B

m+1
n .(

B̄m 0
Cm In−m

)

= (Am+1
n + In).(

B̄m 0
Cm In−m

)

= Am+1
n .(

B̄m 0
Cm In−m

) + In.(
B̄m 0
Cm In−m

) =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

2m−1 2m−2 ... 20 1 0 ... 0
2m−1 2m−2 ... 20 1 0 ... 0
. . . . . . . .
. . . . . . . .
. . . . . . . .

2m−1 2m−2 ... 20 1 0 ... 0
2m−1 2m−2 ... 20 1 0 ... 0
. . . . . . . .
. . . . . . . .

2m−1 2m−2 ... 20 1 0 ... 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

+

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

2m−1 + 1 2m−2 ... 20 0 ... 0
2m−1 2m−2 + 1 ... 20 0 ... 0
. . . . . . .
. . . . . . .
. . . . . . .

2m−1 2m−2 ... 20 + 1 0 ... 0
2m−1 2m−2 ... 20 1 ... 0
. . . . . ... .
. . . . . ... .

2m−1 2m−2 ... 20 0 ... 1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠
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=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

2m + 1 2m−1 ... 21 1 0 ... 0
2m 2m−1 + 1 ... 21 1 0 ... 0
. . . . . . . .
. . . . . . . .
. . . . . . . .

2m 2m−1 ... 21 + 1 1 0 ... 0
2m 2m−1 ... 21 2 0 . 0
. . . . 1 1 . 0
. . . . 1 0 . 0

2m 2m−1 ... 21 1 0 ... 1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

2m + 1 2m−1 ... 21 20 0 ... 0
2m 2m−1 + 1 ... 21 20 0 ... 0
. . . . . . . .
. . . . . . . .
. . . . . . . .

2m 2m−1 ... 21 + 1 20 0 ... 0
2m 2m−1 ... 21 20 + 1 0 . 0
. . . . 1 1 . 0
. . . . 1 0 . 0

2m 2m−1 ... 21 20 0 ... 1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= (
B̄m+1 0
Cm+1 In−(m+1)

) .

this completes the proof of Lemma 5.5.1. ◻

Corollary 1 The result of updating the assignments V⃗ (0) through one round of
deliberation is given by

V⃗ (1) =
1

2n
(Bnn .B

n−1
n . . . . ,B1

n) V⃗
(0) =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1

2n

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

2n−1 2n−2 ... 20

2n−1 2m−2 ... 20

. . . .

. . . .

. . . .
2n−1 2n−2 ... 20

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

+
1

2n
In

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

V⃗ (0).

Proposition 5.5.2 Let

B =
1

2n

n

∏
i=1

Bin −
1

2n
In,
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then, the result of updating the assignments V⃗ (0) through k round of deliber-
ation is given by

V⃗ (k) = (
1

2n
(Bnn .B

n−1
n . . . . ,B1

n))
k

V⃗ (0) =

(
k

∑
t=1

(
k

t
)
(2n − 1)t−1

(2n)k−1
B +

1

2nk
In) .V⃗

(0)

Proof Let bi = ∑
n
j=1 < B >ij . Notice that by Lemma 5.5.1, in matrix B all rows

are equal so b1 = b2 = . . . = bn = b where b = ∑
n
i=1 2−i = 1 − 1

2n
, moreover we have

Bk = bk−1B.

V⃗ (k) = (
1

2n

n

∏
i=1

Bin)

k

V⃗ (0) =

= (B +
1

2n
In)

k

V⃗ (0) = (
1

2nk
In +

k

∑
t=1

(
k

t
)(

1

2n
In)

k−tBt) V⃗ (0)

= (
1

2nk
In +

k

∑
t=1

(
k

t
)(

1

2n
In)

k−t(bt−1B)) V⃗ (0) = (
1

2nk
In +

k

∑
t=1

(
k

t
)
(1 − 1

2n
)t−1

2n(k−t)
B) V⃗ (0)

= (
1

2nk
In +

k

∑
t=1

(
k

t
)
(2n−1)t−1

2n(k−1) B) V⃗ (0)

as required. ◻

Proof Theorem 5.3.2
Let V⃗ be asymptotic result of deliberation and wi be the weight assigned to the
ith speaker in the limit. By Proposition 5.5.2,

V⃗ = lim
k→∞

(
k

∑
t=1

(
k

t
)
(2n − 1)t−1

(2n)k−1
B +

1

2nk
In) .V⃗

(0) = lim
k→∞

(
k

∑
t=1

(
k

t
)
(2n − 1)t−1

(2n)k−1
B) .V⃗ (0)

= dB.V (0)

where d = limk→∞∑
k
t=1 (k

t
) (2

n−1)t−1
(2n)k−1 , then by Lemma 5.5.1 the weight assigned

to the ith speaker is given by wi = d.2
−i. Thus we have

w1 ≥ w2 ≥ . . . ≥ wn.

◻
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5.5.2 Stability Result

Next we will investigate the stability of our results for the homogeneous groups by
showing that the results still hold for small changes in the equal weight assump-
tion. Here the group members consider small deviation from the equal weights
by assigning 1−ε

2
to the speaker and 1+ε

2
to themselves. As before, after the ith

group member speaks, everyone will update their assignment as a weighted aver-
age of their current value and that announced by the ith speaker while assigning
a slightly higher/lower weight to themselves as opposed to the speaker. This
process can again be represented by matrix multiplication as before by replacing
the matrices Bin with

Bi′n = Bin − εE
i
n

where
Ejn = B

j
n − 2Ajn.

Thus for example, in group of size 3, the matrix

B2
3 =

⎛
⎜
⎝

1 1 0
0 2 0
0 1 1

⎞
⎟
⎠

will be replaced by

B2′
3 =

⎛
⎜
⎝

1 1 0
0 2 0
0 1 1

⎞
⎟
⎠
+ ε

⎛
⎜
⎝

⎛
⎜
⎝

1 1 0
0 2 0
0 1 1

⎞
⎟
⎠
− 2

⎛
⎜
⎝

0 1 0
0 1 0
0 1 0

⎞
⎟
⎠

⎞
⎟
⎠

=
⎛
⎜
⎝

1 1 0
0 2 0
0 1 1

⎞
⎟
⎠
+ ε

⎛
⎜
⎝

1 −1 0
0 0 0
0 −1 1

⎞
⎟
⎠

=
⎛
⎜
⎝

1 + ε 1 − ε 0
0 2 0
0 1 − ε 1 + ε

⎞
⎟
⎠
.

In this new setting we shall again have that the result of one round of delib-
eration is given as

V⃗ (1) =
1

2n

n

∏
i=1

Bi′n .V⃗
(0)

and after k round of deliberation we shall have

V⃗ (k) = (
1

2n

n

∏
i=1

Bi′n)

k

V⃗ (0).

We shall first prove the corresponding versions of Lemma 5.5.1 for this setting.
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Lemma 5.5.3 Let Ain’s be the matrices with 1 on the ith column and zero else-
where and Bjn = In +A

i
n as before. Then

n

∏
k=j+1

BknA
j
n

j−1

∏
k=1

Bkn = 2n−jAjn +
j−1

∑
k=1

2n−1−kAkn.

Proof
n

∏
k=j+1

BknA
j
n

j−1

∏
k=1

Bkn =
n

∏
k=j+1

(In +A
k
n)A

j
n

j−1

∏
k=1

Bkn.

First notice that for all i, j = 1, . . . , n we have Ain.A
j
n = A

j
n, thus

n

∏
k=j+1

BknA
j
n

j−1

∏
k=1

Bkn =
n

∏
k=j+1

(In +A
k
n)A

j
n

j−1

∏
k=1

Bkn = 2n−jAjn

j−1

∏
k=1

Bkn.

By Lemma 5.5.1 we have

j−1

∏
k=1

Bkn = In +
j−1

∑
k=1

2j−1−kAkn

thus
n

∏
k=j+1

BknA
j
n

j−1

∏
k=1

Bkn =
n

∏
k=j+1

(In +A
k
n)A

j
n

j−1

∏
k=1

Bkn

= 2n−jAjn (In +
j−1

∑
k=1

2j−1−kAkn)

= 2n−jAjn + 2n−jAjn

j−1

∑
k=1

2j−1−kAkn

= 2n−jAjn +
j−1

∑
k=1

2n−1−kAkn

as required. ◻

Next we have a modified version of the Theorem 5.5.2:

Proposition 5.5.4

1

2n

n

∏
i=1

Bi′n =
1

2n

n

∏
i=1

Bin +
nε

2n
In + ε

⎛

⎝

n

∑
j=1

(j − 2)

2j
Ajn

⎞

⎠
+
O(ε2)

2n
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Proof 1
2n ∏

n
i=1B

i′
n = 1

2n ∏
n
i=1(B

i
n + εE

i
n)

=
1

2n
⎛

⎝

n

∏
i=1

Bin + ε
n

∑
j=1

⎛

⎝

n

∏
k=j+1

Bkn
⎞

⎠
Ejn (

j−1

∏
k=1

Bkn) +O(ε2)
⎞

⎠

=
1

2n
⎛

⎝

n

∏
i=1

Bin + ε
n

∑
j=1

⎛

⎝

n

∏
k=j+1

Bkn
⎞

⎠
(Bjn − 2Ajn)(

j−1

∏
k=1

Bkn) +O(ε2)
⎞

⎠

=
1

2n

n

∏
i=1

Bin +
ε

2n

n

∑
j=1

⎛

⎝

n

∏
k=1

Bkn − 2
n

∏
k=j+1

BknA
j
n

j−1

∏
k=1

Bkn
⎞

⎠
+
O(ε2)

2n

=
1

2n

n

∏
i=1

Bin +
ε

2n

n

∑
j=1

(
n

∏
k=1

Bkn − 2(2n−jAjn +
j−1

∑
k=1

2n−1−kAkn)) +
O(ε2)

2n

=
1

2n

n

∏
i=1

Bin +
ε

2n

n

∑
j=1

((In +
n

∑
k=1

2n−kAkn) − (2n−j+1Ajn +
j−1

∑
k=1

2n−kAkn)) +
O(ε2)

2n

=
1

2n

n

∏
i=1

Bin +
ε

2n

n

∑
j=1

⎛

⎝
In +

n

∑
k=j

2n−kAkn − 2n−j+1Ajn
⎞

⎠
+
O(ε2)

2n

=
1

2n

n

∏
i=1

Bin +
nε

2n
In +

ε

2n

n

∑
j=1

⎛

⎝

n

∑
k=j

2n−kAkn − 2n−j+1Ajn
⎞

⎠
+
O(ε2)

2n

=
1

2n

n

∏
i=1

Bin +
nε

2n
In +

ε

2n

n

∑
j=1

⎛

⎝

n

∑
k=j+1

2n−kAkn − 2n−jAjn
⎞

⎠
+
O(ε2)

2n

=
1

2n

n

∏
i=1

Bin +
nε

2n
In +

ε

2n
⎛

⎝

n

∑
j=1

⎛

⎝

n

∑
k=j+1

2n−kAkn
⎞

⎠
−
⎛

⎝

n

∑
j=1

2n−jAjn
⎞

⎠

⎞

⎠
+
O(ε2)

2n

=
1

2n

n

∏
i=1

Bin +
nε

2n
In +

ε

2n
⎛

⎝

n

∑
j=1

(j − 1)2n−jAjn −
n

∑
j=1
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where the fifth equality is given by Lemma 5.5.3. ◻

We are now in a position to prove the equivalent of Theorem 5.3.2 for the
agents that can make small deviation from the equal weight assumptions.

Theorem 5.5.1 For ε sufficiently small, the process of deliberation described
above with weights set as 1−ε

2
and 1+ε

2
will end in consensus. That is if

V⃗ = lim
k→∞

(
1

2n

n

∏
i=1

Bi′n)

k

V⃗ (0)

then < V⃗ >i=< V⃗ >j for i, j = 1, . . . , n. Moreover in the final consensus the opinion
of the first speaker receives the highest weight compared to other group members.

Proof Notice that 1
2n ∏

n
i=1B

i′
n is essentially a weight matrix in the sense of

Lehrer-Wagner model and thus the convergence in the limit follows for the same
reason as in the Lehrer-Wagner model. We will now show that the first speaker
receives the highest weight in the final consensus. By Proposition 5.5.4 we have
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Any term with n2 ≥ 2 or n3 ≥ 2 or n4 ≥ 1 include a term in the order of O(ε2)
and thus can be ignored, the same is true for the term with n2 = n3 = 1 so

V⃗ = lim
k→∞

(
1

2n

n

∏
i=1

Bi′n)

k

V⃗ (0)
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The weight assigned to the ith member will be the sum of the weights assigned
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For n large enough we have nε
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≈ 0 and hence wi (the weight assigned to ith

speaker) will be

d.2−i + dε(1 −
1

2n
)
(i − 2)

2i
.

◻

It is now easy to check that for ε ≤ 1/2 we have w1 ≥ wi for i = 1, . . . , n; that
means the first speaker receives the highest weight.
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Chapter 6

Conclusion

In this thesis, we studied four problems of long standing interest in philosophy
using mathematical and computational methods. The problems we investigated
here belong to different philosophical discipline and each has attracted attention
from different parts of philosophical community. The treatment of inconsistencies
has been of interest to both philosophers and mathematicians. Logic of condi-
tionals has been a main stream topic in philosophy for at least several decades
and the study of rational deliberation and related issues has been of interests to
epistemologists, political philosophers and philosophers of social sciences.

Our goal was to demonstrate that a wide range of problems in philosophy can
be fruitfully studied in the approach that has come to be known as the scientific
philosophy. That is by means of scientific methodology such as application of
mathematical modelling and computational methods. The goal was to show
the advantages of such methodology in addressing, or at least further clarifying,
many issues and concerns with respect to the philosophical investigation of these
topics. From these, we hope that the advantages of the scientific approach to
philosophical problems of similar nature would be evident.

As already pointed out, our advocacy of the the scientific methods is by no
means intended to imply that all problems of philosophical nature should or even
can be adequately represented in a formal machinery or investigated by means of
formal and computational methods. The aim was to further motivate the benefits
of employing mathematical and computational methods along side the traditional
philosophical toolbox as they allow for precise and exact argumentations and
extensive study of relevant solution spaces.

The studies presented in this thesis, each introduce further work in their
respective areas and the methodologies employed for the study of these issues
present immediate generalisations and seem to facilitate the investigation of more
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general cases. The formal machinery used for the study of probabilistic conse-
quence relation and modelling the learning of indicative conditionals seem to
provide natural extensions to be considered for the more general cases. The
models developed for rational deliberation and the study of the anchoring effect
can also be considered as base models that can be further developed into more
complex ones by introducing more relevant factors.

More precisely, the work presented on dealing with inconsistent evidence begs
for further investigation of distance measures and better justified updating mech-
anisms. In particular, we hope to study mechanisms for updating the weights
of information when dealing with prioritised evidence. That is, how to update
the degree of entrenchment of the information in the belief set (along with their
probabilities).

The work on leaning indicative conditionals should be further developed to
better understand the effect of introducing causal structures and to investigate
the similar approach for dealing with counter-factual cases. We also hope to
investigate whether KL distance can be replaced with another distance measure
with better mathematical properties including, for example, symmetry.

The models developed for group deliberation and the study of the anchoring
effect in deliberations are toy models that include many abstractions. We hope
to further develop these models to incorporate a wider range of relevant charac-
teristics of the deliberating agents and to allow for private communications by
the agents both amongst themselves as well as with sources outside the group.
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