
Maximum Entropy Models for Σ1 Sentences

Soroush Rafiee Rad∗

Abstract

In this paper we investigate the most uninformative models of Σ1 sentences.

We will show that the two main approaches for defining the Maximum Entropy

models on first order languages are well defined for Σ1 sentences and that they

agree on sets of sentences consisting of only Σ1 sentences.
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tive Bayesian Epistemology

1 Introduction
The Maximum Entropy model for a sentence φ represents the most uninformative
model of φ. To be more precise, given a consistent sentence φ and a formula ψ(x1, . . . , xn)
from a first order language L, let M be an structure for L with domain {a1, a2, . . .}which
we only know to be a model of φ. A natural question about this M is to ask how likely
it is for M to be also a model of ψ, in other words, what probability should one assign
to M being also a model of ψ. When φ identifies a unique model N (i.e. M = N), this
question may be answered by checking the validity of ψ(ai1 , . . . , ain ) in N. If φ admits
more than one model, however, knowing that M is a model of φ under-determines M
and the validity of ψ in M may be uncertain. In this sense φ induces an assignment
of probabilities to the sentences of the language, where the probability assigned to ψ
is intended as the probability that a random model of φ is also a model of ψ. This
will in turn induce a probability distribution on the set of structures for L with domain
{a1, a2, . . . , }.
We are interested in the least informative of such assignments with respect to M which
we shall call the Maximum Entropy model of φ, i.e., the Maximum Entropy model of
φ is identified with the assignment of probabilities that leaves M as unconstrained as
possible beyond being a model of φ. In this sense it gives a probabilistic description
that specifies M to the extent that it is characterised by φ while remaining as free as
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possible beyond that. Note, however, that a Maximum Entropy model is not a model
in the sense of a structure for the language, but rather a probability function on the
set of sentences of the language that characterises an uncertain (i.e. under-determined)
structure. It is important to emphasise at this point that in what follows, we shall say
“model” to refer to these probability functions. We shall instead say “term models”
to refer to the structures. More generally, given a set of linear constraints K the Max-
imum Entropy model of K is the probability function over the sentences of L which
satisfies the constraints given in K while remaining maximally uninformative beyond
that. When considering a set of linear constraints K, we use “models of K” and “solu-
tions for K”, interchangeably.
These probability functions have been extensively investigated and applied in various
disciplines from statistics [5] and physics, [7] to computer science, pattern recognition
[3], computational linguistics [2] as well as economics and finance [6]. Another pro-
totypical example where Maximum Entropy models are of great relevance is formal
epistemology and the study of rational belief formation [8, 16, 17]. In this setting the
problem of interest is how should an agent in possession of some evidence form ratio-
nal belief? To be slightly more precise, the question is; given sentences φ1, . . . , φn as
the agent’s evidence, what would be the credence x she has to assign to some arbitrary
sentence ψ such that x represents a rational belief of the agent in the context of her
evidence. Equivalently, one can ask which probability function over the sentences of
the language best represents the degrees of belief of the agent.
The most popular proposal for formalising the concept of least informative is to take
Shannon’s entropy as the measure for the informational content of a probability func-
tion. Given a set of constraints, one approach, see for example [11], is to choose
the probability function satisfying the constraints with maximum Shannon entropy as
the least informative one. A second approach, followed for example by Williamson
[16, 17], uses the relative Shannon entropy instead. To make the idea clear, consider
the problem we started with and a case in which there is no information (and thus no
restrictions) concerning the structure M. In this case the satisfaction of a sentence ψ
in M is maximally uncertain and thus the assignment of probabilities should be maxi-
mally equivocal. We shall call this probability function (which we shall shortly define
precisely) P=. The second approach for defining the “least informative”, requires the
assignment of probabilities to satisfy the given constraints and remain informationally
as close as possible to P=, where the informational difference between two probability
functions is measured by their relative entropy. It is not hard to check that on proposi-
tional languages both approaches are well defined and result in the same unique answer
[13].
The literature on justification of Maximum Entropy or its underlying principles is ex-
tensive and it remains the strongest candidate for the formalisation of the least infor-
mative probability function [11, 15, 17]. The major part of this literature is concerned
with propositional languages, however, there have been attempts to generalise both
these approaches to the first order case. To generalise the first approach, Barnett and
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Paris, [1], propose to define the Maximum Entropy models on a first order language
as the limit of the Maximum Entropy models on finite sub-languages. They showed
that for constraint sets from languages with only unary predicates, this limit exists and
the resulting probability function does satisfy the constraints. To generalise the second
approach one has to move to a more sophisticated notion of informational distance.
This paper further investigates the Maximum Entropy models and the extent to which
they can be defined for first order languages; in particular we shall investigate the Max-
imum Entropy models for existential sentences. The paper unfolds as follows: Section
2 reviews preliminaries and notation, as well as the definition of the Maximum Entropy
probability functions over propositional and first order languages; and Section 3 proves
the main theorems. We will then conclude with a discussion in Section 4.

2 Preliminaries and Notation
Throughout this paper, we will work with a first order language L with finitely many
relation symbols, no function symbols, no equality and countably many constant sym-
bols a1, a2, a3, .... Furthermore we assume that these constants exhaust the universe.
Let RL, S L and T L denote the sets of relation symbols, sentences and the term models
for L respectively, where a term model is a structure M for the language L with domain
M = { ai | i = 1, 2, ...} where every constant symbol is interpreted as itself. For more
details on the preliminary definitions and results please see [9, 12].

Definition 1 w : S L→ [0 , 1] is a probability function if for every θ, φ,∃xψ(x) ∈ S L,

P1. If |= θ then w(θ) = 1.

P2. If |= ¬(θ ∧ φ) then w(θ ∨ φ) = w(θ) + w(φ).

P3. w(∃xψ(x)) = limn→∞ w(
∨n

i=1 ψ(ai)).

Definition 2 Let L be a finite propositional language with propositional variables

p1, ..., pn. Atoms of L are the sentences {αi | i = 1, ...J}, of the form
∧n

i=1 pεi
i where

εi ∈ {0, 1}, p1 = p and p0 = ¬p.

Take a propositional language L. For every sentence φ ∈ SL, there is unique set
Γφ ⊆ {αi| i = 1, ..., J } such that |= φ ↔

∨
αi∈Γφ

αi. It can be easily checked that Γφ =

{α j |α j � φ }. Thus if w is a probability function w(φ) = w(
∨
αi�φ αi) =

∑
αi�φ w(αi)

as the αi’s are mutually inconsistent. On the other hand since |=
∨J

i=1 αi we have∑J
i=1 w(αi) = 1. So the probability function w will be uniquely determined by its values

on the αi’s, i.e., by the vector < w(α1), ...,w(αJ) >∈ DL = { ~x ∈ RJ | ~x ≥ 0,
∑J

i=1 xi = 1}.
Conversely if ~a ∈ DL we can define a probability function w′ : SL → [0 , 1] such that
< w′(α1), ...,w′(αJ) >= ~a by setting w′(φ) =

∑
αi�φ ai.

Now consider a first order language L. Although the atoms of L are not expressible in
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the language (as they will require infinite conjunctions), the state descriptions for the
finite sub-languages will play a similar role to that of atoms in the propositional case.

Definition 3 Let L be a first order language with the finite set of relation symbols RL

and let Lk be the sub-language of L with only constant symbols a1, ..., ak. The state

descriptions of Lk are the sentences Θk
1, ...,Θ

k
nk

of the form∧
i1 ,...,i j≤k

Ri∈RL j−ary

Ri(ai1 , ..., ai j )
εi1 ,...,i j

where εi1,...,i j ∈ {0, 1} and R1
i = Ri and R0

i = ¬Ri.

Throughout this paper we will denote the set of state descriptions for L and Lr by Γ and

Γr respectively. Furthermore, we will write Γφ (res. Γr
φ) for the set of state descriptions

of L (res. Lr) that are consistent with the sentence φ.

For a quantifier free sentence θ ∈ S L let k be an upper bound on the i such that ai

appears in θ. Then θ can be thought of as being from the propositional language Lk

with propositional variables Ri(ai1 , ..., ai j ) for i1, ..., i j ≤ k, Ri ∈ RL. The sentences

Θk
i will be the atoms of Lk and as before � θ ↔

∨
Θk

i �θ
Θk

i and for every probability

function w, w(θ) = w(
∨

Θk
i �θ

Θk
i ) =

∑
Θk

i �θ
w(Θk

i ). Thus to determine w(θ) we only need

to determine the values w(Θk
i ) and to require

w(Θk
i ) ≥ 0 and

nk∑
i=1

w(Θk
i ) = 1 (1)

w(Θk
i ) =

∑
Θk+1

j �Θ
k
i

w(Θk+1
j ) (2)

to ensure that w satisfies P1 and P2. The following theorem due to Gaifman [4],
ensures that this is indeed enough to determine w on all sentences. Let QFS L be the
set of quantifier free sentences of L.

Theorem 1 Let v : QFS L → [0 , 1] satisfy P1 and P2 for θ, φ ∈ QFS L. Then v

has a unique extension w : S L → [0 , 1] that satisfies P1, P2 and P3. In particular if

w : S L→ [0 , 1] satisfies P1, P2 and P3 then w is uniquely determined by its restriction

to QFS L.

Just as a probability function on the set of sentences of a propositional language is
determined by its values on the atoms, a probability function on the set of sentences
of a first order language is determined by its values on the state descriptions. We note
that the set of state descriptions of Lk is the same as the set of term models for Lk with
domain {a1, . . . , ak}.
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Definition 4 Define the equivocator, P=, as the probability function that for each k,

assigns equal probabilities to the Θk
i ’s (the state descriptions of Lk), i.e., the most non-

committal probability function.

Notice that this determines P= on all of S L by Theorem 1 and the preceding argument.

Definition 5 A sentence φ from a first order language L is called a Σ1 sentence iff φ is

logically equivalent to a sentence of the form ∃~xθ(~x) where θ(~x) is quantifier free.

Definition 6 A constraint set K is a finite satisfiable set of linear constraints of the from

{
∑n

j=1 ai jw(θ j) = bi | i = 1, . . . ,m}, where θ j ∈ S L, ai j, bi ∈ R and w is a probability

function. Every finite satisfiable set of sentences K = {φ1, . . . , φn} is identified with

the constraint set {w(φ1) = 1, . . . ,w(φn) = 1} induced by it and in particular we shall

identify every sentence φ with the constraint w(φ) = 1.

We shall next give the definition of Maximum Entropy solutions for a set of linear
constraints K as above. Our results in Section 3, however, are concerned only with
the constraints that are induced by a sentence. In particular, by the Maximum Entropy
model of the sentences φ we mean the Maximum Entropy probability function that
satisfies the corresponding constraint w(φ) = 1.

Definition 7 The Shannon entropy of the probability function, W, defined on a set

X = {x1, . . . , xn} (so 0 ≤ W(xi) ≤ 1 and
∑

i W(xi) = 1), is given by

E(W) = −

n∑
i=1

W(xi) log(W(xi)).

The Shannon entropy is the most commonly used measures for the informational con-
tent of a probability function, [14].

Definition 8 An inference process, N, on L, is a function that on each set of linear

constraints K, returns a probability function on SL, N(K), that satisfies K.

We will write ME for the inference process that on each set of constraints K, returns
the maximum entropy probability function that satisfies K, denoted as ME(K). There
are two approaches for defining Maximum Entropy probability functions that satisfy a
set of constraints. We shall start from a propositional case first and then move to the
first order languages. Let L be a propositional language with atoms α1, . . . , αJ and K
a set of linear constraints. The first approach is to define ME(K) as the unique prob-
ability function over the sentences of the language that satisfies K and for which the
Shannon entropy −

∑J
i=1 w(αi) log(w(αi)) is maximised. Since K consists of only linear
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constraints, the set of probability functions that satisfy K is convex and so is the func-
tion f (x) = −

∑J
i=1 xi log(xi), hence the uniqueness.

An alternative approach is studied by Williamson [16], which we will denote by MEW .
In this approach Maximum Entropy probability functions that satisfy a set of con-
straints K are defined by minimising the divergence from the probability function P=,
which has the maximum Shannon entropy. The information theoretic divergence of a
probability function W from the probability function V is given by their relative entropy
and defined as:

RE(W,V) =

J∑
i=1

W(αi) log(
W(αi)
V(αi)

).1

Williamson defines the Maximum Entropy probability function for a set of constraints
K, MEW (K), as the probability function w, that satisfies K and has the minimum rela-
tive entropy to P=, i.e.

∑J
i=1 w(αi) log

(
w(αi)
P=(αi)

)
, amongst all those probability functions

that satisfy K.

Proposition 1 Let L be a propositional language and K a set of linear constraints.

Then ME(K)(φ) = MEW (K)(φ) for all φ ∈ SL.

Proof. Let α1, . . . , αJ be the atoms of L. Notice that

RE(w, P=) =

J∑
i=1

w(αi) log
(

w(αi)
P=(αi)

)
=

J∑
i=1

w(αi) log(w(αi)) −
J∑

i=1

w(αi) log(P=(αi)) =

J∑
i=1

w(αi) log(w(αi)) −
J∑

i=1

w(αi) log(1/J) = −E(w) + log(J).

Let w be a probability function that satisfies K then w minimises RE(w, P=) if and
only if w maximises E(w). Hence MEW (K) and ME(K) specify the same probability
function. �

Thus the two approaches agree for constraint sets from a propositional language. The
main difficulty for extending these definitions to first order languages is that in the case
of a first order language one does not have access to the atomic sentences in order to
express the entropy or the relative entropy. In the first order case one has only access
to state descriptions over finite sub-languages.
To extend the first approach to a first order language L, Barnett and Paris [1], propose
to define the Maximum Entropy probability function that satisfies K as the limit of the
Maximum Entropy models of K restricted to finite sub-languages, Lk. These finite sub-
languages can essentially be treated as propositional languages where the Maximum
Entropy models are well defined for every set of linear constraints. To be more precise
let L be a first order language with relation symbols RL = {R1, . . . ,Rt} and constant

1Notice that RE is not a distance measure since it is not symmetric, so it is not the distance between W

and V but rather the divergence of W from V .

6



symbols {a1, a2, . . .}, and let K be a set of linear constraints as above. Define Lr to be
the propositional language with propositional variables Ri(ai1 , . . . , ai j ) for Ri ∈ RL and
ai1 , . . . , ai j ∈ {a1, . . . ar}. If k is the maximum such that ak appears in K, for r ≥ k define
(−)(r) : S Lk → SLr as

(Ri(ai1 , . . . , ain ))(r) = Ri(ai1 , . . . , ain )

(¬φ)(r) = ¬(φ)(r)

(φ ∨ ψ)(r) = (φ)(r) ∨ (ψ)(r)

(∃xφ(x))(r) =

r∨
i=1

(φ(ai))(r)

For a set of linear constraints K, let K(r) be the result of replacing every θ appearing
in K with θ(r) and notice that for a state description Θk of Lk and r ≥ k, (Θk)(r) = Θk.
Barnett and Paris [1], propose to define the Maximum Entropy probability function on
first order languages as follows:

Definition 9 (ME) Let L be a first order language and K a set of linear constraints.

For a state description Θk
i of Lk, let ME(K)(Θk

i ) = limr→∞ ME(K(r))(Θk
i ).

This determines ME(K) on all state descriptions and thus on all quantifier free sen-

tences, which is uniquely extended to all ψ ∈ S L by Theorem 1.

For the second approach, MEW , Williamson first defines the r-divergence of a proba-
bility function W from a probability function V by

REr(W,V) =

Jr∑
i=1

W(Θr
i ) log

(
W(Θr

i )
V(Θr

i )

)
where Θr

i ’s are state descriptions of Lr. Thus the r-divergence of W from V is the
divergence of W from V when they are restricted to Lr. Then for probability functions
U,V and W, U is closer to V than W if there exists N such that for all r > N, dr(U,V) <
dr(U,W). Williamson [16] defines the Maximum Entropy probability functions on first
order languages as:

Definition 10 (MEW ) Let K be a set of linear constraints as before. The Maximum

Entropy model of K, MEW (K), is the probability function, w, satisfying K such that

there is no probability function v that satisfies K and dr(v, P=) < dr(w, P=) for all r

eventually.

The main questions here are whether or not the Maximum Entropy probability func-
tions, given by Definitions 9 and 10, are well defined for every constraint set K from
a first order language, i.e, whether or not the limit in Definition 9, or the closest prob-
ability function to P= as in Definition 10, exist for every K, and when they are well
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defined, whether or not the resulting probability functions satisfy K. In [1] Barnett and
Paris showed that for any set of linear constraints over monadic first order languages,
the Maximum Entropy probability function is indeed well defined and that it satisfies
the constraints. On the other hand in the general case for constraint sets containing
sentences with quantifier complexity of Σ2, Π2 or higher the Maximum Entropy prob-
ability functions that satisfy the constraints are not always well defined (see [13]). The
case of Π1 sentences has been studied and partially answered by Paris and Rafiee Rad
in [10] and in this paper we will focus on knowledge bases consisting of a Σ1 sentence,
i.e., constraint sets of the form {w(∃~x φ(~x)) = 1} where φ(~x) is quantifier free.

3 The Maximum Entropy Models for Σ1 Sentences
We will now turn to our main result concerning the Maximum Entropy models of sen-
tences with quantifier complexity of Σ1. We will show that both approaches for defin-
ing Maximum Entropy models are well defined for these sentences and agree with
each other. As was pointed out before, for our purpose, every Σ1 sentence ∃~xθ(~x) is
identified with the constraint set {w(∃~xθ(~x)) = 1}.

Lemma 2 Let φ ∈ S L be a satisfiable Σ1 sentence of the form ∃x1, ..., xtθ(a1, . . . , al, ~x)

and let Γl
φ be the set of state descriptions of Ll that are consistent with φ. Then

P=(φ |
∨

Γl
φ) = 1.

Proof. Let γ = ¬φ = ∀x1, ..., xt¬θ(~a, ~x). Let ~a be all the constants appearing in θ with l
the largest such that al appears in ~a and let Γl be the set of state descriptions of Ll. First
notice that for Θ

(l)
j ∈ Γl if Θ

(l)
j � γ then Θ

(l)
j � ¬φ and thus Θ

(l)
j < Γl

φ. We show that for

every Θ
(l)
j ∈ Γl

φ, P=(Θ(l)
j ∧ γ) = 0. If Θ

(l)
j is inconsistent with γ(l) then2 P=(Θ(l)

j ∧ γ) = 0.

This is so because if Θ
(l)
j is inconsistent with γ(l) then Θ

(l)
j �

∨
i1,...,it≤l θ(~a, ai1 , . . . , ait ) so

Θ
(l)
j � ∃~xθ(~a, ~x) ≡ ¬γ. So P=(Θ(l)

j ∧ γ) ≤ P=(¬γ ∧ γ) = 0.

Let Γl
φ, γ(l) be the set of state descriptions in Γl

φ that are consistent with γ(l). For Θ
(l)
j ∈

Γl
φ, γ(l) let Qi(~a, x1, ..., xt), i ∈ I enumerate formulae of the form

Θ
(l)
j ∧

∧
yi1

,...,yi j
∈{a1 ,...,al }∪{x1 ,...,xt }

{yi1
,...,yi j

}∩{x1 ,...,xt },∅

R∈RL, j−ary

±R(yi1 , ..., yi j ).

Since ¬θ(~a, ~x) is not a tautology, and since Θ
(l)
j 2 γ there is some strict subset J of I such

that � Θ
(l)
j ∧ ¬θ(~a, ~x)↔

∨
j∈J Q j(~a, ~x). To see this notice that the sentences Qi(~a, x1, ..., xt)

are state descriptions of a language L but with constants a1, . . . , al, x1, . . . xt, which
extend the state description Θ

(l)
j ∈ Γl

φ, γ(l) . Then since Θ
(l)
j ∧ ¬θ(~a, ~x) is a sentence

2Remember that γ(l) =
∧

i1 ,...,it≤l ¬θ(~a, ai1 , . . . , ait )
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in the language La1,...,an,x1,...xt that implies Θ
(l)
j , it will be equivalent to a disjunction

of some of these state descriptions. Now, for i1 < i2 < ... < it < r the number
of extensions of Qi(~a, ai1 , ..., ait ) to a state description of Lr is the same for each i so
P=(Qi(~a, ai1 , ..., ait )) = 1

|I| and for disjoint ~a1, ..., ~ar, P=(Qn1 (~a, ~a1)∧...∧Qnr (~a, ~a
r)) = 1

|I|r .
So

P=(Θ(l)
j ∧∀x1, ..., xt¬θ(~a, ~x)) ≤ P=(Θ(l)

j ∧

r∧
i=1

¬θ(~a, ~ai)) =
∑

n1,...,nr∈J

P=(
r∧

i=1

Qni (~a, ~a
i)) =

(
|J|
|I|

)r

.

And
(
|J|
|I|

)r
→ 0 as r → ∞. Thus for all Θ

(l)
j ∈ Γl

φ, P=(Θ(l)
j ∧γ) = 0 and thus P=(γ |Θ(l)

j ) =

0. So for every Θ
(l)
j ∈ Γl

φ, P=(φ |Θ(l)
j ) = 1 and thus P=(φ |

∨
Γl
φ) = 1 as required. �

Theorem 3 Let φ be a satisfiable Σ1 sentence of the form ∃x1, ..., xtθ(a1, . . . , al, ~x) and

let Γl
φ be the set of state descriptions of Ll that are consistent with φ. For K = {w(φ) =

1} and ψ ∈ S L, MEW (K)(ψ) = P=(ψ |
∨

Γl
φ).

Proof. First by Lemma 2, P=(− |
∨

Γl
φ) satisfies K. It is also the closest probability

function to P= that satisfies K. To see this notice that if w is a probability function that
satisfies K then w(φ) = 1. Thus for all k ≥ l, both w and P=(−|

∨
Γl
φ) assign proba-

bility zero to the state descriptions of Lk that are inconsistent with φ(k). For those state
descriptions that are consistent with φ(k), P=(− |

∨
Γl
φ) assigns equal probability while

w assigns different probability to at least some of them. Thus for k ≥ l on each Lk,
P=(− |

∨
Γl
φ) has a higher entropy that w and thus has a smaller k-divergence from P=.

Hence by definition P=(− |
∨

Γl
φ) is closer than w to P=. �

Theorem 3 specifies the Maximum Entropy models for Σ1 sentences as characterised
by MEW and Definition 10. We shall now turn to the Maximum Entropy models as
characterised by ME and the limit in the Definition 9.

Theorem 4 Let φ be the satisfiable Σ1 sentence ∃~xθ(a1, . . . , al, ~x), Γl
φ be the set of state

descriptions of Ll that are consistent with φ and K = {w(φ) = 1}. Then for ψ ∈ S L,

ME(K)(ψ) = P=(ψ |
∨

Γl
φ).

Proof.
Let Λ =

∨
Γl
φ. We will show that for quantifier free ψ, ME(K)(ψ) = P=(ψ |Λ). This

establishes that ME(K) agrees with P=(− |Λ) on quantifier free sentences and thus, by
Theorem 1, they will agree on all S L, that is, for all ψ ∈ S L, ME(K)(ψ) = P=(ψ |Λ).
Let Γr be the set of state descriptions of Lr and Γr

K be the subset of Γr that satisfy φ(r).
For Θk

i ∈ Γk define for r ≥ k, Γr
k,i = {Ψr

j ∈ Γr |Ψr
j � Θk

i }. In other words, Γr
k,i is the

set of state description of Lr that extend the state description Θk
i of Lk. Notice that

|Γr
k,i| = |Γr

k, j| for Θk
i ,Θ

k
j ∈ Γk because state descriptions of Lk will all have the same

number of extensions to state descriptions of Lk+1. Let KΓr
k,i = Γr

K ∩ Γr
k,i be the set of
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extensions of Θk
i to a state description of Lr that satisfies φ(r). Take Γl

φ as the set of state
descriptions of Ll that are consistent with φ, and let Γl

¬φ = Γl − Γl
φ.

Notice that ME(K(r)) assigns probability zero to those state descriptions of Lr that are
inconsistent with φ(r) (so those not in Γr

K) since it should assign probability 1 to φ(r),

Ψr ∈ Γr \ Γr
K , ME(K(r))(Ψr) = 0. (3)

Next notice also that ME(K(r)) assigns equal probability to those state descriptions that
are consistent with φ(r) (i.e to those in Γr

K). To see this, suppose not and define the
probability function w on S Lr that agrees with ME(K(r)) (i.e. assigns zero probability)
on those state descriptions that are inconsistent with φ(r) but divides the full probability
measure equally among those in Γr

K . Then w satisfies K(r) but it is easy to check that
w has strictly higher entropy than ME(K(r)), on Lr, which is a contradiction with the
choice of ME(K(r)) as the Maximum Entropy probability function on Lr that satisfies
K(r), so

Ψr ∈ Γr
K , ME(K(r))(Ψr) =

1
|Γr

K |
. (4)

Thus by (3) and (4), for the state description Θk
i , k ≥ l,

ME(K(r))(Θk
i ) =

∑
Ψr∈Γr

Ψr�Θk
i

ME(K(r))(Ψr) =
∑
Ψr∈Γr

K
Ψr�Θk

i

ME(K(r))(Ψr) =
|KΓr

k,i|

|Γr
K |

.

The state descriptions in Γl
¬φ are inconsistent with φ and thus have no extension to a

state description of Lr that satisfies φ(r). Hence Γr
K includes only extensions of state

descriptions in Γl
φ and we have Γr

K =
⋃

Θl
j∈Γ

l
φ

KΓr
l, j and since KΓr

l, j’s include extensions

of different state description of Ll and are thus disjoint,

|Γr
K | =

∑
Θl

j∈Γ
l
φ

|KΓr
l, j|. (5)

On the other hand, for k ≥ l, P=(− |Λ) assigns equal probabilities to all state descrip-
tions of Lk that are consistent with Λ =

∨
Γl
φ and zero to those that are not. Thus those

with non-zero probability are exactly those state descriptions of Lk that are extensions
of some state description in Γl

φ and the number of these state descriptions is
∑

Θl
j∈Γ

l
φ
|Γk

l, j|.

Thus P=(Θk
i |Λ) = 0 if Θk

i extends a state description in Γl
¬φ and P=(Θk

i |Λ) = 1∑
Θl

j∈Γ
l
φ
|Γk

l, j |

if Θk
i extends a state description in Γl

φ.
To show ME(K)(ψ) = P=(ψ |Λ) for quantifier free ψ, it is enough to show that for each
k and each state description Θk

i ∈ Γk, ME(K)(Θk
i ) = P=(Θk

i |Λ). By definition, this is

lim
r→∞

ME(K(r))(Θk
i ) = P=(Θk

i |Λ). (6)

10



For k ≥ l, the state descriptions of Lk are extensions of either a state description in Γl
φ

or a state description in Γl
¬φ. The state description in Γl

¬φ are inconsistent with φ and
thus have no extension to Lr that satisfies φ(r), that is

KΓr
k,s = ∅ for Θk

s ∈ Γl
¬φ,

and so ME(K(r))(Θk
s) = 0. Hence for those Θk

i that extend a state description in Γl
¬φ,

lim
r→∞

ME(K(r))(Θk
i ) = 0 = P=(Θk

i |Λ).

For those Θk
i that extend a state description in Γl

φ, we have to show that

lim
r→∞

|KΓr
k,i|

|Γr
K |

=
1∑

Θl
j∈Γ

l
φ
|Γk

l, j|
. (7)

Using, (5) and the fact that |Γk
l, j| is the same for all Θl

j ∈ Γl
φ, to show 7 we will show

that3

lim
r→∞

|KΓr
k,i|

∑
Θl

j∈Γ
l
φ
|Γk

l, j|∑
Θl

j∈Γ
l
φ
|KΓr

l, j|
= lim

r→∞

|KΓr
k,i| |Γ

l
φ| |Γ

k
l, j|∑

Θl
j∈Γ

l
φ
|KΓr

l, j|
= 1. (8)

Lemma 5 Let K, KΓr
k,i and Γr

k,i be as defined above then limr→∞
|KΓr

k,i |

|Γr
k,i |

= 1.

Proof.
Notice that |

KΓr
k,i

Γr
k,i
| is the probability that a random extension of the state description

Θk
i ∈ Γk to a state description of Lr will satisfy the K(r).4 Remember that K consists of

a Σ1 sentence ∃x1, ..., xtθ(~a, x1, ..., xt), l is the largest that al appears in θ(~a, ~x), and that
Θk

i extends description in Γl
φ, say Ψl, and let’s calculate this probability.

Take Θk
i ∈ Γk and let’s consider its extensions to state descriptions of Lk+t. Let Lai1 ,...ain

be language L with only constant symbols ai1 , ..., ain and let ∆i i = 1, ...,M enumerate
the state descriptions of L{a1,...,al}∪{ak+1,...,ak+t} that extend Ψl (thus they agree with Θk

i when
restricted to a1, . . . , al) . Then state descriptions of Lk+t that are extension of Θk

i can be
written in the form Θk+t

i,m ≡ Θk
i ∧ ∆ j ∧ Vh(a1, ..., ak+t)5 with m = 1, ..., |Γk+t

k,i |, j = 1, ...,M,

and h = 1, ...,
|Γk+t

k,i |

M . At least one of the ∆ j’s satisfies θ(~a, ak+1, ..., ak+t) and will hence
satisfies K(k+t). The probability that an arbitrary Θk+t

i,m satisfies K(k+t) will be the number
of Θk+t

i,m ’s that satisfies K(k+t) divided by the total number of Θk+t
i,m ’s that is at least,

|Γk+t
k,i |

M . 1
|Γk+t

k,i |
= 1

M , and so the probability that a random Θk+t
i,m does not satisfy K(k+t) will be

3Notice that
∑

Θl
j∈Γ

l
φ
|Γk

l, j | , 0 and does not depend on r.
4The denominator is the total number of extensions of Θk

i ∈ Γk to a state description of Lr and the

nominator is the number of those extensions of Θk
i ∈ Γk to a state description of Lr that satisfy K(r).

5Vh(a1, ..., ak+t) enumerate sentence of the form
∧

i1 ,...,i j≤k+t
R∈RL j−arey

Ri(ai1 , . . . , ai j )
εi1 ,...,i j where {ai1 , . . . , ai j } in-

tersects both {al+1, . . . ak} and {ak+1, . . . , ak+t}.

11



at most as much as the maximum probability that ∆ j does not satisfy θ(~a, ak+1, ..., ak+t)
that is 1 − 1

M . Now consider the extension of Θk
i to a state description of Lk+pt,

Θ
k+pt
i,m ≡ Θk

i ∧ ∆1
j1 ∧ ∆2

j2 ∧ ... ∧ ∆
p
jp
∧ V ′h(a1, ..., ak+pt)

with m = 1, ..., |Γk+pt
k,i |, j1, ..., jp = 1, ...,M, h = 1, ...,

|Γ
k+pt
k,i |

Mp and where ∆s
j enumer-

ate the state description of L{a1,...,al}∪{ak+(s−1)t+1,...,ak+st} that extend Ψl. The probability
that Θ

k+pt
i,m does not satisfy K(k+pt) is at most as high as the probability that ∆1

j 2

θ(~a, ak+1, ..., ak+t), ...,∆
p
j 2 θ(~a, ak+(p−1)t+1, ..., ak+pt) so 0 ≤ 1 −

|KΓ
k+pt
k,i |

|Γ
k+pt
k,i |

≤ (1 − 1
M )p.

Let p → ∞, then 0 ≤ limr→∞ 1 −
|KΓr

k,i |

|Γr
k,i |
≤ limp→∞(1 − 1

M )p = 0. Hence, we have

limr→∞ 1 −
|KΓr

k,i |

|Γr
k,i |

= 0 and limr→∞
|KΓr

k,i |

|Γr
k,i |

= 1 as required. �

All state descriptions of Lk have the same number of extensions to a state description of
Lr for k < r thus |Γr

k,i| = |Γ
r
k, j| for Θk

i ,Θ
k
j ∈ Γk and also |Γr

l, j| is the same for all Θl
j ∈ Γl

φ.
Hence, |Γk

l, j| |Γ
r
k,i| = |Γ

r
l, j|

6 and so,

lim
r→∞

∑
Θl

j∈Γ
l
φ
|KΓr

l, j|

|Γk
l, j| |Γ

r
k,i|

= lim
r→∞

∑
Θl

j∈Γ
l
φ

|KΓr
l, j|

|Γr
l, j|

=
∑

Θl
j∈Γ

l
φ

lim
r→∞

|KΓr
l, j|

|Γr
l, j|

= |Γl
φ|

where the last equality follows from Lemma 5. Then

lim
r→∞

|KΓr
k,i| |Γ

l
φ| |Γ

k
l, j|∑

Θl
j∈Γ

l
φ
|KΓr

l, j|
= |Γl

φ| limr→∞

|KΓr
k,i|

|Γr
k,i|

lim
r→∞

|Γk
l, j| |Γ

r
k,i|∑

Θl
j∈Γ

l
φ
|KΓr

l, j|
= 1

and this establishes 8 as required and completes the proof. �

Corollary 1 For a knowledge base K consisting of a Σ1 sentence, and a sentence ψ ∈

S L, ME(K)(ψ) = MEw(K)(ψ).

4 Discussion
We studied the Maximum Entropy probability functions as the canonical characterisa-
tion of some under-determined structure about which we have some partial informa-
tion. The strongest candidate for this characterisation is the “least informative” proba-
bility function that satisfies the given partial information which is in turn formalised in
terms of (relative) Shannon Entropy.
For propositional languages, the Maximum Entropy probability function that satisfies

6What this says is that the number of extensions of Θl
j to a state description of Lk times the number of

extensions of a state description of Lk to an state description of Lr (which is the same for all Θk
i ∈ Γk), is

equal to the number of extensions of Θl
j to an state description of Lr .
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a given set of linear constraints is well defined and has been extensively studied. Our
goal in this paper was to contribute to the investigation of these probability functions
for first order languages. Barnett and Paris had shown in [1] that such probability func-
tions are well defined for constraint sets from a monadic first order language. The case
of Π1 sentences has been investigated and partially answered by Paris and Rafiee Rad
in [10] while for the sentences with the quantifier complexity of Σ2, Π2 or above these
models are not necessarily well defined.
In this paper we have proved that the Maximum Entropy models are well defined for
Σ1 sentences and showed how these models are closely related to P=, the most non-
committal probability function. Furthermore, we showed that the two main approaches
to defining Maximum Entropy models on first order languages, agree on the Σ1 sen-
tences.
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