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Abstract. We investigate an approach for drawing logical inference from inconsistent premisses. The

main idea in this approach is that the inconsistencies in the premisses should be interpreted as uncertainty

of the information. We propose a mechanism, based on Kinght’s [13] study of inconsistency, for revising

an inconsistent set of premisses to a minimally uncertain, probabilistically consistent one. We will then

generalise the probabilistic entailment relation introduced in [15] for propositional languages to first

order case to draw logical inference from a probabilistic set of premisses. We will then argue how this

combination can allow us to limit the effect of uncertainty introduced by inconsistent premisses to only

the reasoning on the part of the premise set that is relevant to the inconsistency.
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1. Introduction

The treatment of inconsistencies is a long standing issue for mathematical logic. Classical
logic comes along with strong built-in consistency assumptions and it follows that the full
force of the classical entailment relation is too strong for reasoning with inconsistencies.
There are, however, many different motivations for the development of logics that can
accommodate inconsistencies. Although limiting the scope of logical inference to only
consistent domains fits well with the spirit of what one requires from reasoning in
mathematical contexts, there are many contexts where it does not. In particular, we
have the case when the context of the reasoning is not assumed to represent some factual
property of a structure nor objective facts concerning the real state of things but some
not-necessarily-certain information or approximations regarding those facts.
Hence there have been several attempts in the literature to develop logical systems
and inference processes that allow for reasoning with inconsistent premisses. The main
difference between these attempts arise from the way that the inconsistent evidence
is interpreted. One motivation stems from adopting the philosophical position of
dialetheism as advocated by Graham Priest [22, 24]. This position is characterised
by submitting to the thesis that there are true contradictions. That is to accept that
there are sentences which are true and false simultaneously. One way to formalise this
view is to develop logics that would allow for evaluating a sentence as both true and
false, for example by adopting a three valued logic with truth values {0, 1, {0, 1}} with
truth value {0, 1} for the sentences that are assumed to be both true and false. The
most notable example of such logical systems is arguably the logic LP [21, 23].
Other motivations can arise from more pragmatic reasons which deal with reasoning
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in non-ideal contexts. Here the inconsistencies are interpreted as a property of the
information and are taken to be anomalies that point out errors or shortcomings of
the reasoners’ information (or maybe communication channels). The idea, however,
is that despite this shortcoming it is still useful to have formal systems that allow
logical inference from such sets of information without submitting to dialethism. The
approaches that arise from this latter motivation can be divided into two groups.
The first group aim at developing formal systems with mechanisms for dealing with
inconsistent information. These include, amongst others, discussive logic [12], adaptive
logic introduced by Batens [3], Da Costa’s logics of formal inconsistency [7, 8], Dunn-
Belnap four-valued logic [4, 9], and relevant logic of Anderson and Belnap [2] and their
variants. The second group attempts to approach reasoning with inconsistent premisses
by reducing the context of reasoning to a consistent one, for instance by defining the
logical consequences on the basis of maximal consistent subsets, as in the logical system
of Rescher and Manor [25], or by first revising the inconsistent sets to consistent ones, as
in AGM belief revision process [1], and make the reasoning on the basis of this consistent
set.
Our approach will fall into this last group and is in line with the view that treats
inconsistencies as a property of evidence, pointing to some shortcoming or inadequacy
of the information, and defines the logical consequence on the basis of some consistent
revision of the premisses. In this setting, the existence of inconsistencies points, foremost,
to the unreliability of the information, and hence the revision process shifts the context of
reasoning from a set of categorically true premisses to uncertain information, expressed
probabilistically. As will become clear shortly, however, our approach to revising
inconsistent premisses is radically different from that of AGM.
The idea in an AGM-like belief revision process is that upon receiving some information
φ that is inconsistent with the current knowledge base, one will first retract the part
of the premisses that contradicts this new information and then expand the remaining
premise set by adding φ. The assumption here, however, is that the new information is
always more reliable than the old. This assumption is counter-intuitive in many aspects
of reasoning; for example when the context of reasoning consists of statements derived
from potentially unreliable sources or processes that are subject to errors. Even more
pointed are cases that deal with statements accumulated through different sources and
processes which do not necessarily agree. This is the case in almost all applications of
reasoning outside mathematics. In mnay such cases as the information set expands by
acquiring new information through possibly conflicting sources and processes, it may
very well come to include conflicting and inconsistent evidence without any second
order information that warrants discarding parts of the premisses in favour of others.
At the same time keeping the evidence set whole will void the possibility of using
classical entailment (or other variations of it which still get trivialised in the presence of
inconsistencies ). In this sense having some inconsistency in a (possibly very large) set
of evidence will render it completely useless for reasoning. This has motivated a large
body of work that deals with ”non-prioritised” belief revision [11].
There are many applications of reasoning, however, in which the inconsistencies should
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intuitively affect the reasoning only partially. Consider for example sentences φ and ψ
that share no syntactic component, and the entailment {φ, ψ,¬φ} � ¬ψ, many instances
of which are counter-intuitive. For instance, assume φ and ¬φ are acquired through
different sources, say S1 and S2, where both sources agree on ψ. Here one would expect
the inconsistency to effect the one’s evaluation of the reliability of the data and thus
produce uncertainty in the information, but what is more, at the same time one might
wish to do so in a way that introduces as little uncertainty as possible and only where
necessary. This is the motivation for what we shall pursue in this paper and the aspect
of the literature we hope to contribute to.
Our approach comes in two parts. First is the revision of an inconsistent set of categorical
premisses to a probabilistically consistent set of uncertain premisses. In light of the
discussion above this should be done in a way that limits the introduction of the
uncertainty to only those premisses that are affected by the inconsistency. The second
component will then be an entailment relation that allows reasoning on the basis of
the new probabilistically consistent premisses. For these we use the work proposed by
Knight, [13, 14] in his study of inconsistency, for defining the revision process. A similar
approach has also been also taken by Thimm in [26, 27] for measuring the inconsistency
of a set of probabilistic assertions (see also Bona [5] and Bona et. al. [6]), and by
Potyka and Thimm [20] for inconsistency tolerant reasoning. We will then follow the
work developed in Knight [15], Picado [18, 19] and Paris, Picado and Rosefield, [17] on
probabilistic entailment for propositional languages, and will extend their work to the
first order case.
The rest of this paper is organised as follows. In Section 2 we will set up our notation and
preliminaries. In Section 3 we will investigate a revision process for reducing inconsistent
sets of sentences to probabilistically consistent, uncertain ones. We will investigate
revision of categorical inconsistent sets of sentences in Section 3.1, and the revision of
inconsistent probabilistic assertions and prioritised sets of sentences in Section 3.2. In
Section 4 we generalise a probabilistic entailment relation of [13] to first order languages.
Finally, we will argue, in Section 4.3, how generalisation to multiple thresholds, as
suggested in [15], will allows us to limit the effect of inconsistency to only part of the
reasoning.

2. Preliminaries and Notation

Throughout this paper we will work with a first order language L with finitely
many relation symbols, no function symbols and countably many constant symbols
a1, a2, a3, .... Furthermore we assume that these constants exhaust the universe. This
means, in particular, that we have a name for every element in our universe. Thus a
model is a structure M for the language L with domain |M | = { ai | i = 1, 2, ...} where
every constant symbol is interpreted as itself. Let RL,SL denote the set of relations
and the set of sentences of L respectively.

Definition 2.1. A function w : SL→ [0 , 1] is called a probability function if for every
φ, ψ,∃xψ(x) ∈ SL,
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• P1. If |= φ then w(φ) = 1.

• P2. w(φ ∨ ψ) = w(φ) + w(ψ)− w(φ ∧ ψ).

• P3. w(∃xψ(x)) = limn→∞w(
∨n
i=1 ψ(ai)).

We will denote the set of all probability functions on SL by PL.
Let Lprop be a propositional language with propositional variables p1, p2, ..., pn. By

atoms of Lprop we mean sentences At = {αi | i = 1, ...J}, J = 2n of the form

pε11 ∧ p
ε2
2 ∧ ... ∧ p

εn
n .

where εi ∈ {0, 1} and p1 = p and p0 = ¬p. By disjunctive normal form theorem, for
every sentence φ ∈ SLprop there is unique set Γφ ⊆ At such that |= φ ↔

∨
αi∈Γφ

αi.

It can be easily checked that Γφ = {αj |αj � φ }. Thus if w : SLprop → [0 , 1] is a
probability function then w(φ) = w(

∨
αi�φ

αi) =
∑

αi�φ
w(αi) as the αi’s are mutually

inconsistent. On the other hand, since |=
∨J
i=1 αi we have

∑J
i=1w(αi) = 1. So the

probability function w will be uniquely determined by its values on the αi’s, that is by
the vector (w(α1), ..., w(αJ)) ∈ DLprop where DLprop = { ~x ∈ RJ | ~x ≥ 0,

∑J
i=1 xi = 1}.

Conversely if ~a ∈ DLprop we can define a probability function w′ : SLprop → [0 , 1] such
that (w′(α1), ..., w′(αJ)) = ~a by setting w′(φ) =

∑
αi�φ

ai. This gives a one to one

correspondence between the probability functions on Lprop and the points in DLprop , see
[16] for more details.

The situation for first order languages is a bit more complicated since defining atoms
in a way similar to the propositional case will require the use of infinite conjunctions.
Instead, what plays the role similar to the atoms for first order languages, are the state
descriptions.

Definition 2.2. Let L be a first order language with the set of relation symbols RL
and let L(k) be a sub-language of L with only constant symbols a1, ..., ak. The state

descriptions of L(k) are the sentences Θ
(k)
1 , ...,Θ

(k)
nk of the form∧

i1,...,ij≤k
R j−ary

R∈RL,j∈N+

R(ai1 , ..., aij )
εi1,...,ij .

The following theorem, due to Gaifman [10], provides a similar result to the one we
had above, for the case of a first order language L. Let QFSL be the set of quantifier
free sentences of L:

Theorem 2.3. Let v : QFSL → [0 , 1] satisfy P1 and P2 for φ, ψ ∈ QFSL. Then v
has a unique extension w : SL → [0 , 1] that satisfies P1, P2 and P3. In particular if
w : SL→ [0 , 1] satisfies P1, P2 and P3 then w is uniquely determined by its restriction
to QFSL.

The language L(k) can be thought of as a propositional language with propositional
variables R(ai1 , ..., aij ) for i1, ..., ij ≤ k, R ∈ RL and R j − ary. With this in mind, for



Probabilistic Entailment and Reasoning with Inconsistencies 5

φ ∈ QFSL let k be an upper bound on the i such that ai appears in φ. Then φ can be

thought of as a propositional formula in L(k). Then the sentences Θ
(k)
i will be the atoms

of L(K) and

φ↔
∨

Θ
(k)
i �φ

Θ
(k)
i so w(φ) =

∑
Θ

(k)
i �φ

w(Θ
(k)
i ).

Thus to determine the value w(φ) we only need to determine the values w(Θ
(k)
i ) and to

require

• (i) w(Θ
(k)
i ) ≥ 0 and

∑nk
i=1w(Θ

(k)
i ) = 1. (ii) w(Θ

(k)
i ) =

∑
Θ

(k+1)
j �Θ(k)

i

w(Θ
(k+1)
j ).

to ensure that P1 and P2 are satisfied.

Definition 2.4. A set K = {w(φi) = ai | i = 1, . . . , n} is probabilistically consistent if
there is a probability function w : SL→ [0, 1] that satisfies the constraints given in K.

3. Probabilistically Consistent Revisions

3.1. Probabilistic Revision of Inconsistent Sets of Sentences

Consider a consistent set of sentences Γ = {φ1, . . . , φn} and let θ be such that Γ∪{θ} is
inconsistent. In the setting we shall present here, this inconsistency will be characterised
as uncertainty and will thus result in moving to some probabilistically consistent revision
of Γ∪{θ}, Γ′, i.e., a set Γ′ consisting of jointly satisfiable probabilistic statements of the
form w(φ) = a for φ ∈ Γ ∪ {θ}.

If a set of sentences Γ is classically consistent then the sentences in Γ can be
simultaneously assigned probability one. That is, there are probability functions that
assign probability one to all sentences in Γ. This will, however, be impossible for an
inconsistent Γ, in which case, the highest probability that can be simultaneously assigned
to all sentences of Γ will be strictly less than 1. Following Knight [13, 14, 15] we define:

Definition 3.1. Let A be a set of probability functions on SL. A set of sentences
Γ ⊆ SL is ζ-consistent in A, if there is a probability function w ∈ A such that w(φ) ≥ ζ
for all φ ∈ Γ. We say that Γ ⊆ SL is ζ-consistent, if it is ζ-consistent in PL.

Notice that if Γ 2 ⊥ then Γ is 1-consistent and if Γ � ⊥ and is ζ-consistent then
necessarily ζ < 1. For Γ = {φ1, . . . , φn} let βΓ

i , i = 1, . . . ,m ≤ 2n enumerate the
consistent sentences of the form

n∧
i=1

φεii

where εi ∈ {0, 1}, φ1 = φ and φ0 = ¬φ. For a probability function w on SL, let
~wΓ = (w(βΓ

1 ), . . . , w(βΓ
m)). We will drop the superscript and subscript Γ when it is clear

from the context. Next we will give a simple Lemma that plays a crucial role in what
follows:
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Lemma 3.2. Take φ1, . . . , φn ∈ SL, and let β1, . . . , βm enumerate the sentences
∧n
i=1 φ

εi
i

as above and let v(βi) be such that
∑m

i=1 v(βi) = 1. The there is a probability function
w on SL for which w(βi) = v(βi).

Proof. It is enough to define w on QFSL, the quantifier free sentences of L. Choose
any probability function u on SL such that u(βi) 6= 0 for i = 1, . . . ,m and for each n
and state description Θ(n), of L(n), define w(Θ(n)) =

∑m
i=1 v(βi)u(Θ(n) |βi).

Then clearly w(Θ(n)) ≥ 0, also
∑nk

j=1w(Θ
(n)
j ) =

∑nk
j=1

∑m
i=1 v(βi)u(Θ

(n)
j |βi) =∑m

i=1 v(βi)
∑nk

j=1 u(Θ
(n)
j |βi) =

∑m
i=1 v(βi) = 1 where the equality before last comes

from the fact that u is a probability function. Also∑
Θn+1
j �Θ(n)

w(Θ
(n+1)
j ) =

∑
Θn+1
j �Θ(n)

m∑
i=1

v(βi)u(Θ
(n+1)
j |βi)

=

m∑
i=1

v(βi)

nk∑
j=1

u(Θ
(n+1)
j |βi) =

m∑
i=1

v(βi)u(Θ(n) |βi) = w(Θ(n).

These ensure that w satisfies P1 and P2 and will thus have a unique extension to SL
by Gaifman’s Theorem. It is clear that w(βi) = v(βi).

Proposition 3.3. Let Γ = {φ1, . . . , φn} ⊂ SL. Set CΓ = {ζ |Γ is ζ − consistent} and
η = sup CΓ. Then Γ is η-consistent.

Proof. Take a non-decreasing sequence ζn ∈ CΓ with limn→∞ ζn = η. Since each ζn
is in CΓ, there is a probability function wn on SL such that wn(φ) ≥ ζn for all φ ∈ Γ.
Let βi enumerate sentences

∧n
i=1 φ

εi
i and ~wn = (wn(β1), . . . , wn(βm)) as above. Since

wn(β1) is a bounded sequence, it has a convergent subsequence, say w1
n(β1) converging

to, say b1. Let ~w1
n = (w1

n(β1), . . . , w1
n(βm)) be a subsequence of ~wn specified by the

subsequence w1
n(β1) (so the first coordinates of ~wn converge to b1). The same way

w1
n(β2) is a bounded sequence and has a converging subsequent say w2

n converging to,
say b2. Let ~w2

n = (w2
n(β1), w2

n(β2), . . . , w2
n(βm)) be the subsequence of ~w1

n specified by
w2
n(β2) (so the first coordinates converge to b1 and second coordinates converge to b2).

Continuing the same way, after m steps, we construct a sequence ~wmn that converges to
(b1, b2, . . . , bm). Notice that

∑m
i=1 bi =

∑m
i=1 limn→∞w

m
n (βm) = 1. Thus by Lemma 3.2

there is a probability function w on SL such that ~w(βi) = bi = limn→∞w
m
n (βi) for all

i = 1, . . . ,m. Then for all φ ∈ Γ

w(φ) =
∑
βk�φ

w(βk) =
∑
βk�φ

bk =
∑
βk�φ

lim
n→∞

wmn (βk)

= lim
n→∞

∑
βk�φ

wmn (βk) = lim
n→∞

wmn (φ) ≥ lim
n→∞

ζmn = η.
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Definition 3.4. For a set of sentences Γ ⊂ SL the maximal consistency of Γ, denoted
by mc(Γ) is defined as mc(Γ) = max{η |Γ is η-consistent}.

Lemma 3.5. Let PL be the set of probability function on SL and Γ = {φ1, . . . , φn} ⊂ SL
with mc(Γ) = η. Then

• (i) there is a fixed subset of Γ, say Γ1, such that for every probability function w ∈ PL
if w(φ) ≥ η for all φ ∈ Γ then w(φ) = η for all φ ∈ Γ1.

• (ii) there is a partition Γ = Γ1 ∪ Γ2 ∪ . . . ∪ Γm, values η1 < . . . < ηm and PL = P0 ⊇
P1 ⊇ . . . ⊇ Pn such that

– Pi = {w ∈ Pi−1 |w(φ) ≥ ηi for all φ ∈ Γ \
⋃i−1
j=1 Γj}, i = 1, . . . , n and

– ηi = max{ζ |Γ \
⋃i−1
j=1 Γj is ζ-consistent in Pi−1},

– for all w ∈ Pi, w(ψ) = ηi for all ψ ∈ Γi.

Proof. For (i), suppose not, then for every ψ ∈ Γ there is a probability function wψ
(not necessarily distinct) such that wψ(φ) ≥ η for all φ ∈ Γ and wψ(ψ) > η. Let
w = 1/n

∑
ψ∈Γwψ then for every φ ∈ Γ we have w(φ) = 1/n

∑
ψ∈Γwψ(φ) > η since for

every φ 6= ψ wψ(φ) ≥ η and wφ(φ) > η. This is a contradiction with mc(Γ) = η.
For (ii), first for a set of probability function A and a set of sentences ∆ define

mcA(∆) = max{ζ |∆ is ζ-consistent in A}

where the maximum exists. Next notice that for sets of probability functions Pi above
and any finite set of sentences ∆, mcPi(∆) is well defined. This follows by an argument
similar to that of Proposition 3.3 by noticing that if we restrict the construction in the
proof of Proposition 3.3 to some Pi then the probability function w constructed in the
that proof that witnesses the threshold sup{ζ |∆ is ζ-consistent in Pi} will also be in Pi.

Now, let η1 = mcP0(Γ) = mc(Γ) = η, Γ1 as in (i), and let η2 = mcP1(Γ \ Γ1). That
is the highest threshold that can be simultaneously satisfied by all sentences in Γ \ Γ1

assuming that all sentences in Γ have probability at least η1. With the same argument as
in (i), one can show that there is a fixed subset Γ2 ⊂ Γ−Γ1 such that w(θ) = η2 for θ ∈ Γ2

and w(θ) ≥ η2 for θ ∈ Γ − (Γ1 ∪ Γ2) for every probability function w ∈ P2. Following
the same process finitely many times one will be left a partition Γ = Γ1 ∪ Γ2 ∪ . . . ∪ Γm
and values η1, . . . , ηm.

Let Γ = Γ1 ∪ Γ2 ∪ . . . ∪ Γm and η1 < . . . < ηm be as in Lemma 3.5 and set

~mc(Γ) = (δ1, . . . , δn), where δj = ηk ⇐⇒ φj ∈ Γk

Intuitively the values given in ~mc(Γ) are the highest probabilities that can be assigned to
the sentences in Γ coherently. In the sense that there is no probability function that can
assign a probability higher than η1 to all the sentences in Γ1 simultaneously and same for
η2 and Γ2 and so on. In other words if we take ~1 = (1, . . . , 1) as an n-vector representing
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the assignment of probabilities 1 to all sentences φ1, . . . , φn (which will be impossible if
Γ is inconsistent) then for any probability function w if we set ~w = (w(φ1), . . . , w(φn)),
we have d(~1, ~mc(Γ)) ≤ d(~1, ~w) where d is the Euclidean distance1, thus accounting for
~mc(Γ) being the closest we can get to the assumption that all sentences in Γ are true.

Definition 3.6. Let Γ = {φ1, . . . , φn} ⊂ SL be a consistent set of sentences and φn+1 ∈
SL be such that Γ ∪ {φn+1} � ⊥. The revision of Γ by φn+1 is defined as

Γ′ = {w(φ1) = a1, . . . , w(φn) = an, w(φn+1) = an+1}

where (a1, . . . , an, an+1) = ~mc({φ1, . . . , φn, φn+1}).

Definition 3.6 is intended to capture the idea that the revised assignments of
probabilities to the sentences φ1, . . . , φn, φn+1 remain as close as possible to 1, i.e., to
assign the highest reliability to the information that is probabilistically consistently
possible. We will show the uniqueness of ~mc in the next section for a more general
setting.

Example 3.7. Let L be a first order language with a single binary relation R and equality.
And consider the following sentences that express properties of R as a partial order:
φ1 : ∀x¬R(x, x) (anti reflexivity), φ2 : ∀x, y(R(x, y) → ¬R(y, x) (anti symmetry), φ3 :
∀x∃yR(x, y) (each element has an R-successor), φ4 : ∀x, y((x 6= y) → R(x, y) ∨ R(y, x)
(totality), φ5 : φ4 → φ1 ∧ φ2 (if R is total then it is anti reflexive and anti symmetric)
and φ6 : ∃xR(x, x) and let Γ = {φ1, . . . , φ6}. Then Γ is inconsistent. It is easy to check
that Γ is 1/2-consistent and that for any ζ > 1/2, Γ is not ζ-consistent. So η1 is 1/2 and
Γ1 = {φ1, φ6}. Amongst the probability functions that assign a probability of at least 1/2
to φ1, . . . , φ6, the highest η2 such that probability of all φ2, φ3, φ4 and φ5 is at least η2 is
3/4 and Γ2 = {φ4, φ5}, continuing the same way η3 = 7/8 and Γ3 = {φ2} and η4 = 1,
γ4 = {φ3}.

3.2. Revision of Probabilistic Assertions

Using the revision process described above, one will move, in the presence of
inconsistencies, from a set of sentences to one consisting of probabilistic assertion on
those sentences. To use this as a process for iterated revision one needs to define the
revision process also on the sets of probabilistic assertions. The latter will be more
general and include the categorical sets by identifying a set {φ1, . . . , φn} with the set of
probabilistic assertions {w(φ1) = 1, . . . , w(φn) = 1}.

Notice that in revising Γ = {φ1, . . . , φn}, with a sentence φn+1, the notion of maximal
consistency of Γ ∪ {φn+1} represents an attempt to jointly assign probabilities to these
sentences while remaining as close as possible to their “prior probabilities” (namely,
1). The approach when dealing with probabilistically inconsistent sets of probabilistic
assertions is going to be the same. We shall try to jointly revise the probability
assignments while remaining as close as possible to the prior probabilities, which might

1So d(~x,~1) =
√∑n

i=1(xi − 1)2.
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not necessarily be 1 any more. To this end we first generalise the notion of maximal
consistency given above.

Definition 3.8. Let Γ = {w(φ1) = a1, . . . , w(φn) = an} be a (possibly inconsistent) set
of probabilistic assertions. Minimal change consistency of Γ, ~mcc(Γ), is defined as the
n-vector

~q ∈ {~b ∈ [0, 1]n | there is a probability function W on SL with W (φi) = ~bi, i = 1, . . . , n}

for which d(~q,~a) is minimal, where ~a = (a1, . . . , an) and d is the Euclidean distance.

Proposition 3.9. Let Γ = {w(φ1) = a1, . . . , w(φn) = an} be probabilistically
inconsistent. Then there is a unique ~b ∈ [0, 1]n such that ~mcc(Γ) = ~b.

Proof. Let Λ = {~x ∈ [0, 1]n |There is a probability function w on SL with w(φi) =
xi}. Then Λ is convex. To see this let ~x, ~y ∈ Λ and ~z = t~x+ (1− t)~y for some t ∈ [0, 1].
Since ~x, ~y ∈ Λ, there are probability functions v, w on SL such that v(φi) = ~xi and
w(φi) = ~yi, i = 1, . . . , n. Let u(ψ) = tv(ψ) + (1 − t)w(ψ) for all ψ ∈ SL. Then u is a
probability function on SL and u(φi) = ~zi for i = 1, . . . , n. Thus ~z ∈ Λ. Next notice
that if d is the Euclidean distance then f : [0, 1]n → R defined as f(~x) = d(~x,~a) is a
convex function and so it has a unique minimum on the convex set Λ.

It is immediate from the definition that for a set of categorical sentences Γ, i.e.,
when a1 = . . . = an = 1 then ~mcc(Γ) coincides with ~mc(Γ). Notice also that for
probabilistically consistent Γ = {w(φ1) = a1, . . . , w(φn) = an}, the ~mcc(Γ) = ~a. The
process of revising a set of probabilistic assertions Γ = {w(φ1) = a1, . . . , w(φn) = an}
with the statement w(φn+1) = an+1 is the same as revising a non-probabilistic set of
sentences but with ~mcc(Γ ∪ {w(φn+1) = an+1}) instead of ~mc(Γ ∪ {φn+1}).

Definition 3.10. Let Γ = {w(φ1) = a1, . . . , w(φn) = an}, where {φ1, . . . , φn} ⊂ SL and
φn+1 ∈ SL be such that Γ ∪ {w(φn+1) = an+1} is probabilistically inconsistent2, then
the revision of Γ by w(φn+1) = an+1 is defined as Γ′ = {w(φi) = qi|i = 1, . . . , n + 1}
where ~q = ~mcc(Γ ∪ {w(φn+1) = an+1}).

One thing worth noting here is that, classically there are different ways to eliminate
inconsistencies from a set of sentences. One can, for instance, adopt any of its maximal
consistent subsets, or eliminate inconsistencies in a number of different ways by deleting
different sentences. However, as pointed out above, for a set of categorical sentences
Γ = {φ1, . . . , φn}, ~mcc(Γ) = ~mc(Γ). Thus Proposition 3.10 ensures that there is a
unique way of probabilistically eliminating inconsistency from a set of sentences in the
manner that we propose here.

One can immediately notice that in the revision process described above all the
sentences are given the same priority. This can be readily relaxed. One can modify the
distance used in the definition of ~mcc (or ~mc) to account for a higher degree of reliability

2that is there is no probability function that can simultaneously assign these values to the sentences
in φ1, . . . , φn+1.
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or trust in one or some of the probabilistic assertions that are to be revised. Hence we
can revise the definition of minimum change consistency as

Definition 3.11. Let Γ = {w(φi) = ai | i = 1, . . . , n}. Then ~mcc(Γ), is the n-
vector ~q ∈ {(b1, . . . , bn) | there is a probability function W on SL with W (φi) = bi, i =
1, . . . , n} for which m(~q,~b) :=

√
di(qi − ai)2 is minimal.

We take the assignment of weights di to be a context dependent process. There
are different approaches one might take to this. When Γ is taken as the set of
probabilistic beliefs of an agent, di’s can be regarded as what is referred to as the
degrees of entrenchment of the beliefs in φi, expressing how strongly the agent holds
their (probabilistic) belief in φi compared to their belief in φj , j 6= i. One can achieve
the same goal by taking a more detailed approach using some notion of ordinal ranking.
To see this take the language L(k)3, and either let Γ consist of only quantifier free
sentences, or let k be large enough that L(k) captures a good approximation of the real

world for the context. As described in Section 2, φ
(k)
i , i = 1, . . . , n, can be viewed as

sentences in the propositional language with propositional variables Ri(aj1 , . . . , ajsi ) and
atoms of this language are the sentences of the form∧

j1,...,jsi≤k
R si−ary

Ri∈RL,j∈N+

Ri(aj1 , ..., ajsi )
εj1,...,jsi .

Then, given an ordinal ranking on these atoms, expressing what the agent takes to be
more likely to be the real world, in a way that contradictions are given rank 0, and the
more plausible atoms get assigned a higher ordinal, one can take the coefficients di above
as the highest rank such that there is an atom of that rank consistent with φi. That is
the highest rank of a possible world, of appropriate size, consistent with φi. On other
contextual consideration one might choose to have the coefficients di to represent the
reliability of the source or the process from which the information is acquired, etc.

4. Probabilistic Entailment

We started with the problem of drawing logical inference from an inconsistent set
of premisses. Following the intuition that inconsistencies in the premisses should be
interpreted not as a property of the world but rather as a deficiency of the information,
we proposed that the presence of inconsistencies should be understood as an inadequacy
and hence uncertainty of the information. With this view inconsistencies should be
treated by moving from reasoning in a categorical context to the reasoning in uncertain
ones, hence moving from a categorical premisses to probabilistic (-ally consistent) ones.
Previous section addressed the issue of how to reduce an inconsistent categorical set of
premisses to a consistent set of probabilistic assertions. This however leaves open the

3The language with the same relation symbols as L, say R1, . . . , Rt but with the domain restricted
to {a1, . . . , ak}



Probabilistic Entailment and Reasoning with Inconsistencies 11

question of how one should draw logically valid inferences from these sets of probabilistic
assertions. We now move to this question.

The classical entailment relation is defined as a process that preserves the truth
(given model theoretically). That is the entailment ensure the truth of the conclusion
(in a model) given the truth of the premisses (in that model). In the probabilistic setting
the truth can be identified by assignment of probability 1. However, for probabilities less
than 1 one has to settle for a weaker notion. The precise nature of this weaker notion
seems context dependent but instances of such would be for example one of reliability
or acceptability, which in our setting will be represented by a probability threshold.
The entailment relation for the sets of probabilistic assertions would then be defined by
ensuring the preservation of this weaker notion. Such an entailment relation has been
proposed in [13], by Knight and further studied by Knight [14], Paris [?] and Paris,
Picado and Rosefield [17]. In this section we will extend this entailment relation to first
order languages and will investigate some of its properties. Analogous to [?, 17] we will
give an analysis of this entailment relation in terms of the classical consequence relation
and will look briefly at its generalisation to multiple probability thresholds which can
be used to limit the pathological effect of inconsistencies only to the relevant part of
the premisses. As will be clear shortly, the probabilistic entailment we study provides a
spectrum of consequence relations, allowing for reasoning at different degree of reliability
or acceptability.

4.1. The ηBζ Entailment

If we identify truth by the probabilistic threshold 1, the classical consequence relation
can be read as if all the premisses are reliable with threshold 1, then so is the conclusion.
The weakening of this relation in our setting is captured by allowing for thresholds less
than 1.

Definition 4.1. [13] Let Γ ⊂ SL, ψ ∈ SL and η, ζ ∈ [0, 1].

Γη Bζ ψ ⇐⇒ for all probability functions w on L, if w(Γ) ≥ η then w(ψ) ≥ ζ

The idea here is that as long as one is in the position to assign to each of the sentences
in Γ a probability of at least η, one is also in the position to assign a probability of at least
ζ to the sentence ψ. The intuition for defining such a probabilistic entailment is more
evident when η = ζ are interpreted as the thresholds for acceptance. In this situation
the entailment relation Γη Bη ψ can be read as: as long as we are prepared to accept all
the sentences in Γ we are bound to accept ψ. There are situations, however, where the
context of reasoning justifies different threshold for the assumptions and conclusion.
It can then be immediately observed that for the right value of η this will avoid explosion

on inconsistent premisses, for example {φ,¬φ, ψ}
�

���1/2B1/2¬ψ. To be more precise, one can
avoid the trivialisation of the entailment relation ηBζ as long as one chooses η ≤ mc(Γ).
Thus for the rest of this section we shall restrict ourselves to η ∈ [0,mc(Γ)] whenever we
make a reference to ΓηBζ .
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4.2. Some Properties of ηBζ

Following [17] we now show some elementary properties of ηBζ for the first order case.

Proposition 4.2. For any $Γ = {φ1, . . . , φn} ⊂ SL and ψ ∈ SL,
(i) Γη B0 ψ.
(ii) For ζ > 0, Γ1 Bζ ψ ⇐⇒ Γ � ψ.
(iii) For η > mc(Γ), Γη B1 ψ.
(iv) For ζ > 0, Γ0 Bζ ψ ⇐⇒ � ψ.

Proof. Parts (i) and (iii) are immediate from the definition. Notice that classical
valuations on L are themselves probability functions. Thus for consistent Γ, Γ1 Bζ ψ
implies that v(ψ) ≥ ζ for all valuations v for which v(Γ) = 1. Since ζ > 0 this implies
that v(ψ) = 1 and thus Γ � ψ. If Γ is inconsistent then (ii) follows trivially. Conversely
suppose Γ � ψ and w(Γ) = 1. Let βi, 1 ≤ i ≤ m, enumerate sentences of the form∧n
i=1 φ

εi
i where εi ∈ {0, 1} and φ1

i = φi and φ0
i = ¬φi. Then for any βi such that w(βi) >

0 we have βi � φi for all 1 ≤ i ≤ n since otherwise we will have w(φi) =
∑

βj�φi
w(βj) < 1.

So βi �
∧

Γ and since
∧

Γ � ψ, w(ψ) ≥ w(
∧

Γ) = w(
∧

Γ) =
∑

βj�
∧

Γ = 1 ≥ ζ as

required. For (iv), if 2 ψ then there is a valuation v for which v(ψ) = 0. Since v is also a
probability function and v(φ) ≥ 0 for all φ ∈ Γ, Γ0Bζ will fail for any ζ > 0. Conversely
if Γ0 Bζ ψ fails then there is a probability function w for which w(ψ) < ζ ≤ 1 and thus
2 ψ.

Proposition 4.3. Assume that Γη Bζ ψ. Then
(i) If τ ≥ η and ν ≤ ζ, then Γτ Bν ψ.
(ii) if τ ≥ 0 and η + τ, ζ + τ ≤ 1, then Γη+τ Bζ+τ ψ

Proof. (i) is immediate from the definition. For (ii) suppose that Γη+τ Bζ+τ ψ failed.
Thus there is a probability function w for which w(φ) ≥ η + τ for all φ ∈ Γ but
w(ψ) < ζ + τ . If w(ψ) < ζ we will have that Γη Bζ ψ fails. Otherwise let γ ≥ 0 be such
that

γ < ζ < γ + (ζ + τ − w(ψ)).

Let βi enumerate all the sentences of the form
∧n
i=1 φ

εi
i ∧ ψεn+1 . Pick a βi such that

w(βi) > 0 and βi 2 ψ (such a βi exists otherwise we should have w(ψ) = 1 and Γη+τBζ+τ
ψ will hold). Define

v(βk) =


w(βk).(γ/w(ψ)) if βk � ψ,

w(βk) if βk 1 ψ, βk 6= βi,

w(βi) + w(ψ)− γ if βk = βi

so
∑2n+1

k=1 v(βk) = 1. Using Lemma (3.2), we can find a probability function w′ on SL
such that w′(βi) = v(βi) for i = 1, . . . , 2n. Then we have w′(ψ) =

∑
βi�ψ

w′(βi) =∑
βi�ψ

w(βi).γ/w(ψ) = γ and for φ ∈ Γ we have w(φ) − w′(φ) ≤
∑

βi�φ∧ψ w(βi)(1 −
γ/w(ψ)) ≤ w(ψ) − γ since all other βk increase in probability under w′, w′(φ) ≥ η +
τ − (w(ψ) − γ) > η. So we have w′(φi) > η while w′(ψ) = γ < ζ which contradicts
Γη Bζ ψ.
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The next result shows that the entailment relation ηBζ does not depend on the
choice of language. More precisely, let L1, L2 be finite first order languages and such
that Γ ⊂ SL1 ∩ SL2 and ψ ∈ SL1 ∩ SL2, then w1(ψ) ≥ ζ for every probability function
w1 on SL1 such that w1(Γ) ≥ η if and only if w2(ψ) ≥ ζ for every probability function
w2 on SL2 such that w2(Γ) ≥ η.

Proposition 4.4. The relation ηBζ is language invariant.

Proof. Let Γ ⊂ SL and ψ ∈ SL such that Γη Bζ ψ in the context of the language L,
i.e., for every probability function w on SL if w(Γ) ≥ η then w(ψ) ≥ ζ. It is enough to
show that if L′ is a language such that L ⊂ L′ then for every probability function w′ on
SL′, if w′(Γ) ≥ η then w′(ψ) ≥ ζ and conversely.
For the forward direction assume that w′ is a probability function on SL′ such that
w′(Γ) ≥ η but w′(ψ) < ζ. Let w be the restriction of w′ to SL. Then w will be
a probability function that agrees with w′ on Γ and ψ and thus Γη Bζ ψ will fail in
the context of the language L. Conversely let w be a probability function on SL such
that w(Γ) ≥ η but w(ψ) < ζ. Let Γ = {φ1, . . . , φn} and as before let βi enumerate
the sentences of the form

∧n
i=1 φ

εi
i ∧ ψεi+1 and we have that w(ψ) =

∑
βi�ψ

w(βi) < ζ.
Since L ⊂ L′, we have βi ∈ SL′ and since w is a probability function we have that∑2n+1

i=1 w(βi) = 1. Using lemma 3.2, we can find a probability function w′ on SL′ with
w′(βi) = w(βi). With the notation of lemma 3.2, for φ ∈ Γ,

w′(φ) =
2n+1∑
i=1

w(βi)u(φ|βi) =
∑
βi�φ

w(βi) = w(φ) ≥ η

and

w′(ψ) =

2n+1∑
i=1

w(βi)u(ψ|βi) =
∑
βi�ψ

w(βi) = w(ψ) < ζ.

Hence Γη Bζ ψ fails in the context of language L′.

With this in place we can now talk about making logical inference from an
inconsistent set of premisses. Let Γ � ⊥ and η = mc(Γ). As pointed out in the
previous section η can be regarded as the highest threshold of reliability that can be
jointly satisfied by all sentences in Γ. One can then devise an spectrum of entailment
relations ηBζ for ζ ∈ [0, 1]. Given the intuition we started with it seems more reasonable
however to limit the spectrum to ζ ∈ [η, 1]. With ζ = 1 one would be effectively define
the logical inference from Γ as the set of sentences that will be categorically true if
one was to accept sentences in Γ with the highest possible threshold. Similarly values
of ζ ∈ [η, 1) can correspond to more relaxed criteria of acceptability for what can be
considered as a consequence of Γ. Given a set of sentences Γ ⊂ SL, let η = mc(Γ) and
define Γ p≈ζ ψ ⇐⇒ Γη Bζ ψ. Notice that if we denote the set of consequences of Γ at

reliability degree ζ by CζΓ then for ζ ≤ δ we have CδΓ ⊆ C
ζ
Γ.
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4.3. Generalising to Multiple Thresholds; ~ηBζ

What is missing from this picture so far is the promise of an entailment relation that
can limit the effect on inconsistencies to only the part of reasoning that is relevant to
them. For this we should look at the ~mc(Γ) and generalise the entailment relation to
allow for multiple thresholds.

Definition 4.5 ([15]). Let Γ = {φ1, . . . , φn} ⊂ SL, ψ ∈ SL and ~η ∈ [0, 1]n, ζ ∈ [0, 1].
Define

Γ~η Bζ ψ ⇐⇒ for all probability functions w on L,
if w(φi) ≥ (~η)i for i = 1, . . . , n then w(ψ) ≥ ζ.

Let Γ = {φ1, . . . , φn} be an inconsistent set of sentences. Notion of ~mc(Γ), introduced
in the previous section, was meant to capture the highest probability that can be
simultaneously assigned to sentences in Γ, capturing the highest degree of reliability
that one can consider for them. In this sense the entailment Γ ~mc(Γ)Bζ allows us to relax
the notion of logical consequence of a set Γ by considering not only the models in which
sentences in Γ hold categorically (of which there are none since Γ is inconsistent) but
extend to probabilistic models in which sentences in Γ are as reliable as possible. The
next result shows how this can be employed to limit the effect of inconsistencies to only
reasoning from the relevant part of the premisses.

Proposition 4.6. Let Π ⊆ P(Γ) be the set of maximally consistent subsets of Γ and let
∆ =

⋂
Π, then ( ~mcc(Γ))i = 1 whenever φi ∈ ∆. Indeed ∆ can be regarded as the part of

Γ to which the inconsistency is irrelevant.

Proof. Let ∆ = {φ1, . . . , φt} =
⋂

Π, Γ′ = Γ \ ∆ = {ψ1, . . . , ψn} and ~mc(Γ′) = ~η =
(η1, . . . , ηn). Then there is a probability function u on SL such that u(ψi) = ηi. Let
αi, i = 1, . . . ,m ≤ 2n, enumerate all the satisfiable sentences of the form

∧n
k=1 ψ

εk
k and

sentences βi,~ε enumerate all the sentences of the form

βi,~ε = αi ∧
t∧

k=1

φ
(~ε)k
k .

Define v(βi,~ε) = u(αi) if ~ε = ~1 and v(βi,~ε) = 0 otherwise. Then
∑

i,~ε v(βi,~ε) =∑2m

i=1 v(αi) = 1.
By Lemma 3.2 then there is a probability function w on SL such that w(βi,~ε) =

v(βi,~ε). Fix the order of sentences in Γ as {ψ1, . . . , ψn, φ1, . . . , φt}, and let ~w =
(w(ψ1), . . . , w(ψn), w(φ1), . . . , w(φt)). We now show that ~w = ~mc(Γ). This will complete
the proof since w(ψi) = u(ψ) = ηi, i = 1, . . . , n and w(φj) = 1, j = 1, . . . , t. So w assigns
probability 1 to all sentences in ∆.

To see that ~w = ~mc(Γ) let v be any probability function on SL that disagrees with
w on some sentences in Γ so ~v = (v(ψ1), . . . , v(ψn), v(φ1), . . . , v(φt)) 6= ~w, then

d(~v,~1) =

√√√√ n∑
i=1

(~vi − 1)2 +

n+t∑
j=n+1

(~vj − 1)2 >

√√√√ n∑
i=1

(ηi − 1)2 + 0
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=

√√√√ n∑
i=1

(~wi − 1)2 +
n+t∑

j=n+1

(~wj − 1)2 = d(~w,~1)

where the strict inequality comes from uniqueness of ~mc(Γ′) and the fact that ~v 6= ~w.

This ensures that ~mc(Γ) assigns probability 1 to all sentences that are not affected
by the inconsistency in Γ. That is for any ψ ∈ SL such that ∆ � ¬ψ, Γ 6 ~ηBζψ for all
ζ > 0 and if ∆ � ψ then Γ~η Bζ ψ for all ζ ∈ [0, 1].

Example 4.7. Consider L1 and L2 to be disjoint languages with L = L1 ∪ L2 and let
Γ1 ⊂ SL1 and Γ2 ⊂ SL2 and Γ = Γ1 ∪ Γ2 ⊂ SL. Let Γ1 = {φ1, . . . , φn} be inconsistent
with ~mc(Γ1) = (η1, . . . , ηn) and assume that Γ2 = {ψ1, . . . , ψm} is consistent and so
~mc(Γ2) = (1, . . . , 1). Then taking Γ = {φ1, . . . , φn, ψ1, . . . , ψm} in this fixed order, we

have ~η = ~mc(Γ) = (η1, . . . , ηn, 1, . . . , 1). Define Γ p≈ζ ψ ⇐⇒ Γ~ηBζ ψ. Again, we have a
spectrum of entailment relations from the set Γ each at a different degree of reliability in
[0, 1]. Now for θ ∈ SL2 ⊂ SL we have Γ p≈ζ θ ⇐⇒ Γ2 � θ, thus reducing the inference
on sentences of L2 where the relevant knowledge is consistent to the classical inference,
hence limiting the pathological effect of the inconsistency only to inferences on sentences
of L1 where the knowledge is inconsistent.

5. Conclusion

One approach to deal with inconsistencies is motivated by reasoning in non-ideal contexts
and is based on the assumption that the inconsistent evidence does not point out the
inconsistencies of the reality under investigation but point to an inconsistent evaluation of
facts. Receiving contradictory information should thus cast doubts on those evaluations.
In this view, receiving some piece of information φ while having ¬φ in our knowledge
base has the effect of changing the (categorical or probabilistic) evaluation of φ (and
thus ¬φ). In case of categorical knowledge (with truth values of zero or one), this means
moving from categorical belief in φ or ¬φ to some uncertain evaluation of them and in
case of probabilistic knowledge this would entail re-evaluation of the probabilities. This
approach, as we followed here, is based on two assumptions,

• the inconsistencies are identified with the uncertainty that they induce in the
information set

• the information is assumed to be as reliable as possibly allowed by the consistency
considerations.

Hence, receiving inconsistent information will change the context of reasoning from a
categorical one to an uncertain one that is expressed probabilistically. We built upon
the work introduced by Knight [13, 14, 15] and argued that it is possible to do so in a
way that allows limiting the pathological effect of an inconsistency to the part of the
reasoning that is relevant to it.
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How the change induced by the inconsistency is carried out in the information set
depends on one’s approach to the weighting of the new information with respect to
the old information. For example, if we take the new information to be infinitely more
reliable than the old, we will end up with the same retraction and expansion process as
in the AGM. But as we have seen, one can also devise the change in a manner that allows
a wider range of epistemic attitudes towards the new information in comparison to the
old. Since the inconsistencies will reduce our categorical knowledge to probabilistic one,
any inference based on such knowledge will essentially be probabilistic. We then studied
a probabilistic entailment relation on propositional languages, introduced by Knight,
and showed that it can be extended to the first order case in a very straight forward
manner. The idea on this entailment relation is to generalise the classical consequence
relation from a relation that preserves the truth to one that preserves, or more precisely
ensures, some degree of reliability.
It is also worth mentioning that one can choose a different route altogether and deal
with the inconsistent evidence by adopting a richer language in which the source, and/or
reliability of information is also coded in the information. Thus, for example, φ received
from source S is replaced by (φ)S to the effect that “according to S, φ”. In this
approach receiving φS and (¬φ)S′ poses no contradiction any more, while contradictory
information from the same source has the effect of reducing the reliability of the source.
The evaluation of information should then depend on the reliability of the sources. This
approach however can, at least to some extent, be covered by our setting. The simplest
case we discussed corresponds to dealing with equally reliable pieces of information.
And the notion of maximal consistency can be regarded as the highest reliability that
one can assign to a source that gives contradictory information. The case of prioritised
evidence can cover dealing with (possibly inconsistent) information from sources that
have different reliabilities. The approach given here, however, has the advantage of
avoiding unnecessary complication of the language.
Of course our notion of ”closeness” when revising the inconsistent theories into
probabilistically consistent ones can be subject to debate. The use of Euclidean distance
was motivated by trying to choose the closest values for all sentences simultaneously.
It would be interesting to investigate if other notions of ”closeness” can improve this
approach.
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