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Abstract. We describe a method for extending an inference process for
propositional probability logic to predicate probability logic in the case
where the language in purely unary and show that the method is well
defined for the Minimum Distance and CM∞ inference processes.
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1 Motivation

In this paper, which extends [3], we consider the following problem

Given that we know only that a probability function w on a predicate
language L satisfies the finite set K of constraints

q∑

i=1

cijw(θi) ≤ bj , j = 1 , . . . , m

where the θi are sentences of L and the cij , bj ∈ R what value should be
given to w(θ), for a sentence θ of L?

in the limited case where L has just finitely many unary predicate symbols
P1, . . . , Pn and countably many constant symbols a1, a2, . . . (which are intended
to exhaust the universe) but no function symbols nor equality.

The relevance of this question for AI is that we imagine an agent whose knowl-
edge consists of just K wishing to nevertheless assign probabilities to other sen-
tences of the language. Indeed if, as seems quite reasonable, we require these
assigned values to be consistent as a whole with K and w being a probability
function then the question amounts to asking how one should best pick a prob-
ability function w on L, that is a function w on the set SL sentences of the
language L satisfying that for all θ,φ, ∃xψ(x) ∈ SL
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(P1 ) If ! θ then w(θ) = 1

(P2) If ! ¬(θ ∧ φ) then w(θ ∨ φ) = w(θ) + w(φ)

(P3) w(∃xψ(x)) = limr→∞w(
∨r

j=1 ψ(aj)),

given that w must also satisfy K.
A number of possible answers to such a question have been proposed both for

propositional and predicate languages, for example [1 ], [2], [3], [9], [1 0], [1 1 ], [1 7],
[1 9], [20], [21 ], [22], based on various underlying assumptions about the form and
origin of the knowledge and the probability function w, see [3] for a discussion.
As in that paper we shall assume that w is a subjective probability function
corresponding to the beliefs of some agent and that the assigning agent intends
to act rationally or logically (though we shall not make any attempt to define
these terms here, instead simply leaving it to the reader to decide to what extent
our proposals fulfill that intention).

The method we shall describe in this note extends a well developed approach
(see [1 7, Chapter 6]) for the analogous problem in the propositional case to the
limited predicate situation when the language L is purely unary. This same path
has already been trodden in [3] in a special case (viz. the Maximum Entropy
Inference Process). The main novelty in this paper is in giving a general result
which applies to a wide range of inference processes.

In the next section we explain, in the specific case of the Minimum Distance
Inference Process (see [1 7, p76]), this method for picking a probability function
satisfying K and the key limit result, which we prove in the subsequent section.
In the final section we consider how this specific case generalizes.

2 The Method

The idea, as explained in [3], for assigning a probability to a sentence
θ(a1, a2, . . . , am) from SL is that this should be the limit as r tends to ∞ of
the probability that one would assign to it being true in a finite structure with
universe { ai | i ≤ r }. In other words we wish to approximate our beliefs in what
holds in a universe with denumerably many individuals a1, a2, . . . with our beliefs
of what holds in its large finite substructures.

In more detail let Lk be the sublanguage of L with the same unary predicate
symbols P1, . . . , Pn but only the constant symbols a1, ..., ak and let Q1, ..., QJ ,
J = 2n enumerate all formulas of the form

P ϵ1
1 (x) ∧ P ϵ2

2 (x) ∧ ... ∧ P ϵn
n (x) (1 )

where the ϵ1, ϵ2, . . . , ϵn ∈ {0, 1 } and P 1 = P, P 0 = ¬P . Let Lr be the proposi-
tional language with the propositional variables Pj(ai), i = 1 , ..., r j = 1 , ..., n.
For k < r define ()(r) : SLk → SLr inductively as follows:

Pj(ai)(r) = Pj(ai),

(¬φ)(r) = ¬φ(r),
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(φ ∨ θ)(r) = φ(r) ∨ θ(r),

(φ ∧ θ)(r) = φ(r) ∧ θ(r),

(∃xψ(x))(r) =
r∨

i=1

ψ(ai)(r).

Let K(r) be the result of replacing every sentence θi in K by θ(r)
i . As indicated

above we now wish to make a ‘rational’ choice N(K(r)) of a probability function
satisfying K(r) and thence define our ‘rational’ probability function w satisfying
K by

w(θ) = lim
r→∞

N(K(r))(θ(r)).

Apart from the question of whether this limit even exists (which we will confront
in the next section), and even then satisfies K, we need to justify our assignment
of probabilities for these finite substructures satisfying the K(r). Fortunately
however we are now essentially working in the propositional calculus and a num-
ber of such assignment processes, in this context called Inference Processes, N ,
for picking a probability function N(K) (or set of functions, see [22]) satisfying
a probabilistic propositional knowledge base K have been studied, and to some
extent justified, see for example [1 7, Chapter 6].

Currently the generally most accepted inference process according to this
criterion of rationality is the so called Maximum Entropy Inference Process, and
indeed the programme we are advocating in this paper has already been carried
out for maximum entropy in [3]. What we plan to do here is to retread this path
using the Minimum Distance Inference Process, MD, and then point out how
the necessary steps actually hold for a wide range of other inference processes.

Before proceeding with the proof we need to recall the definition of MD. Given
a finite proposition language, say with propositional variables p1, p2, . . . , pk, a
probability function v on the sentences of this language is determined by (and
will be identified with) the vector

⟨v(β1), v(β2), . . . , v(β2k)⟩ ∈ D2k = {⟨x1, x2, . . . , x2k⟩ |xi ≥ 0,
∑

i

xi = 1 }

where the βj run through the atoms

pϵ11 ∧ pϵ22 ∧ . . . ∧ pϵkk .

Given a non-empty closed and convex subset C of D2k we define MD(C) to
be that (unique) probability function ⟨x1, x2, . . . , x2k⟩ ∈ C for which

∑
i x2

i

is minimal. Equivalently that point in C closest in Euclidean distance to the
probability function ⟨2−k, 2−k, . . . , 2−k⟩, which we can think of as representing
complete ignorance.

3 The Existence of the Limit

The following results appear in [3] (also there as Lemma 1 , Lemma 2 and The-
orem 3) and we shall use them in what follows.
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Lemma 1. If θ,φ ∈ SLk and k ≤ r and θ ≡ φ then θ(r) ≡ φ(r).

Let αi for i = 1 , ..., Jk enumerate the exhaustive and exclusive set of sentences
of the form

k∧

i=1

Qmi(ai)

where the Qi are as in (1 ).

Lemma 2. Any sentence θ ∈ SLk is equivalent to a disjunction of consistent
sentences φi,ϵ of the form

αi ∧
J∧

j=1

(∃xQj(x))ϵj

where the ϵj ∈ {0, 1 } and ! ¬(φi,ϵ ∧ φj,δ) whenever ⟨i, ϵ⟩ ̸= ⟨j, δ⟩.

Theorem 3. K(r) is a satisfiable subset of SLr for large r.

Theorem 4. For θ ∈ SL:

w(θ) = lim
r→∞

MD(K(r))(θ(r))

exists and is a probability function on L satisfying K.

Proof. Assume throughout that r is large so that Theorem 3 applies. By
Lemma 2 every sentence θ(a1, ..., ak) ∈ SL is equivalent to a disjunction of
consistent sentences of the form

φi,ϵ = αi ∧
J∧

j=1

(∃xQj(x))ϵj .

If αi =
∧k

j=1 Qmj (aj) then let

Ai = {mj | j = 1 , ..., k }, Pϵ = { j | ϵj = 1 }, Pi,ϵ = { j | j ∈ Pϵ and j /∈ Ai }

so

φ(r)
i,ϵ = αi ∧

J∧

j=1

(
r∨

i=1

Qj(ai)

)ϵj

will be equivalent to

∨

mj∈Pϵ for j=k+1,...,r

Pi,ϵ⊆{ mj | k+1≤j≤r}

⎛

⎝αi ∧
r∧

j=k+1

Qmj(aj)

⎞

⎠ . (2)

If we set pϵ = |Pϵ| and pi,ϵ = |Pi,ϵ| then the number of disjuncts (i.e. atoms of
Lr) in (2) will be

pi,ϵ∑

j=0

(− 1 )j

(
pi,ϵ

j

)
(pϵ − j)r−k.
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Let w(r) = MD(K(r)). Since MD satisfies renaming (see [1 7, p95]), for every
atom ζ in the disjunction in (2)

w(r)(ζ) =
w(r)(φ(r)

i,ϵ )
∑pi,ϵ

j=0(− 1 )j
(

pi,ϵ

j

)
(pϵ − j)r−k

.

Hence if the ζj enumerate the atoms of Lr,

Jr∑

j=1

(w(r)(ζj))2 =
∑

i,ϵ

⎛

⎝ w(r)(φ(r)
i,ϵ )

∑pi,ϵ

j=0(− 1 )j
(

pi,ϵ

j

)
(pϵ − j)r−k

⎞

⎠
2

=
∑

i,ϵ

(w(r)(φ(r)
i,ϵ ))2

∑pi,ϵ

j=0(− 1 )j
(

pi,ϵ

j

)
(pϵ − j)r−k

.

From this it follows that w satisfying K(r) is equivalent to some set of linear
inequalities ∑

i,ϵ

ci,ϵ,jw
(r)(φ(r)

i,ϵ ) ≤ bj, j = 1 , . . . , m (3)

where the ci,ϵ,j and bj do not depend on r. Hence the vector of values w(r)(φ(r)
i,ϵ )

(as i, ϵ vary) is that vector xi,ϵ ≥ 0 satisfying (3) for which

∑

i,ϵ

x2
i,ϵ

∑pi,ϵ

j=0(− 1 )j
(

pi,ϵ

j

)
(pϵ − j)r−k

(4)

is minimal.
Let c1 < c2 < ... < ck be the distinct values for pϵ which occur here and define

the sets
T0 = {x |

∑

i,ϵ

ci,ϵ,jw
(r)(φ(r)

i,ϵ ) ≤ bj, j = 1 , . . . , m}

and
Tj+1 = {x ∈ Tj |

∑

i,pϵ=cj+1

x2
i,ϵ is minimal }

for 0 ≤ j < k. Since these Tj are closed and convex any two points in Tj agree
on those coordinates ⟨i, ϵ⟩ with pϵ ≤ cj . Hence Tk consists of a single point, X
say. Notice that this point does not depend on r.

Since X ∈ T0 by (4)

∑

i,ϵ

(w(r)(φ(r)
i,ϵ ))2

∑pi,ϵ

j=0(− 1 )j
(

pi,ϵ

j

)
(pϵ − j)r−k

≤
∑

i,ϵ

X2
i,ϵ

∑pi,ϵ

j=0(− 1 )j
(

pi,ϵ

j

)
(pϵ − j)r−k

. (5)

The w(r)(φ(r)
i,ϵ ) have a convergent subsequence (as r →∞), which for notational

convenience we shall assume is the whole sequence, say
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Yi,ϵ = lim
r→∞

w(r)(φ(r)
i,ϵ ).

We shall show that Yi,ϵ = Xi,ϵ in turn for each of the cases pϵ = c1, c2, . . . , ck.
Firstly for the case of c1, multiplying (5) by cr−k

1 and taking the limit as
r →∞ gives ∑

i,pϵ=c1

Y 2
i,ϵ ≤

∑

i,pϵ=c1

X2
i,ϵ

and hence for such ϵ, Yi,ϵ = Xi,ϵ by definition of T1.
To handle the case pϵ = c2 and beyond we will need the following lemma.

Lemma 5. Let B ⊆ Rm be a convex polyhedron with corners a1, a2, ..., aq. Let
c ∈ B and let f : Rm → Rn be the projection function given by

f ⟨x1, x2, ..., xm⟩ = ⟨x1, x2, ..., xn⟩

Suppose that yj ∈ Rn for j ∈ N are such that f−1(yj) ∩B ̸= ∅ for all j and

limj→∞yj = f(c).

Then there is a subsequence zj ∈ B converging to c such that the f(zj) form a
subsequence of the yj .

Proof. Any point in B can be written as a linear combination

c +
q∑

i=1

λ iei,

where ei = ai − c and the λ i ≥ 0 with sum ≤ 1 , so any x ∈ f(B) can be written
as

f(c) +
q∑

i=1

λ if(ei)

with λ i > 0 with sum at most 1 , where we drop any terms with λ i = 0 (but to
avoid messy notation assume there are none, and that this is true also for the
yj , otherwise pick a suitable subsequence with the same zero terms throughout).
Now for each yj pick one such presentation:

yj = f(c) +
q∑

i=1

λ ijf(ei)

and set

zj = c +
q∑

i=1

λ ijei.

It is obvious that the f(zj) form a subsequence of the yj . To show that limj→∞
zj = c it is enough to show that limj→∞

∑q
i=1 λ ijei = 0. To this end we will

show that limj→∞ λ ij = 0. We know that limj→∞ yj = f(c) and so we have
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lim
j→∞

q∑

i=1

λ ijf(ei) = 0.

Let

tj =
q∑

i=1

λ ijf(ei),

so
lim

j→∞
tj = 0

and tj is in the convex polyhedron with corners f(ei). For each tj pick a smallest
set f(ei1), ..., f(eih) such that:

tj =
h∑

k=1

λ ikjf(eik) (6)

with λ ikj ≥ 0 and
∑

ik
λ ikj ≤ 1 . By taking a subsequence if necessary we can

assume that the tj all have the same smallest set and that λ ikj → λ ik as j →∞.
For simplicity of notation we assume that these smallest sets are all the ei, so
(6) will become

tj =
q∑

i=1

λ ijf(ei) (7)

and

0 =
q∑

i=1

λ if(ei). (8)

Now if all the λ i = 0 we have the required result, otherwise suppose some of the
λ i > 0. Then from (7) and (8) we will have:

tj =
q∑

i=1

(λ ij − νλ i)f(ei) (9)

Now as we increase ν from 0 one of the coefficients in (9) will become zero while
others are still non-negative and this contradicts the choice of smallest set, and
so is a contradiction. Hence we must have that all the λ i = 0, as required. "

To continue the proof of Theorem 4 suppose that Yi,ϵ ̸= Xi,ϵ for some pϵ = c2.
We have already shown that we do have equality when pϵ = c1 so by Lemma 5
there is a sequence of vectors z(r)

i,ϵ ∈ T0 such that for each i, ϵ

lim
r→∞

z(r)
i,ϵ = Xi,ϵ

and the z(r)
i,ϵ form a subsequence of the w(r)(φ(r)

i,ϵ ) for pϵ = c1. For simplicity of
notation we will again assume that this subsequent is the whole sequence.



256 J.B. Paris and S.R. Rad

By definition of w(r),

∑

i,ϵ

(w(r)(φ(r)
i,ϵ ))2

∑pi,ϵ

j=0(− 1 )j
(

pi,ϵ

j

)
(pϵ − j)r−k

≤
∑

i,ϵ

z2
i,ϵ

∑pi,ϵ

j=0(− 1 )j
(

pi,ϵ

j

)
(pϵ − j)r−k

.

The parts of these sums for pϵ = c1 are equal, so can be cancelled out. Multi-
plying both sides of what remains by cr−k

2 and taking the limit as r → ∞ we
obtain, just as in the case of c1 that

∑

i,pϵ=c2

Yi,ϵ ≤
∑

i,pϵ=c2

Xi,ϵ.

But since, as we have already shown, the vector Yi,ϵ is in T1 this inequality must
also go the other way since the vector Xi,ϵ is in T2. We conclude as required
that Yi,ϵ = Xi,ϵ whenever pϵ = c2. Similar arguments give the same result for
c3, c4, . . . , ck, as required.

Finally, since any linear identity satisfied by all the w(r) eventually will be sat-
isfied by their limit it is clear that this limit is a probability function
satisfying K. "

4 Some Generalizations

So far we have proved Theorem 4 for a specific inference process, Minimum Dis-
tance, but in fact analogous proofs give the the result too for theMaximumEntropy
Inference Process (already proved in [3]), the Limiting Centre of Mass Inference
Process (see [1 7, p73-74]) and the spectrum of other inference processes based on
generalized Renyi Entropies. [For further results along these lines see [23].]

In our original question we imagined an agent wishing to assign probabilities
to all sentences on the basis of qualified knowledge K. A special case of this
is when K simply amounts to the assertion that some consistent, finite, set of
axioms T hold categorically, i.e.

K = {w(φ) = 1 |φ ∈ T }.

In this case our question might be reformulated as

Given a finite (consistent) set T of first order axioms what should we
take as the default or most normal model of T ? More precisely, if we
know only that the structure M with universe { ai | i ∈ N } is a model of
T what probability should we give to a sentence θ(a1, a2, . . . , an) being
true in M?

There are various approaches one might take to this question depending on the
interpretation of ‘most normal’. For example within a model theory context one
might consider a prime model, where such exists, to be the ‘most normal’ in the
sense of being the smallest and the canonical example (see for example [5, p96],
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[8, p336]). On the other hand one might feel that if possible the default model
should be existentially closed (see [24] for a precise definition) in the sense that
any quantifier free formula which could be satisfied in a superstructure model
of T was already satisfied in the default model. Alternatively we might consider
arguing via the distribution of models, see for example [1 ], [2], [9], [1 0], [1 1 ], in
order to make the default the ‘average’ model.

Furthermore, at first sight it would appear that there was already a rather
well studied approach to this problem via Inductive Logic. In that subject, see
for example [4], [7], [1 3], [1 6], this same problem with T = ∅ is quite central.
So it might seem that a solution to our problem here could be had by simply
taking a rationally justified probability function w championed within Inductive
Logic for the case of a completely empty knowledge base and then condition-
ing w on

∧
T . The first problem with that approach however is that there is

currently no clearly favored rational solution to the Inductive Logic problem.
But more seriously, those solutions w which have been proposed generally give
non-tautologous universal sentences probability 0, see for example [1 2], [1 4], [1 5],
[1 6, p22-23], [1 7, p1 96-1 97], and once w(

∧
T ) = 0 such conditioning will not be

possible.1,2

However if we assume that the sentences of T come from the purely unary
language of the preceding sections then the method described in this paper,
based on any of the above inference processes, indeed in this simple case of
categorical knowledge, K = {w(φ) = 1 |φ ∈ T }, based on any inference process
just satisfying the Renaming Principle, can be applied, and in fact always yield
the same answer. Namely that, in the notation of the proof of Theorem 4, if
ϵ1, . . . , ϵs are all the vectors ϵ for which

∧J
j=1(∃xQj(x))ϵj is consistent with

T and amongst which pϵ takes its largest value then w(θ(a1, . . . , ak)) = H/K
where

K = |{φi,ϵr |φi,ϵr is consistent with
∧

T , 1 ≤ i ≤ Jk, 1 ≤ r ≤ s }|,

H = |{φi,ϵr |φi,ϵr is consistent with θ(a1, . . . , ak)∧
∧

T ,1 ≤ i ≤ Jk, 1 ≤ r ≤ s }|.

In particular then w gives probability 1 to

s∨

i=1

J∧

j=1

(∃xQj(x))ϵ
i
j ,

1 It is true that proposals have been made for solutions to the Inductive Logic problem
which give some non-tautologous universal sentences non-zero probability, see for
example [6], [12], [14], [15], [18]. However they seem (to us) too ad hoc to be seriously
considered ‘logical’.

2 This apparent discontinuity between the cases when T =/̸= ∅ is intriguing – the
method we shall apply in this paper still works when T = ∅ but gives an unsatis-
factory solution to the inductive logic problem, unsatisfactory in that it corresponds
to the so called completely independent solution which entertains no induction i.e.
learning by example, see for example [17, p172].
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(and probability 1 /s to each of the disjuncts), thus exclusively favoring those
models M of T in which as many of the Qj are satisfied as possible, that is the
existentially closed models of T .

It would of course be nice to extend this approach (or develop an alternative)
to more than just these rather trivial unary languages. For example to the theory
saying that the relation < is transitive. In this case what is a ‘sensible’ probability
to even give to a1 < a2 ? Certainly the simple method suggested here fails, but
whether it can be suitable adapted to make it more applicable, whilst at the
same time retaining credibility in relation to the original philosophical question
apparently remains to be investigated.
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