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Abstract

According to the objective Bayesian approach to inductive logic, pre-
misses inductively entail a conclusion just when every probability func-
tion with maximal entropy, from all those that satisfy the premisses,
satisfies the conclusion. However, when premisses and conclusion are
constraints on probabilities of sentences of a first-order predicate lan-
guage, it is by no means obvious how to determine these maximal entropy
functions. This paper makes progress on the problem in the following
ways. Firstly, we introduce the concept of an entropy limit point and
show that, if the set of probability functions satisfying the premisses
contains an entropy limit point, then this limit point is unique and is
the maximal entropy probability function. Next, we turn to the special
case in which the premisses are simply sentences of the logical language.
We show that if the uniform probability function gives the premisses
positive probability, then the maximal entropy function can be found by
simply conditionalising this uniform prior on the premisses. We gener-
alise our results to demonstrate agreement between the maximal entropy
approach and Jeffrey conditionalisation in the case in which there is a
single premiss that specifies the probability of a sentence of the language.
We show that, after learning such a premiss, certain inferences are pre-
served, namely inferences to inductive tautologies. Finally, we consider
potential pathologies of the approach: we explore the extent to which
the maximal entropy approach is invariant under permutations of the
constants of the language, and we discuss some cases in which there is
no maximal entropy probability function.

1 Introduction

Inference under uncertainty remains one of the challenges of our time. While
there is widespread agreement that probabilities are well suited to capture un-
certainty and that Bayesian and Jeffrey conditionalisation are key principles of
rationality, there is significant disagreement about the proper choice of proba-
bilities and their use. One prominent approach to uncertain inference appeals
to the Maximum Entropy Principle of Jaynes (1957). This selects a proba-
bility function, from all those that agree with the available evidence, that is
as equivocal as possible in the sense that it has maximum Shannon entropy
(Shannon, 1948). The Maximum Entropy Principle is ofte employed as part of
an objective Bayesian approach to inference (Jaynes, 2003; Williamson, 2010).
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The use of the Maximum Entropy Principle on finite domains is well-
understood. A number of axiomatic characterisations highlight some of its most
important properties, such as irrelevance of extraneous information, indepen-
dence in the absence of evidence of dependence, and invariance under uniform
refinements of the underlying finite domain (Paris and Vencovská, 1990, 1997;
Paris, 1994, 1998). Furthermore, MaxEnt inference is known to agree on finite
domains with what one might call ‘baseline rationality’: Bayesian and Jeffrey
conditionalisation turn out to be special cases of MaxEnt inference (Williams,
1980). While Jeffrey conditionalisation can only deal with a single uncertain
premiss at a time, of the form P (F ) = c, MaxEnt inference can handle multiple
uncertain premisses of more complex forms simultaneously. Given a fixed finite
domain and premisses of a suitable form, MaxEnt inference introduces an ob-
jective relation between premisses and conclusions, independent of the inferring
agent. This objectivity facilitates the implementation of MaxEnt inferences in
algorithms and automated systems.1

The application of MaxEnt to infinite domains is much less well understood.
Firstly, axiomatic characterisations have yet to be put forward. Second, Max-
Ent inference is only known to agree with Jeffrey conditionalisation on certain
infinite domains that lack a logical structure (Caticha and Giffin, 2006). The
focus of this paper is to shed some light on the application of MaxEnt to infinite
domains—in particular, to its use as semantics for objective Bayesian inductive
logic on infinite predicate languages.

There are two different explications of MaxEnt on infinite predicate lan-
guages. One, due to Jeff Paris and his co-workers, takes limits of maximum
entropy functions on finite sublanguages (Barnett and Paris, 2008; Rafiee Rad,
2009; Paris and Rafiee Rad, 2010; Rafiee Rad, 2018, 2021). The second ex-
plication considers maximal entropy probability functions defined on the in-
finite language as a whole (Williamson, 2008; Landes and Williamson, 2015;
Williamson, 2017; Rafiee Rad, 2017; Landes, 2021a). The limit approach pro-
vides a means to determine the probabilities for MaxEnt inference. However,
this construction has problems: in some cases, it does not yield an answer at all
(Rafiee Rad, 2009; Paris and Rafiee Rad, 2010); in other cases the constructed
probabilities fail to satisfy the given premisses (Landes, 2021b). The maximal
entropy approach can be used in a wider range of situations (Rafiee Rad, 2009,
2017), but the approach is less constructive and it is less clear how to determine
maximal entropy probability functions. It has however been conjectured that
both approaches agree where the limit approach is well defined (Williamson,
2017; Landes et al., 2021).

In this paper we study the second of these two approaches: the maximal
entropy approach. We first give a method for determining the maximal entropy
probability function in many general scenarios, by introducing the concept of an
entropy limit point (Theorem 12). Then we show that the approach generalises
both Bayesian conditionalisation (Theorem 30) and Jeffrey conditionalisation
(Theorem 37). This not only clarifies which probabilities the maximal entropy

1Note however that inference using MaxEnt can be computationally complex in the worst
cas—see Paris (1994, Chapter 10) and Pearl (1988, p. 463), and also Goldman (e.g., 1987);
Goldman and Rivest (e.g., 1988); Ormoneit and White (e.g., 1999); Balestrino et al. (e.g.,
2006); Chen et al. (e.g., 2010); Landes and Williamson (e.g., 2016). We will not be concerned
with computational complexity in this paper.
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approach picks out, but also gives a simple way to determine these probabilities
and shows that the maximal entropy approach agrees with baseline rationality.

We then turn to general features of the maximal entropy approach. We see
that certain inferences drawn in the absence of any premisses—inferences to
inductive tautologies—are preserved when a premiss is added (§7). We show
that while the notion of comparative entropy used to define the maximal en-
tropy probability functions can depend on the order of the constant symbols
(Proposition 44), this order is rendered irrelevant in all cases in which the
maximal entropy approach simplifies to Bayesian or Jeffrey conditionalisation
(Theorem 45, Corollary 46). Finally, it becomes clear why the maximal en-
tropy approach fails to provide probabilities in some cases. These cases are
those where the premiss has zero prior probability. Updating on events of zero
prior probability is notoriously problematic. We investigate the extent of these
failures in §9, show that they arise in all levels of the arithmetic hierarchy in-
cluding and above Σ2 (Theorem 48), and provide a refinement of the approach
to handle these problematic cases.

It is worth noting the relation between this approach and perhaps the most
well-known approach to inductive logic, namely that of Rudolf Carnap (see,
e.g., Carnap, 1952). In common with Carnap’s approach, we consider the
problem of developing an inductive logic involving sentences of a first-order
predicate language. However, the maximal entropy approach differs in two key
respects. Firstly, our setting is more general, as it considers premiss statements
which attach probabilities or sets of probabilities to sentences of the logical
language, while Carnap considered only the sentences themselves. Second,
our approach is based on the idea of entropy maximisation, while Carnap’s
approach appeals to Bayesian conditionalisation involving exchangeable prior
probability functions. The latter approach is susceptible to serious objections
(Williamson, 2017, Chapter 4).

2 Objective Bayesian Inductive Logic

An important class of probabilistic logics consider entailment relationships of
the following form (Haenni et al., 2011):

φX1
1 , . . . , φXk

k |≈ ψY .

Here, φ1, . . . , φk, ψ are sentences of a logical language L and X1, . . . , Xk, Y
are sets of probabilities. This entailment relationship should be interpreted as
saying: φ1, . . . , φk having probabilities in X1, . . . , Xk respectively inductively
entails that ψ has probability in Y .

The objective Bayesian approach to inductive logic interprets probabilities
as rational degrees of belief. It takes the premisses on the left-hand side of
the entailment relationship to capture all the constraints on rational degrees of
belief that are inferred from evidence, and it uses Jaynes’ Maximum Entropy
Principle to determine a rational belief function with which to calculate the
probability of a conclusion statement ψ. Thus if L is a finite propositional lan-
guage, X1, . . . , Xk are closed convex sets of probabilities (i.e. closed intervals),
and the premisses are consistent, an entailment relationship holds just when
the probability function with maximum entropy, amongst all those that satisfy
the premisses, gives a probability in Y to ψ (Williamson, 2010, Chapter 7).
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This approach has been extended to the case in which L is a first-order
predicate language in the following way. Suppose L has countably many con-
stant symbols t1, t2, . . . and finitely many relation symbols U1, . . . , Ul. Let
a1, a2, . . . run through the atomic sentences of the form Uiti1 . . . tik in such a
way that those atomic sentences involving only t1, . . . , tn occur before those
involving tn+1, for each n. Consider the finite sub-languages Ln, containing
only constant symbols t1, . . . , tn.

Definition 1 (n-states). Ωn is the set of n-states of L, i.e., sentences of the
form ±a1 ∧ . . . ∧ ±arn involving the atomic sentences a1, . . . , arn of Ln, which
only feature the constants t1, . . . , tn.

2 The n-states for L are thus the sentences∧
1≤i≤l

1≤tj1 ,...,jki
≤n

U
ϵtj1 ,...,tjk
i tj1 . . . tjki

where ki is the arity of Ui, ϵtj1 ,...,tjk ∈ {0, 1} and U1
i tj1 . . . tjki

= Uitj1 . . . tjki

and U0
i tj1 . . . tjki

= ¬Uitj1 . . . tjki
.

Let SL, SLn be the sets of sentences of L,Ln respectively.

Definition 2 (Nφ). For a single given sentence φ we use Nφ to denote the
greatest index of the constants appearing in φ, i.e., the greatest number n
such that tn occurs in φ. If φ has no constants, we adopt the convention that
Nφ = 1.

Definition 3 (Probability). A probability function P on L is a function P :
SL −→ R≥0 such that:

P1: If τ is a tautology, i.e., |= τ , then P (τ) = 1.

P2: If θ and φ are mutually exclusive, i.e., |= ¬(θ ∧ φ), then P (θ ∨ φ) =
P (θ) + P (φ).

P3: P (∃xθ(x)) = supm P (
∨m
i=1 θ(ti)).

A probability function is determined by the values it gives to the n-states—
see, e.g., Williamson (2017, §2.6.3) and Gaifman (1964). We denote the set of
probability functions by P.

Of particular importance will be the equivocator function, P=, which gives
the same probability to each n-state, for each n.

Definition 4 (Measure). The measure of a sentence θ is the probability given
to it by the equivocator function. In particular, θ has positive measure if and
only if P=(θ) > 0.

Definition 5 (Feasible Region). We use E to refer to the set of probability
functions that satisfy the premisses φX1

1 , . . . , φXk

k , i.e.,

E := {P ∈ P : P (φ1) ∈ X1, . . . , P (φk) ∈ Xk} .

Two special cases will be particularly important in this paper. To distinguish
the case of a single categorical premiss, φ, we often write Eφ instead of E.

2The n-states are sometimes referred to as ‘state descriptions’.
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In the case of a single uncertain premiss, φX , we write EφX . Throughout, we
shall assume that the X are intervals and that the feasible region is non-empty,
E ̸= ∅.

Definition 6 (n-entropy). The n-entropy of a probability function P is defined

as Hn(P )
df
= −

∑
ω∈Ωn

P (ω) logP (ω).

The n-entropies, which only take into account the probabilities on finitely
many n-states, are then used to define a notion of comparative entropy on the
infinite language L as a whole:

Definition 7 (Comparative Entropy). We say that the probability function
P ∈ P has greater entropy than Q ∈ P, if and only if the n-entropy of P
dominates that of Q for sufficiently large n, i.e., if and only if there is an
N ∈ N such that for all n≥N , Hn(P ) > Hn(Q).

The greater entropy relation defines a partial order on the probability func-
tions on L. We will focus on the maximal elements in E of this partial ordering:

Definition 8 (Maximal Entropy Functions). The set of maximal entropy func-
tions, maxentE, is defined as

maxentE := {P ∈ E : there is no Q ∈ E that has greater entropy than P}.

In the absence of any premisses, maxentE = maxentP = {P=}.
In this paper, we invoke the objective Bayesian notion of inductive entail-

ment, denoted by |≈◦ (Williamson, 2017, §5.3):

Definition 9 (Objective Bayesian Inductive Entailment). The premisses
φX1
1 , . . . , φXk

k inductively entail ψY , denoted by φX1
1 , . . . , φXk

k |≈◦ ψY , if P (ψ) ∈
Y for all P ∈ maxentE.

Note that this definition applies where maxentE is non-empty. We consider
the case in which maxentE is empty in §9.

We will say that ψ is an inductive tautology if |≈◦ ψ, i.e., if it has measure 1.
It is an inductive contradiction if |≈◦ ¬ψ, i.e., if it has measure 0. It is inductively
consistent if |̸≈◦ ¬ψ, i.e., if it has positive measure.

While the objective Bayesian approach provides appropriate semantics for
inductive logic, it is not obvious how to determine the maximal entropy func-
tions in order to ascertain whether a given entailment relationship holds. This
is because the definition of maxentE seems to require a sort through members
of E in order to find those with maximal entropy—a process that would be
unfeasible in practice. This paper aims to address this question.

§3 introduces the concept of an entropy limit point in order to characterise
maxentE in terms of certain limits of n-entropy maximisers. This gives a
constructive procedure for determining maxentE when it contains an entropy
limit point.

In §4 and §5 we consider an important special case—that in which the pre-
misses are categorical sentences φ1, . . . , φk (without attached probabilities) and
where the maximal entropy function can be obtained simply by conditionalising
the equivocator function.
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3 Entropy Limit Points

This section adapts the techniques of Landes et al. (2021, §5) in order to char-
acterise maxentE in terms of certain limits of n-entropy maximisers. Landes
et al. (2021) were concerned with a very different question: that of showing that
the above objective Bayesian semantics for inductive logic in terms of maximal
entropy functions yields the same inferences as those produced by Paris’ limit
approach discussed in §1. Nevertheless, the results of Landes et al. (2021, §5)
can be straightforwardly adapted to the present problem. The proofs of the
two results in this section, which are close to those of Landes et al. (2021,
Proposition 36) and Landes et al. (2021, Theorem 39), have been provided in
Appendix 1.

We will consider the set of n-entropy maximisers for each n:

Hn = {P ∈ P : Hn(P ) is maximised} .

We now introduce the key concept of this section:

Definition 10 (Entropy Limit Point). P ∈ P is an entropy limit point
of P1,P2, . . . ⊆ P, if for each n there is some Qn ∈ Pn such that
|Hn(Qn)−Hn(P )| −→ 0 as n −→ ∞. P ∈ P will be called an entropy limit
point of E if it is an entropy limit point of H1,H2, . . ..

Entropy limit points of E are of special interest because they are also limit
points in terms of the L1 distance,

∥P −Q∥n
df
=
∑
ω∈Ωn

|P (ω)−Q(ω)| .

Proposition 11. If P is an entropy limit point of E, then there are functions
Qn ∈ Hn, for n ≥ 1, such that ∥Qn − P∥n −→ 0 as n −→ ∞.

This property enables us to characterise the set of maximal entropy func-
tions more constructively, in terms of a limit of n-entropy maximisers:

Theorem 12 (Entropy Limit Point). If E contains an entropy limit point P ,
then

maxentE = {P} .

Note that there can be at most one entropy limit point P of E. This
is because E is convex (by the convexity of X1, . . . , Xk) and the n-entropy
maximiser of a convex set is uniquely determined on Ln. Thus, the Hn can
have at most one L1 limit point.

Theorem 12 provides a simple procedure for showing that a hypothesised
function P is in fact a maximal entropy function: show that it is an entropy
limit point of n-entropy maximisers, and show that it is in E. (Note that
this is only a sufficient condition: if E contains no entropy limit point, then
Theorem 12 does not allow us to infer anything about maxentE.) Landes
et al. (2021, Lemmas 40, 44) provide some tools for demonstrating that a
hypothesised function is an entropy limit point of E.
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Example 13. Suppose we have a single premiss ∀xUx{c} where L has a single
unary predicate U and c ∈ [0, 1]. (We will often omit the curly braces and
write φc instead of φ{c} in such cases.) In this case, the number rn of atomic
sentences of Ln is n. Any n-entropy maximiser gives probability c to the n-
state Ut1 ∧ . . .∧Utn, which we abbreviate by θn, and divides probability 1− c
amongst all other n-states:

Pn(ωn) =

{
c : ωn = θn

1−c
2n−1 : ωn |= ¬θn

.

By the argument of Landes et al. (2021, Example 42), the following probability
function is an entropy limit point:

P (ωn) =

{
c+ 1−c

2n : ωn = θn
1−c
2n : ωn |= ¬θn

.

P ∈ E because P (∀xUx) = limn→∞ P (θn) = c. Hence by Theorem 12,
maxentE = {P}.

Example 14. Consider a single categorical premiss U1t1 ∨ ∃x∀yU2xy. In this
case, Hn = {P ∈ E : P⇂Ln

= P=⇂Ln
} for all n. Thus the equivocator function

is the unique entropy limit point of E. However, the equivocator function is
not in E, so it cannot be the maximal entropy function. Indeed, as will become
apparent later (Theorem 30), maxentE = {P=(·|U1t1)}.

4 Categorical Premisses and Bayesian
Conditionalisation

We now consider an important special case: that in which the premisses
are categorical sentences φ1, . . . , φk of L, i.e., there are no attached sets of
probabilities X1, . . . , Xk, or equivalently, X1 = . . . = Xk = {1}. Let φ
be the sentence φ1 ∧ . . . ∧ φk. In this section and the next, we consider

E = Eφ
df
= {P ∈ P : P (φ) = 1} and we show that there are several cases

in which maxentE can be found simply by conditionalising the equivocator
function on φ.

Our first result directly applies Theorem 12:

Corollary 15. If P=(·|φ) is an entropy limit point of Eφ, then

maxentEφ = {P=(·|φ)} .

Proof: P=(·|φ) is contained in Eφ because P=(φi|φ) = 1 for each i = 1, . . . , k.
Hence, Theorem 12 applies. ■

Note that the condition that P=(·|φ) is an entropy limit point of Eφ pre-
supposes that the probability function P=(·|φ) is well defined, i.e., that φ has
positive measure, P=(φ) > 0.

Corollary 16. If Hn contains P=(·|φ) for sufficiently large n, then

maxentEφ = {P=(·|φ)} .
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Proof: If P=(·|φ) ∈ Hn for sufficiently large n, then P=(·|φ) is an entropy
limit point of Eφ. Hence, Corollary 15 applies. ■

Corollary 16 is useful because where it applies it provides a particularly
simple procedure for determining maxentEφ. Also, it shows that the move
to the infinite does not disrupt agreement between the Maximum Entropy
Principle and conditionalisation: as long as conditionalising on φ maximises
n-entropy for each sufficiently large n, it maximises entropy on the language as
a whole. Because of its interest, we provide an alternative, more direct proof
of Corollary 16 in Appendix 2.

Example 17. Suppose we have a single categorical premiss ∃xUx, where L has
a single unary predicate symbol U . P=(∃xUx) = 1, so P=(·|∃xUx) = P=(·).
P= ∈ H1,H2, . . ., so Corollary 16 applies and maxentEφ = {P=}.

Example 18. Suppose we have categorical premisses Ut2 → V t3,∀x∃yWxy,
where L has unary predicate symbols U and V and a binary relation symbolW .
Now P=((Ut2 → V t3) = 0.75) and P=(∀x∃yWxy) = 1. So P=((Ut2 → V t3) ∧
∀x∃yWxy) = 0.75, and P=(·|(Ut2 → V t3) ∧ ∀x∃yWxy) = P=(·|Ut2 → V t3).
This latter function is in H3,H4, . . ., so Corollary 16 applies and maxentEφ =
{P=(·|Ut2 → V t3)}.

Finally, we note an important consequence of Corollary 16:

Corollary 19. If φ is satisfiable and logically equivalent to a quantifier-free
sentence, then

maxentEφ = {P=(·|φ)} .

Proof: Since φ is satisfiable and logically equivalent to a quantifier-free
sentence, P=(φ) > 0 (Paris, 1994, pp. 95, 102). Moreover, P=(·|φ) ∈ Hn for
all n ≥ Nφ, where Nφ is the greatest index of the constant symbols appearing
in φ. ■

This result can be thought of as an analogue of Seidenfeld (1986, Result 1),
which demonstrates agreement between the Maximum Entropy Principle and
conditionalisation in the case of a finite domain. In the next section, we show
that this result can be extended to the situation in which φ is not quantifier
free.

5 An Alternative Route to Conditionalisation

This section demonstrates agreement between the maximal entropy approach
and conditionalisation without appeal to entropy limit points.

As above we consider categorical sentences φ1, . . . , φk and abbreviate φ1 ∧
. . . ∧ φk by φ. The following definition will be central to several of the results
in this section:

Definition 20 (n-support φn). Let sentence φn be the disjunction of those
n-states ω that are inductively consistent with φ, i.e., n-states ω such that
|̸≈◦ ¬(ω ∧φ). Equivalently, these are the n-states ω such that φ∧ω has positive
measure. Thus,

φn
df
=
∨

{ω ∈ Ωn : P=(ω ∧ φ) > 0} .
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If there are no n-states inductively consistent with φ, we take φn to be an
arbitrary contradiction on Ln.

We call φn the inductive support of φ on Ln, or simply the n-support of
φ. φNφ will be referred to as the support of φ.3 We use |φn| to denote the
number of n-states in the n-support φn, i.e., the number of n-states inductively
consistent with φ.

Our main result of this section, Theorem 30, will show that when φ has
positive measure, the maximal entropy function is the equivocator function
conditional on φ, or, equivalently, the equivocator conditional on the support
of φ. This provides a straightforward way of determining the maximal entropy
function in that case.

We will first prove some technical lemmas to which the main result will
appeal. The first lemma invokes the concept of exchangeability:

Definition 21 (Constant Exchangeability). Let θ(x1, x2, . . . , xl) be a formula
of L that does not contain constants. A probability function P on SL satisfies
constant exchangeability, if and only if for all such θ and all sets of pairwise
distinct constants t1, t2, . . . , tl, and t

′
1, t

′
2, . . . , t

′
l it holds that

P (θ(t1, t2, . . . , tl)) = P (θ(t′1, t
′
2, . . . , t

′
l)) .

Equivalently, for all n ∈ N and all n-states ωn, νn ∈ Ωn, if ωn can be obtained
from νn by a permutation of the first n constants then P (ωn) = P (νn).

We are obliged to Jeff Paris for pointing out the following lemma and Propo-
sition 24 which follows from it.

Lemma 22. Let ωn be an n-state and suppose that the probability function P
on SL satisfies constant exchangeability and P (φ∧ψ|ωn) = P (φ|ωn) ·P (ψ|ωn)
for all pairs of quantifier-free sentences φ,ψ with shared constants among
{t1, . . . , tl}, l ≤ n. Then P (φ ∧ ψ|ωn) = P (φ|ωn) · P (ψ|ωn) for all φ,ψ ∈ SL
whose shared constants are among {t1, . . . , tl}.

Proof: The proof follows by a straightforward adaptation of the proof of
Paris and Vencovská (2015, Corollary 6.2) and proceeds by induction on the
quantifier complexity of φ ∧ ψ when written in Prenex Normal Form.

The result holds by assumption when φ ∧ ψ is quantifier free. For the
induction step it is sufficient to consider

∃x1, . . . , xrθ(x1, . . . , xr, t⃗) ∧ ∃x1, . . . , xsψ(x1, . . . , xs, t⃗′)

where all constants appearing in both t⃗ and t⃗′ are included in {t1, . . . , tl}.
Let u1, u2, u3, . . . be distinct constants containing those in t⃗ and

u′1, u
′
2, u

′
3, . . . distinct constants containing those in t⃗′ such that {u1, u2, u3, . . .}

and {u′1, u′2, u′3, . . .} are disjoint except for the constants shared in t⃗ and t⃗′.
By Paris and Vencovská (2015, Lemma 6.1),

lim
n→∞

P

 ∨
i1,...,ir≤n

θ(ui1 , ui2 , . . . , uir , t⃗)

↔ ∃x1, . . . , xrθ(x1, . . . , xr, t⃗) |ωn

 = 1

3Recall that Nφ is the greatest index of the constants appearing in φ, or 1 if no constants
appear in φ.
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and

lim
n→∞

P

 ∨
i1,...,is≤n

η(u′i1 , u
′
i2 , . . . , u

′
is , t⃗

′)

↔ ∃x1, . . . , xsη(x1, . . . , xs, t⃗′) |ωn

 = 1.

Then for every ϵ > 0 there is N large enough such that for all n ≥ N

P

 ∨
i1,...,ir≤n

θ(ui1 , ui2 , . . . , uir , t⃗)

↔ ∃x1, . . . , xrθ(x1, . . . , xr, t⃗) |ωn

 > 1−ϵ/4

and

P

 ∨
i1,...,is≤n

η(u′i1 , u
′
i2 , . . . , u

′
is , t⃗

′)

↔ ∃x1, . . . , xsη(x1, . . . , xt, s⃗′) |ωn

 > 1−ϵ/4

by Paris and Vencovská (2015, Lemma 3.7),

P
(
∃x1, . . . , xrθ(x1, . . . , xr, t⃗) ∧ ∃x1, . . . , xsη(x1, . . . , xs, t⃗′) |ωn

)
−

P

 ∨
i1,...,ir≤n

θ(ui1 , ui2 , . . . , uir , t⃗) ∧
∨

i1,...,is≤n

η(u′i1 , u
′
i2 , . . . , u

′
is , t⃗

′) |ωn

 < ϵ/2

But

P

 ∨
i1,...,ir≤n

θ(ui1 , ui2 , . . . , uir , t⃗) ∧
∨

i1,...,is≤n

η(u′i1 , u
′
i2 , . . . , u

′
is , t⃗

′) |ωn


equals

P

 ∨
i1,...,ir≤n

θ(ui1 , ui2 , . . . , uir , t⃗) |ωn

·P

 ∨
i1,...,is≤n

η(u′i1 , u
′
i2 , . . . , u

′
is , t⃗

′) |ωn


by induction hypothesis, and taking n large enough we have

P

 ∨
i1,...,ir≤n

θ(ui1 , ui2 , . . . , uir , t⃗) |ωn

·P

 ∨
i1,...,is≤n

η(u′i1 , u
′
i2 , . . . , u

′
is , t⃗

′) |ωn

−

P
(
∃x1, . . . , xrθ(x1, . . . , xr, t⃗) |ωn

)
· P
(
∃x1, . . . , xsη(x1, . . . , xs, t⃗′) |ωn

)
< ϵ/2

and thus

P
(
∃x1, . . . , xrθ(x1, . . . , xr, t⃗) ∧ ∃x1, . . . , xsη(x1, . . . , xs, t⃗′) |ωn

)
− P

(
∃x1, . . . , xrθ(x1, . . . , xr, t⃗) |ωn

)
· P
(
∃x1, . . . , xsη(x1, . . . , xs, t⃗′) |ωn

)
<ϵ/2 + ϵ/2 = ϵ

which gives the required result. ■
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Corollary 23 (Zero-one law for constant-free sentences). Every constant-free
sentence has measure 0 or 1.

Proof: Paris and Vencovská (2015, Corollary 6.2) show the following: if
probability function P on SL satisfies constant exchangeability and P (φ∧ψ) =
P (φ) · P (ψ), whenever φ,ψ are quantifier free sentences of L that mention no
constants in common, then P (φ ∧ ψ) = P (φ) · P (ψ) for any sentences φ,ψ of
the language L which do not mention any constants in common.

Note that P= satisfies constant exchangeability and the assumption of Paris
and Vencovská (2015, Corollary 6.2) is thus satisfied. Let φ be a sentence that
does not mention any constant. Then φ,φ are two sentences that do not
mention any constants in common. Since probability functions assign logically
equivalent sentences the same probability we now easily find

P=(φ) = P=(φ ∧ φ) = P (φ) · P (φ) .

So, P=(φ) = P=(φ)
2. This means that P=(φ) has to be either zero or one. ■

Hence, every inductively consistent constant-free sentence is an inductive
tautology: P=(φ) > 0 for constant-free φ implies that P=(φ) = 1.

Proposition 24. For all φ ∈ SL and all n ≥ Nφ, P=(φ) = P=(φ
n) and

P=

(
φ↔ φn

)
= 1 .

Proof: Consider two sentences φ,ψ ∈ SL which mention at most the first
N := Nφ∧ψ constants. From Lemma 22 we obtain that for all ωn ∈ Ωn it holds
that

P=(φ ∧ ψ|ωn) = P=(φ|ωn) · P=(ψ|ωn) .

Using the trick on Paris and Vencovská (2015, P. 53) putting ψ = φ we obtain
P=(φ ∧ φ|ωn) = P=(φ|ωn) = P=(φ|ωn)2 and so

P=(φ|ωn) =

{
0

1 .

Using the definition of a conditional probability we find

P=(φ ∧ ωn) =

{
0, if and only if P=(φ|ωn) = 0

P=(ωn), if and only if P=(φ|ωn) > 0 .
(1)

So,

P=(φ) =P=(φ ∧
∨

ωn∈Ωn

ωn) = P=(φ ∧
∨

ωn∈Ωn

P=(φ∧ωn)>0

ωn) = P=(φ ∧ φn)

=
∑

ωn∈Ωn

P=(φ∧ωn)>0

P=(φ ∧ ωn) =
∑

ωn∈Ωn

P=(φ∧ωn)>0

P=(ωn)
(1)
= P=(

∨
ωn∈Ωn

P=(φ∧ωn)>0

ωn)

=P=(φ
n) . (2)

11



So,

P=(¬φ ∧ ¬φn) =P=(¬φ) + P=(¬φn)− P=(¬φ ∨ ¬φn)
=P=(¬φ) + 1− P=(φ

n)− 1 + P=(φ ∧ φn)
=P=(¬φ) . (3)

Finally, let us note that

P=

(
φ↔ φn

)
= P=

(
φ ∧ φn

)
+ P=

(
¬φ ∧ ¬φn

)
(2) and (3)

= P=(φ) + P=(¬φ) = 1 .

■

Note that the proportion |φn|
|Ωn| of n-states in the n-support of a sentence φ

eventually equals the measure of φ. This is because |φn|
|Ωn| = P=(φ

n) = P=(φ)

for n ≥ Nφ.

Lemma 25. If φ has positive measure, then P=(·|φ) = P=(·|φn) for all n ≥
Nφ.

Proof: Notice that by Proposition 24:

P=(φ ∧ ¬φn) = 0 = P=(¬φ ∧ φn).

Exploiting the law of total probability twice and the above observation we
now find for all ψ ∈ SL that

P=(ψ|φ) =
P=(ψ ∧ φ)
P=(φ)

=
P=(ψ ∧ φ ∧ φn) + P=(ψ ∧ φ ∧ ¬φn)

P=(φn)

=
P=(ψ ∧ φ ∧ φn)

P=(φn)

=
P=(ψ ∧ φ ∧ φn)) + P=(ψ ∧ ¬φ ∧ φn))

P=(φn)

=
P=(ψ ∧ φn)
P=(φn)

= P=(ψ|φn) .

■

Corollary 26. For all k ≥ 1, ⊨ φNφ+k ↔ φNφ and P=(·|φNφ+k) = P=(·|φNφ).

Proof: By Lemma 25 for all k ≥ 0, P=(·|φNφ+k) = P=(·|φ). This entails
P=(·|φNφ+k) = P=(·|φNφ) for all k ≥ 1.

Note that φNφ+k is quantifier free. Let χ, ψ be quantifier free and satisfi-
able, then the probability function P=(·|ψ) is equal to the probability function
P=(·|χ), if and only if ψ and χ are logically equivalent; clearly, if ψ and χ are
logically equivalent, then these probability functions are equal. Furthermore,

12



if ψ and χ are not logically equivalent, then without loss of generality ψ does
not entail χ, and P=(ψ|ψ) = 1 > P=(χ|ψ) follows.

Letting ψ = φN and χ = φNφ+k we conclude that ⊨ φNφ+k ↔ φNφ . ■

Corollary 27. If ωNφ+k ⊨ φNφ , then ωNφ+k ⊨ φNφ+k.

Every Nφ+k state ωNφ+k extending a state in φ
Nφ is such that P=(ωNφ+k∧

φ) > 0.
Proof: We let N := Nφ. Notice that by Corollary 26, if ωN ∈ ΩN appears
in φN , then any extension of ωN to Lm (an m-state ωm ∈ Ωm such that
ωm ⊨ ωN with m = N + k > N) will appear in φm. To be more precise, for
all ωN ∈ ΩN with ωN ⊨ φN and for all m ≥ N and ωm ∈ Ωm, if ωm ⊨ ωN ,
then ωm ⊨ φm. To see this suppose ωN ⊨ φN , ω′

m ⊨ ωN but ω′
m ⊭ φm.

Then by definition of P= we have P=(ωN |φN ), P=(ω
′
m |ωN ) ̸= 0. Then

0 < P=(ω
′
m |φN ) = P=(ω

′
m |φm) = 0, where the first equality is given by

Corollary 26 and second equality is given by the assumption that ω′
m ⊭ φm. ■

Consider a sentence ψ with zero measure, P=(ψ) = 0. Intuitively, ψ is only
true in few possible worlds.4 One way to approach this intuition is by exploiting
probability axiom P3 according to which the probability of a quantified sentence
is the limit of probabilities of quantifier-free sentences. This suggests that—in
the limit—only few n-states “converge” to ψ. So, if P (ψ) = c > 0, then P has
to assign a joint probability of close to c to few n-states. That is, for n large
enough, there exists set of n-states Sn, with joint probability of almost c, that
is arbitrarily small in comparison to the number of all n-states. The following
result, for which we are obliged to Alena Vencovská, makes this precise.

Lemma 28 (Concentration of probability on few n-states). Let ψ be such that
P=(ψ) = 0 and P (ψ) = c > 0, then for any ϵ > 0 there exists some M ∈ N
such that for all m ≥M there exists a set of m-states, Sm, such that

P (
∨

ωm∈Sm

ωm) ≥ (1− ϵ) · c and
|Sm|
|Ωm|

< ϵ .

Proof: First notice that if the result holds for some m ∈ N and a set of
m-states Sm, then it also holds for the set of m+1 states Sm+1 defined as the
extensions of Sm to Lm+1. Therefore, it is enough to show that result holds
for some m ∈ N.

Let P = {P, P=}. We first show that there exists some m ∈ N and a
quantifier-free sentence χ ∈ SLm such that for all Q ∈ P, Q(ψ ↔ χ) > 1− ϵ · c.
(We can think of χ as a finite approximation of ψ.) We proceed by induction

4More precisely, consider the set of term structures for L that have a countably infinite
domain. Then this means that the proportion of those term structures that satisfy ψ is
negligible. But the term structures on a countably infinite domain can be determined as the
limiting extensions of terms structures on finite subsets of the domain. This means that for
asymptotically large n, there are only few term structures with a domain of size n that can
be extended to a term structure that satisfies ψ. Then dividing the probability mass between
the term structures on the full domain in such a way as to assign a probability of c > 0 to ψ
should inevitably distribute a probability mass close to c between few term structures on a
finite subdomain of size n for large n.
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on the quantifier complexity; that is we proceed by induction on n for ψ ∈ Σn
and ψ ∈ Πn.

For the base case, n = 0, ψ is quantifier free, and we can simply pick χ := ψ.
For the induction step let ψ = ∀x⃗ξ(x1, . . . , xr) ∈ Πg with ξ ∈ Σg−1 be in

prenex normal form. The case of ψ = ∃x⃗ξ(x⃗) ∈ Σg is analogous.
By Paris and Vencovská (2015, Lemma 3.8) for all probability functions Q

Q(ψ) = lim
n→∞

Q(

n∧
k1,...,kr=1

ξ(tk1 , . . . , tkr )) .

Let n ∈ N be large enough such that for all Q ∈ P

|Q(ψ)−Q(

n∧
k1,...,kr=1

ξ(tk1 , . . . , tkr ))| <
ϵ

2
· c.

Now let Q ∈ P. Notice that ψ logically entails
∧n
k1,...,kr=1 ξ(tk1 , . . . , tkr )

and thus

Q(ψ ↔
n∧

k1,...,kr=1

ξ(tk1 , . . . , tkr )) = Q(

n∧
k1,...,kr=1

ξ(tk1 , . . . , tkr ) → ψ)

= Q(¬
n∧

k1,...,kr=1

ξ(tk1 , . . . , tkr )) +Q(ψ)−Q(¬
n∧

k1,...,kr=1

ξ(tk1 , . . . , tkr ) ∧ ψ)

= 1−Q(

n∧
k1,...,kr=1

ξ(tk1 , . . . , tkr )) +Q(ψ)− 0

> 1− ϵ

2
· c . (4)

By the induction hypothesis, for each k1, . . . kr ∈ {1, . . . , n} there is a quantifier
free sentence λk⃗(a1, . . . , aM(k⃗)) ∈ SLM(k⃗) such that for all Q ∈ P

Q(λk⃗ ↔ ξ(tk1 , . . . , tkr )) > 1− ϵ

2nr
· c . (5)

Notice that

¬(
n∧

k1,...,kr=1

ξ(t⃗ki) ↔
n∧

j1,...,jr=1

λj⃗)

=(

n∨
k1,...,kr=1

¬ξ(t⃗ki) ∧
n∧

j1,...,jr=1

λj⃗) ∨ (

n∧
k1,...,kr=1

ξ(t⃗ki) ∧
n∨

j1,...,jr=1

¬λj⃗)

=(

n∨
k1,...,kr=1

(¬ξ(t⃗ki) ∧
n∧

j1,...,jr=1

λj⃗)) ∨ (

n∨
j1,...,jr=1

(¬λj⃗ ∧
n∧

k1,...,kr=1

ξ(t⃗ki)))

⊨(
n∨

k1,...,kr=1

¬ξ(t⃗ki) ∧ λk1,...,kr ) ∨ (

n∨
j1,...,jr=1

ξ(t⃗kj ) ∧ ¬λj1,...,jr )

=

n∨
k1,...,kr=1

¬(λk1,...,kr ↔ ξ(t⃗ki))
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where we write ξ(t⃗ki) for ξ(tk1 , . . . , tkr ).
Then

Q(

n∧
k1,...,kr=1

ξ(tk1 , . . . , tkr ) ↔
n∧

j1,...,jr=1

λj⃗)

=1−Q(¬(
n∧

k1,...,kr=1

ξ(tk1 , . . . , tkr ) ↔
n∧

j1,...,jr=1

λj⃗))

≥1−Q(

n∨
k1,...,kr=1

¬(λk1,...,kr ↔ ξ(tk1 , . . . , tkr )))

(5)
>1− nr

ϵ

2nr
· c

=1− ϵ

2
· c . (6)

Let Ξ =
∧n
k1,...,kr=1 ξ(tk1 , . . . , tkr ), and Λ =

∧n
k1,...,kr=1 λk⃗. Then by (4) and

(6) we have

Q(ψ ↔ Ξ) > 1− ϵ

2
· c ,

and
Q(Ξ ↔ Λ) > 1− ϵ

2
· c .

And we have

Q(ψ ↔ Λ) = Q(ψ ∧ Λ) +Q(¬ψ ∧ ¬Λ)
= Q(ψ ∧ Λ ∧ Ξ) +Q(ψ ∧ Λ ∧ ¬Ξ) +Q(¬ψ ∧ ¬Λ ∧ Ξ) +Q(¬ψ ∧ ¬Λ ∧ ¬Ξ)
≥ Q(ψ ∧ Λ ∧ Ξ)−Q(ψ ∧ Λ ∧ ¬Ξ)−Q(¬ψ ∧ ¬Λ ∧ Ξ) +Q(¬ψ ∧ ¬Λ ∧ ¬Ξ) .

Noticing that

Q(ψ ∧ Λ ∧ Ξ) = Q(ψ ∧ Ξ)−Q(ψ ∧ ¬Λ ∧ Ξ)

and
Q(¬ψ ∧ ¬Λ ∧ ¬Ξ) = Q(¬ψ ∧ ¬Ξ)−Q(¬ψ ∧ Λ ∧ ¬Ξ)

we get

Q(ψ ↔ Λ) ≥ Q(ψ ↔ Ξ)−Q(¬(Λ ↔ Ξ)) > 1− ϵ · c . (7)

Since (7) holds for all Q ∈ P = {P=, P} and P=(ψ) = 0, we have

1− ϵ · c < P=(ψ ↔ Λ) = P=(ψ ∧ Λ) + P=(¬ψ ∧ ¬Λ)
= P=(¬ψ ∧ ¬Λ) = 1− P=(ψ ∨ Λ) ≤ 1− P=(Λ)

and thus P=(Λ) < ϵ · c ≤ ϵ.

Now let m = max{M(k⃗) | k⃗ ∈ {1, . . . , n}r}, then Λ ∈ SLm and since Λ is
quantifier free, there is a set of m-states Sm, such that

⊨ Λ ↔
∨

ωm∈Sm

ωm

15



and we have |Sm|
|Ωm| = P=(Λ) < ϵ. Note that Sm is the set of m-states entailing

Λ.
Furthermore,

P (
∨

ωm∈Sm

ωm) = P (Λ) ≥ P (Λ ∧ ψ) = P (Λ ∧ ψ) + P (¬Λ ∧ ¬ψ)− P (¬Λ ∧ ¬ψ)

= P (ψ ↔ Λ)− P (¬Λ ∧ ¬ψ)
> 1− ϵ · c− P (¬Λ ∧ ¬ψ)
≥ 1− ϵ · c− P (¬ψ)
= P (ψ)− ϵ · c = c− ϵ · c = c · (1− ϵ) .

■

There is a sense in which the states in Sm simulate ψ on the sublanguage
Lm. Consider an underlying domain with m elements, t1, t2, . . . , tm. Universal
(respectively, existential) quantification over a variable x can be understood
as a finite conjunction (disjunction) over all finitely many elements. Replace
all the quantifications in ψ by finite conjunctions and disjunctions over these
m elements. On this finite domain, the resulting quantifier free sentence is
equivalent to the original sentence. It is in this sense that Sm simulates ψ on
a finite domain.5

The next Lemma shows that any maximal entropy function must assign
probability one to the support φNφ of φ (and thus to the n-support φn for
n ≥ Nφ). Note that this lemma does not prove the existence of a maximal
entropy function.

Lemma 29. Let φ ∈ SL with P=(φ) ∈ (0, 1]. If P ∈ E with P (φn) < 1 for
some n ≥ Nφ, then P=(· |φn) has greater entropy than P .

Proof: Let N := Nφ. If P=(φ) = 1, then P=(·|φN ) = P= ∈ E. It suffices
to recall that the equivocator has greater entropy than all other probability
functions.

Now consider 0 < P=(φ) < 1.
Since φN and φn are logically equivalent for n ≥ N (Corollary 26) and since

probability functions respect logical equivalence it follows the assumption that
P (φn) < 1 that P (φN ) < 1 holds.

So, let P be such that P (φ) = 1 and P (φN ) < 1, then P (φ∧¬φN ) = c > 0
for some 1 ≥ c > 0. Let ψ := φ ∧ ¬φN and notice that by definition of

5One might think that the following statement can play a similar role to that played

by Sm in the above proof. Let φn
0

df
=

∨
{ω ∈ Ωn : P=(ω ∧ φ) = 0, ̸|= ¬(ω ∧ φ)}, i.e., the

disjunction of n-states deductively but not inductively consistent with φ. (If there are no
such states, take φn

0 to be an arbitrary contradiction on Ln.)
Now suppose that φ has measure zero and that P (φ) = c. Since φ has measure zero, φn

is a contradiction on Ln. Hence,

c = P (φ) = P (φ ∧ φn) + P (φ ∧ φn
0 ) = P (φ ∧ φn

0 ),

so P (φn
0 )≥c. P must concentrate probability at least c on φn

0 .
Thus the question arises as to whether P=(φn

0 ) −→ 0 as n −→ ∞. This would imply

that
|φn

0 |
|Ωn| = P=(φn

0 ) −→ 0 as n −→ ∞, in which case φn
0 would represent an increasingly

negligible number of states.
However, it turns out that while this last condition holds true for some measure-zero

φ, e.g., ∀xU1x, it does not hold true for all such sentences. For example, in the case of
∃x∀yU2xy, which also has zero measure, P=(φn

0 ) = 1 for all n.
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φN , P=(ψ) = 0. Let ϵ > 0 and take M and SM as given by Lemma 28
and let KM be the set of M -states in ΩM \ SM such that P=(φ ∧ ωM ) > 0

for M ≥ N . Corollary 26 shows that |KM | = |φN | |ΩM |
|ΩN | , since all M -states

ωM ∈ ΩM extending an N -state in φN are such that P=(φ ∧ ωM ) > 0. Let
bM = P (

∨
SM

ωM ) ≥ (1 − ϵ)c > 0 and notice that since P (φ) = 1 we have
P (
∨
KM

ωM ) = 1− bM .
Then by convexity

HM (P ) ≤ −bM log

(
bM
|SM |

)
− (1− bM ) log

(
1− bM
|KM |

)
= bM log(|SM |)− bM log(bM ) + (1− bM ) log(|KM |)− (1− bM ) log(1− bM ) .

The M -entropy of P=(·|φN ) is

HM (P=(·|φN )) = −
∑

ωM⊨φN

1

|KM |
log(

1

|KM |
) = log(|KM |)

= log

(
|φN | · |ΩM |

|ΩN |

)
. (8)

We thus note

HM (P )−HM (P=(·|φN ))

log(|KM |)

≤ bM log(|SM | − |KM |)− bM log(bM ) + (1− bM ) log(1− bM )

log(|KM |)
+ (1− bM )− 1 .

Now consider the three summands in turn. Since |SM |
|KM | =

|SM |·|ΩN |
|ΩM |·|φN | becomes

arbitrarily small by Lemma 28 and 1 ≥ bM > 0, the first term is eventually less
than zero. The second term goes to zero, since KM increases without bounds.
Finally, bM ≥ (1 − ϵ)c > 0. This means that for all large enough M it holds
that HM (P )−HM (P=(·|φN )) < 0 and hence HM (P ) < HM (P=(·|φN )). This
entails that P=(·|φN ) has greater entropy than P . Thus, P /∈ maxentEφ.

In particular, we note for later use that the sequence fn(P ) :=

Hn(P=(·|φN )) − Hn(P ) is bounded from below by bM
2 ≥ (1−ϵ)·c

2 > 0 for
all large enough n. ■

We are now in a position to present the main result of this section:

Theorem 30 (Agreement with Bayesian Conditionalisation). For all φ ∈ SL
with P=(φ) ∈ (0, 1] and all n ≥ Nφ

maxentEφ = {P=(·|φ)} = {P=(·|φn)} = {P=(·|φNφ)} .

Proof: We prove a stronger property, namely that P=(·|φN ) has greater en-
tropy than every other probability function P ∈ E.

We let N := Nφ. Given the previous lemma, it suffices to show all P ∈ E
with P (φN ) = 1 and P ̸= P=(·|φN ) have less entropy than P=(·|φN ). This
means that P=(·|φN ) has greater entropy than all other P ∈ E \ {P=(·|φN )}.

Consider first the case of P=(φ) = 1. In this case, the equivocator P= is in
E, and, since it is the probability function in P with maximal entropy, it is the
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unique member of maxentEφ. By Lemma 25, the equivocator is also P=(·|φ).
By Lemma 29, it is P=(·|φN ).

Now consider 0 < P=(φ) < 1. By Lemma 25, P=(φ |φN ) = P=(φ |φn) =
P=(φ |φ) = 1. This establishes the two last equalities in the statement of the
theorem.

Let P be a probability function with P (φ) = 1, P ∈ E. If P (φN ) < 1, then
P=(· |φN ) has greater entropy than P (Lemma 29).

If P (φN ) = 1 but P ̸= P=(·|φN ), then there is someM ≥ N such that for all
m ≥ M , P ̸= P=(·|φN ) on Ωm. For all m ≥ N , P=(·|φN ) equivocates over all
m-states in φm and has strictly greater m-entropy than every other probability
function Q ∈ P with Q(φm) = 1 and Q(ωm) ̸= P=(ωm|φn) for some m-state
ωm. This entails that for all n ≥ M it holds that Hn(P ) < Hn(P=(·|φN )).
Hence, P=(·|φN ) has greater entropy then every other probability function
P ∈ E with P (φN ) < 1.

So, P=(·|φN ) has greater entropy then every other probability function
P ∈ E. ■

Example 31. For the premiss sentence φ = (∃x∀yUxy∧Ut1t1)∨(∀x∃y¬Uxy∧
¬Ut1t1),

maxentEφ = {P=(·|¬Ut1t1)} .

Proof: There is only one constant mentioned in φ, t1. So, Nφ = 1. We
here consider the simple case of the language containing only the relation
symbol U . The general case follows from the fact the entropy maximisation
is language invariant (Paris, 1994, Chapter 6). There are two 1-states,
Ut1t1 and ¬Ut1t1. φ ∧ Ut1t1 is logically equivalent to ∃x∀yUxy ∧ Ut1t1
and P=(∃x∀yUxy ∧ Ut1t1) ≤ P=(∃x∀yUxy) = 0. φ ∧ ¬Ut1t1 is logi-
cally equivalent to ∀x∃y¬Uxy ∧ ¬Ut1t1. For this sentence it holds that
P=(∀x∃y¬Uxy ∧ ¬Ut1t1) = 0.5. Hence, φNφ = φ1 = ¬Ut1t1. φ1 is the dis-
junction of all 1-states ω1 ∈ Ω1 such that P=(φ∧ω1) > 0. Thus, φ1 = ¬Ut1t1.
■

The following observation shows that the maximum entropy function not
only has greatest entropy in the sense defined above, but also in a cumulative
sense.

Corollary 32. If φ has positive measure, then for all P ∈ Eφ \ {P=(·|φ)},

lim
n→∞

n∑
i=1

Hi(P=(·|φ))−Hi(P ) = ∞ .

Proof: The proof shows a slightly stronger property: for all P ∈ Eφ\{P=(·|φ)}
the sequence fn(P ) := Hn(P=(·|φ)) − Hn(P ) is such that there exists some
M ≥ Nφ such that fn(P ) is strictly positive and never decreasing for all n ≥M .

Let us first consider the case that P (φN ) < 1. The claim of this corollary
follows directly from the final observation in the proof of Lemma 29.

The second and final case is when P (φNφ) = 1. Since P=(·|φ) ̸= P there
has to exist some M ≥ Nφ such that for all m ≥ M the probability functions
P and P=(·|φ) disagree on the quantifier free sentence of Lm. Since both
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functions assign non-zero probability to, at most, the m-states extending those
in φN and P=(·|φ) is maximally equivocal on this set of M -states, it follows
that HM (P=(·|φ)) > HM (P ).

For all m ≥M we have:

Hm(P ) = −
∑

ωm∈Ωm

P (ωm) log(P (ωm))

≤ −
∑

ωm∈Ωm

P (ωM )
|ΩM |
|Ωm|

· log
(
P (ωM ) · |ΩM |

|Ωm|

)
= −

∑
ωM∈ΩM

P (ωM ) log

(
P (ωM ) · |ΩM |

|Ωm|

)
= HM (P ) + log

(
|Ωm|
|ΩM |

)
Hm(P=(·|φ))

(8)
= log

(
|φN | · |Ωm|

|ΩN |

)
= log(|φN |) + log

(
|Ωm| · |ΩM |
|ΩN | · |ΩM |

)
= HM (P=(·|φ)) + log

(
|Ωm|
|ΩM |

)
.

It thus easily follows that Hm(P=(·|φ))−Hm(P ) ≥ HM (P=(·|φ))−HM (P ) for
all m ≥M . In turn, this implies that

lim
n→∞

n∑
M=1

Hi(P=(·|φ))−Hi(P ) ≥ lim
n→∞

(n−M) · (HM (P=(·|φ))−HM (P )) .

Since the last difference is strictly positive, this limit is +∞. The Corollary
follows trivially by adding the first M − 1 bounded terms to the above limit.
■

Given a finite set of premisses of the form φX1
1 , . . . , φXk

k we showed in The-
orem 11 how a maximal entropy function can be characterised in terms of an
entropy limit point. In case of a single categorical premiss, φ, if P=(· |φ) is an
entropy limit point then it is the unique maximum entropy function (Corol-
lary 15). In particular, this is the case when φ is equivalent to a quantifier
free sentence (Corollary 19). Theorem 30 shows that for any inductively con-
sistent premiss φ, there exists a unique maximal entropy function, which can
be determined by conditionalising the equivocator on the support of φ, the
quantifier free sentence φNφ expressible in the sublanguage LNφ . For example,
for φ = U1t1 ∨ ∃x∀yU2xy every 1-state is consistent with φ. However, only
the 1-states entailing U1t1 are in the support of φ. These 1-states have the
feature that almost all their extensions contribute to the probability of P=(φ)
via probability axiom P3. What is more, Theorem 30 shows that the maxi-
mal entropy probability function equivocates between the Nφ-states, and also
between their extensions. That is, the unique maximal entropy probability
function divides the full probability measure equally between these Nφ-states
and similarly between their extensions to any Ln with n ≥ Nφ.
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Given Theorem 30, conditionalising the equivocator function is a simple
method for determining the maximal entropy probabilities in objective Bayes-
ian inductive logic. Although this approach to inductive logic is Bayesian,
conditionalisation is not taken here as a principle that is constitutive or core
to the Bayesian method, but rather as an inference tool that is appropriate in
certain specific circumstances. Indeed, conditionalisation has been criticised
as being problematic outside an appropriate range of circumstances (Howson,
2014; Williamson, 2010). The fact that it agrees with the maximal entropy
approach can be taken to justify the use of conditionalisation on learning φ, in
the circumstances in which φ has positive measure and is ‘simple’ in the sense
that it only imposes the constraint P (φ) = 1 (Williamson, 2017, Definition
5.14).

6 Jeffrey Conditionalisation

In this section, we generalise our results for conditionalisation from the case in
which the premiss is a categorical sentence φ to the case in which the premiss
is a sentence of the language with a specific probability attached, φc, with

c ∈ (0, 1). Thus in this section, E = Eφc
df
= {P ∈ P : P (φ) = c}.

Definition 33 (Jeffrey Update of the Equivocator). Where P=(φ) ∈ (0, 1) we
can define the Jeffrey update of the equivocator function:

Pφc(·) df
= c · P=(·|φ) + (1− c) · P=(·|¬φ) .

First, we have a straightforward generalisation of Corollary 15:

Proposition 34. If Pφc is an entropy limit point of Eφc , then

maxentEφc = {Pφc} .

Proof: Pφc is contained in Eφc because Pφc(φ) = c · 1 + (1 − c) · 0 = c.
Hence, Theorem 12 applies. ■

We also have an analogue of Corollary 16:

Proposition 35. If Hn contains Pφc for sufficiently large n, then

maxentEφc = {Pφc} .

Proof: If Pφc ∈ Hn for sufficiently large n, then Pφc is an entropy limit
point of Eφc . Hence, Proposition 34 applies. ■

Thus (cf. Corollary 19), if φ is quantifier-free and Pφc is well defined (1 >
P=(φ) > 0), then maxentEφc = {Pφc}. Interestingly, as we show shortly,
this holds true even when φ contains quantifiers. First we make the following
observation:

Proposition 36. ¬φn = (¬φ)n.
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Proof: Recall from (1) that for all n ≥ Nφ it is true that

P=(φ ∧ ωn) =

{
0, if and only if P=(φ|ωn) = 0

P=(ωn), if and only if P=(φ|ωn) > 0

P=(¬φ ∧ ωn) =

{
0, if and only if P=(¬φ|ωn) = 0

P=(ωn), if and only if P=(¬φ|ωn) > 0 .

Since 0 < P=(ωn) = P=(φ ∧ ωn) + P=(¬φ ∧ ωn) it follows that for every fixed
n-state ωn ∈ Ωn either P=(φ ∧ ωn) > 0 or P=(¬φ ∧ ωn) > 0 is true but not
both. Since φn is the disjunction of such ωn, in particular φn is quantifier free,
we have

¬φn = (¬φ)n

and ⟨φn, (¬φ)n⟩ is a partition. ■

We are now in a position to provide the main result of this section.

Theorem 37 (Agreement with Jeffrey Conditionalisation). For all c ∈ (0, 1)
and all φ ∈ SL such that P=(φ) ∈ (0, 1), the maximal entropy function for the
premiss φc is obtained by Jeffrey updating the equivocator function:

maxentEφc = {Pφc} = {c · P=(·|φNφ) + (1− c) · P=(·|¬φNφ)} .

Theorem 30 covers the borderline cases of c = 0 and c = 1 in which the
maximum entropy function is unique and given by a Bayesian conditionalisa-
tion.
Proof: The main idea in the proof comes from the intuition that it is always
beneficial in terms of entropy to take the probability mass from those n-states
that have few extensions to m-states that simulate φ, as m increases to infinity,
and divide it (equally) between the extensions of those n-states for which almost
all extensions to an m-state simulate φ as m increases to infinity.

Let N := Nφ and note that by Theorem 30

c · P=(·|φN ) + (1− c) · P=(·|¬φN ) = c · P=(·|φ) + (1− c) · P=(·|¬φ) ∈ Eφc .

Furthermore, cP=(·|φ) + (1− c)P=(·|¬φ) has strictly greater entropy than ev-
ery other function in Q ∈ E with Q(φN ) = c and Q(¬φN ) = (1 − c) be-
cause cP=(·|φ) + (1 − c)P=(·|¬φ) assigns all n-states extending φN the same
probability and it also assigns assigns all n-states extending (¬φ)N = ¬φN
(Proposition 36) the same probability.

The n-entropy of Pφc is given by:

Hn(c · P=(·|φ) + (1− c) · P=(·|¬φ))

=−
∑

ωn∈Ωn

ωn⊨φ
N

c · |φN |
|Ωn|

· log
(
c · |φN |
|Ωn|

)

−
∑

ωn∈Ωn

ωn⊨¬φN

(1− c) · |¬φN |
|Ωn|

· log
(
(1− c) · |¬φN |

|Ωn|

)

=− c · log(c)− (1− c) · log(1− c) + c ·Hn(P=(·|φN ))

+ (1− c) ·Hn(P=(·|¬φN )) .
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Now consider some other Q ∈ Eφc with Q(φN ) ̸= c. We show that Q ̸∈
maxentEφ . W.l.o.g. we assume and let α := Q(φN ) < c where 1 − α =
Q(¬φN ) > (1− c). Then there has to exist some state νN ⊨ ¬φN (recall that
this means that P=(νN ∧φ) = 0) such that Q(νN ∧φ) > 0. The n ≥ N -entropy
of Q – under the constraint that Q(φ) = c without insisting on Q ∈ P – is
maximised, if Q could equivocate on all φN states and all its extensions and,
furthermore, equivocate probability mass 1− c over ¬φN and all its extension,
and, furthermore, equivocate over all n-states in a set S ⊂ Ωn of extensions
¬φN as in Lemma 28.

So, overall,

Hn(Q) ≤−
∑

ωn∈Ωn

ωn⊨φ
N

α · |φN |
|Ωn|

· log
(
α · |φN |
|Ωn|

)

−
∑

ωn∈Ωn

ωn⊨¬φN

(1− c) · |¬φN |
|Ωn|

· log
(
(1− c) · |¬φN |

|Ωn|

)

−
∑
S⊂Ωn

(c− α) · |S|
|Ωn|

· log
(
(c− α) · |S|

|Ωn|

)
.

Hence,

Hn(Q)−Hn(Pφc)

≤−
∑

ωn∈Ωn

ωn⊨φ
N

α · |φN |
|Ωn|

· log
(
α · |φN |
|Ωn|

)
−
∑
S⊂Ωn

(c− α) · |S|
|Ωn|

· log
(
(c− α) · |S|

|Ωn|

)

+
∑

ωn∈Ωn

ωn⊨φ
N

c · |φN |
|Ωn|

· log
(
c · |φN |
|Ωn|

)
.

We proved that this expression is strictly less than zero for all large enough n
in Theorem 30 for c = 1. The general case for 1 > c > α > 0 follows from
(Landes et al., 2021, Proposition 5): Letting Hn(P ) > Hn(Q) for P,Q ∈ P
and denoting by c · P the result of multiplying all probabilities of n-states by
1 > c > 0, then and only then Hn(c ·P ) > Hn(c ·Q). This is so, since Hn(c ·P )
is an affine function of Hn(P ) with a strictly positive slope. It hence follows
that Hn(Q)−Hn(Pφc) < 0.

Hence, c · P=(·|φ) + (1 − c) · P=(·|¬φ) has greater entropy than Q. This
completes the proof. ■

Corollary 38 (Generalisation to sentence with intervals attached). For all
intervals ∅ ̸= X ⊂ [0, 1] and all sentences φ ∈ SL such that P=(φ) ∈ (0, 1) it
holds that c ·P=(·|φN )+(1−c) ·P=(·|¬φN ) has greater entropy than every other
function in EφX where c := argminx∈X |x − P=(φ)|. Given the premiss φX ,
the maximal entropy function is obtained by Jeffrey conditionalisation of the
equivocator on φc where c is closest to the probability of φ under the equivocator.
Hence,

maxentEφX = {c · P=(·|φN ) + (1− c) · P=(·|¬φN )} .
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Proof: If P=(φ) ∈ X, then c = argminx∈X |x−P=(φ)| = P=(φ) = P=(φ
N ).

Hence, for all sentences ψ ∈ SL

Pφc(ψ) = P=(φ
N ) · P=(ψ|φN ) + P=(¬φN ) · P=(ψ ∧ ¬φN )

= P=(ψ ∧ φN ) + P=(ψ|¬φN )

= P=(ψ) .

Since P= ∈ EφX the result follows.
If P=(φ) /∈ X, then for all P ∈ EφX it holds that x := P (φ) ̸= P=(φ). By

the proof of Theorem 37 we see that x · P=(·|φN ) + (1 − x) · P=(·|¬φN ) has
greatest entropy among all functions with x = P (φ). Hence,

maxentEφX ⊆ {x · P=(·|φN ) + (1− x) · P=(·|¬φN ) : x ∈ X} .

Letting Px := x ·P=(·|φ)+ (1− x) ·P=(·|¬φ), we now compute the n-entropies
for all these probability functions for n ≥ N to be equal to

HN (Px) =HN (x · P=(·|φ) + (1− x) · P=(·|¬φ))

=−
∑

ωN⊨φN

x · φ
N

|ΩN |
log

(
x · |φ

N |
|ΩN |

)

−
∑

ωN⊨¬φN

(1− x) · |ΩN | − |φN |
|ΩN |

log

(
(1− x) · |ΩN | − |φN |

|ΩN |

)

=− x · log

 x
|ΩN |
|φN |

− (1− x) · log

 1− x
|ΩN |

|ΩN |−|φN |


and

Hn(Px) =Hn(x · P=(·|φ) + (1− x) · P=(·|¬φ))

=− x · log

 x
|ΩN |
|φN | ·

|Ωn|
|ΩN |

− (1− x) · log

 1− x
|ΩN |

|ΩN |−|φN | ·
|Ωn|
|ΩN |


=HN (x · P=(·|φ) + (1− x) · P=(·|¬φ))

− x · log
(
|ΩN |
|Ωn|

)
− (1− x) · log

(
|ΩN |
|Ωn|

)
=HN (x · P=(·|φ) + (1− x) · P=(·|¬φ)) + log(|Ωn|)− log(|ΩN |)
=HN (Px) + log(|Ωn|)− log(|ΩN |) .

It is hence holds for all x, y ∈ [0, 1] and all n > N that

Hn(Px) > Hn(Py), if and only if HN (Px) > HN (Py) . (9)

Let us next note that PP=(φN ) = P=. Furthermore, every Px is a convex com-
bination of P=(·|φ) and of P=(·|¬φ). Along this line from P=(·|φ) to P=(·|¬φ)
N -entropy is maximised by PP=(φN ) = P= since it is the equivocator (on ΩN ).
Since the Px (on ΩN ) all are part of a line segment and HN is strictly concave,
it follows that N -entropy is uniquely maximised by the equivocator and strictly
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decreases the further one moves in one direction from the equivocator. Hence,
Pc has strictly the greatest N -entropy among all other Px for x ∈ X \ {c}.

Applying the above equivalence (9) we find that Pc (since c ∈ X is the
closest to P=(φ)) also has the greatest n-entropy among all Px for x ∈ X for
large enough n. Pc has hence greater entropy than every other probability
function in P ∈ EφX \ {Pc}. ■

7 Preservation of Inductive Tautologies

Having developed the entropy limit point method for determining maximal
entropy functions, and having demonstrated concordance with Bayesian con-
ditionalisation and Jeffrey conditionalisation, we will now discuss the maximal
entropy approach from a general perspective. In this section, we outline some
logical features of objective Bayesian inductive logic, while in §8 we will ex-
plore the extent to which inferences are invariant under permutations of the
constants, and in §9 we investigate some cases involving categorical premisses
with zero measure.

First we show that, in objective Bayesian inductive logic, inductive tautolo-
gies (i.e., probability 1 inferences in the absence of any premisses) are preserved
after learning the probability of any proposition that is inductively consistent:

Theorem 39 (Preservation of Inductive Tautologies, PIT). If |≈◦ θ and ̸|≈◦ ¬φ,
then φc |≈◦ θ for any c ∈ (0, 1].

Proof: To simplify notation, we use P † denote the unique probability function
with maximal entropy if there exists such a function.

First, note that applying the assumption P=(θ) = 1 to P=(θ∧φ)+P=(¬θ∧
φ) = P=(φ) entails P=(θ ∧ φ) = P=(φ) for all sentences φ ∈ SL.

If c = 1, then by Theorem 30,

P †(θ) = P=(θ|φ) =
P=(θ ∧ φ)
P=(φ)

=
P=(φ)

P=(φ)
= 1 .

So, φ1 |≈◦ θ.
If, on the other hand, c ∈ (0, 1), then by Theorem 37,

P †(θ) = c · P=(θ|φ) + (1− c) · P=(θ|¬φ) = c+ (1− c)

= 1 .

So, φc |≈◦ θ. ■

PIT implies that inductive contradictions are also preserved after learning
the probability of any proposition that is not an inductive contradiction: if
|≈◦ ¬θ and ̸|≈◦ ¬φ, then φc |≈◦ ¬θ for any c ∈ (0, 1].

PIT is loosely related to the Obstinacy principle of Paris (1994, p. 99),
which provides a condition under which inferences from φX1

1 , ..., φXk

k are pre-

served upon learning πW1
1 , ..., πWl

l . In the present setting, Obstinacy can

be formulated as follows. Consider E = {P : P satisfies φX1
1 , ..., φXk

k } and

F = {P : P satisfies πW1
1 , ..., πWl

l }. Then:
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Theorem 40 (Obstinacy). If maxentE ⊆ F, then maxentE ⊆ maxent(E∩F).

Proof: If P ∈ maxentE then no function in E dominates P in n-entropy
for sufficiently large n. In particular, no function in E ∩ F dominates
P in n-entropy for sufficiently large n. Thus, P ∈ maxent(E ∩ F) and
maxentE ⊆ maxent(E ∩ F). ■

PIT can also be thought of as a variant of the Rational Monotonicity rule
of inference in non-monotonic logic (Lehmann and Magidor, 1992, §3.4):

Rational Monotonicity. If ψ |≈ θ and ψ |̸≈ ¬φ, then ψ ∧ φ |≈ θ.

PIT specialises Rational Monotonicity to the case in which ψ is an inductive
tautology and then generalises it to the case in which φ is uncertain.

PIT can also be interpreted as an absolute continuity condition (Billings-
ley, 1979, p. 422): if ¬θ has zero measure, i.e., P=(¬θ) = 0, then any
P † ∈ maxentEφc also gives zero probability to ¬θ, where φ has positive mea-
sure and c > 0. Note that the equivocator function P= corresponds to Lebesgue
measure when probability functions on L are mapped to probability measures
on the unit interval (Williamson, 2017, §2.6.3). Thus, ‘zero measure’ in the
present sense (Definition 4) corresponds to zero Lebesgue measure.

8 Invariance under Permutations

Williamson (2010, Proposition 5.10) shows that the maximal entropy approach
is invariant under those finite and infinite permutations of the atomic sentences
that list atomic sentences involving only t1, ..., tn before those involving tn+1

for each n. In this section, we explore invariance under permutations of the
constants themselves.

Definition 41. Let f be a reordering of constants, i.e, f is bijective. For
φ ∈ SL we write f(φ) for the result of reordering the constants in φ according
to f . We use f(P ) to denote the probability function obtained from P by
permuting the constants of φ ∈ SL according to f : f(P )(φ(⃗t)) := P (φ(f (⃗t)))
for all φ ∈ SL.

Lemma 42. If P ∈ P and f is a permutation, then f(P ) ∈ P.

Proof: It is clear that f(P ) satisfies P1 and P2.
Concerning P3, we need to show the next equality, the latter equalities

follow from the definition of f(P ).

f(P )(∃xθ(x, t⃗)) = sup
m
f(P )(

m∨
i=1

θ(ti, t⃗))

= sup
m
P (f(

m∨
i=1

θ(ti, t⃗)))

= sup
m
P (

m∨
i=1

f(θ(ti, t⃗)))

= sup
m
P

(
m∨
i=1

(
θ

(
f(ti), f (⃗t)

ti, t⃗

)))
.
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As usual, put N := max{i : ti ∈ θ(⃗t)} and also let Nf := max{j : tj ∈ f(θ(⃗t))}.
Let us now fix m and consider Mm ≥ max{f(1), . . . , f(m), Nf}, then∨m

i=1 θ
(
f(ti),f(t⃗)

ti ,⃗t

)
⊨
∨Mm

i=1 θ(ti, f (⃗t)) and thus

P

(
m∨
i=1

θ

(
f(ti), f (⃗t)

ti, t⃗

))
≤ P (

Mm∨
i=1

θ(ti, f (⃗t))) .

Similarly, let Jm ≥ max{f−1(1), . . . , f−1(m), Nf}, then
∨m
i=1 θ(ti, f (⃗t)) ⊨∨Jm

i=1 f(θ(ti, t⃗)) and so

P

(
Jm∨
i=1

θ

(
f(ti), f (⃗t)

ti, t⃗

))
≥ P (

m∨
i=1

θ(ti, f (⃗t))) .

We next note that (P (
∨m
i=1 θ(ti, f (⃗t))))m∈N is an increasing non-negative

sequence which converges by P3 to P (∃xθ(x, f (⃗t))). This entails that
supm f(P )(

∨m
i=1 θ(ti, t⃗)) also converges to P (∃xθ(x, f (⃗t))).

So,

sup
m
f(P )(

m∨
i=1

θ(ti, t⃗)) = sup
m
P (

m∨
i=1

θ(ti, f (⃗t)))

= P (∃xθ(x, f (⃗t)))
= f(P )(∃xθ(x, t⃗)) ,

where the last equality is just definition of f(P ). Hence, f(P ) satisfies P3. ■

The concept of ‘greater entropy’ is well defined in the sense that it is pre-
served under any permutation that preserves the probability functions that it
permutes:

Proposition 43 (Independence of ordering of constant symbols). For any
reordering of constants f and probability functions P,Q such that f(P ) = P
and f(Q) = Q, P has greater entropy than Q, if and only if f(P ) has greater
entropy than f(Q).

Proof: If f(P ) = P and f(Q) = Q then Hn(P ) = Hn(f(P ))
and Hn(Q) = Hn(f(Q)). So, Hn(P ) > Hn(Q), if and only if
Hn(f(P )) > Hn(f(Q)). Hence, P has greater n-entropy than Q for
sufficiently large n, if and only if f(P ) has greater n-entropy than f(Q) for
sufficiently large n. ■

On the other hand, if a permutation f changes the two probability functions
of interest, then the permuted functions can compare differently with respect
to which has greater entropy:

Proposition 44 (Dependence on ordering of constant symbols). There exists
an infinite reordering of constants f and probability functions P,Q such that
P has greater entropy than Q but f(Q) has greater entropy than f(P ).
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Proof: To simplify matters we consider a language only containing a single
relation symbol, U , which is unary. It is apparent from the proof that the proof
strategy applies to all languages in our sense.

Let f be the following bijection on N. f(2n + 1) := 2n − 1 for all n ≥ 1,
f(1) = 2 and f(2n) = 2n+2. Intuitively, the even numbers and 1 are postponed
to the future and the odd numbers, with the exception of 1 are brought forward.

It is important in the following that for all n it holds that f is not a bijection
on {1, . . . , n}. For all even n and n = 1 it holds that f(n) > n. For all other
odd n it holds that f−1(n) = n+2 > n. This fact will be used without further
mention.

Next define a probability function P ∈ P by having all constant symbols be
independent of each other. This entails that n-entropies can be written as a
sum of n 1-entropies. This follows from, for example, (Landes and Williamson,
2016, Equation 1).

For all n ≥ 1 we now let

P (Ut1) :=
1

2
P (Ut2n|ω2n−1) :=

1

2
P (Ut2n+1) := 1 ,

whenever P (ω2n−1) > 0.
We can then compute the n-entropies as follows for all n ≥ 1

H1(P ) = log(2) H2n(P ) = (n+ 1) log(2)

H2n+1(P ) = H2n(P ) = (n+ 1) log(2) ,

since the even n are maximally equivocal as is 1 and all other odd n are deter-
ministic.

Ignoring the constant factor (log(2)), the n-entropies of P can then be
represented by the sequence ⟨1, 2, 2, 3, 3, . . .⟩. Figuratively speaking, the in-
dividual levels of n-entropy increase (Hn+1(P ) − Hn(P )) are represented by
⟨1, 1, 0, 1, 0, 1, 0, 1, 0, . . .⟩. 0 here represents a deterministic behaviour and 1
represents a fully equivocal behaviour.

We now compute the n-entropies as follows for all n ≥ 1

H1(f(P )) = 0 H2n(f(P )) = n log(2) H2n+1(f(P )) = H2n(f(P )) = n log(2) .

Clearly, for all n ≥ 1 it holds that Hn(P ) > Hn(f(P )).
Figuratively speaking, the individual levels have the following entropies

for f(P ) ignoring the constant factor (log(2)): ⟨0, 1, 0, 1, 0, 1, 0, 1, 0, . . .⟩ and
n-entropies ⟨0, 1, 1, 2, 2, 3, 3, 4, 4, . . .⟩. Clearly, this last sequence is pointwise
smaller than the corresponding sequence for P .

Now define a probability function Q which also makes all constant symbols
independent of each other. Implicitly define Q by

H1(Q) = 0.6 · log(2) H2(Q) = 1.2 · log(2) H3(Q) = 1.8 · log(2)
Hn+1(Q) = Hn(Q) + 0.5 · log(2)

for all n ≥ 4. That is, we need to find a value Q(Uti) such that

−Q(Uti) log(Q(Uti))− (1−Q(Uti)) log(1−Q(Uti)) = α log(2) ,

where α ∈ {0.5, 0.6}.
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We note thatQ is well defined under the assumption thatQ(Uti) ≤ 0.5 since
i) 1-entropy is strictly concave and strictly increasing for Q(Uti) ∈ [0, 0.5], ii)
H1(P ) ∈ [0, log(2)] for all P ∈ P, iii) H1 is continuous, iv) H1 is a bijective
map from [0, 0.5] onto [0, log(2)] and finally v) the intermediate value theorem
holds.

Apparently, for i ∈ {1, 2, 3} it holds that Hi(P ) > Hi(Q). That Hi(P ) >
Hi(Q) holds for all greater i, too, follows from the definition of Q.

Figuratively speaking, the individual levels have the
following entropies for Q ignoring the constant factor
(log(2)): ⟨0.6, 0.6, 0.6, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, . . .⟩ and n-entropies
⟨0.6, 1.2, 1.8, 2.3, 2.8, 3.3, . . .⟩. Clearly, this last sequence is pointwise smaller
than the corresponding sequence for P .

We compute the n-entropies for f(Q) as follows for all 1 ≤ n ≤ 4

H1(f(Q)) = 0.6 · log(2) H2(f(Q)) = 1.2 · log(2)
H3(f(Q)) = 1.7 · log(2) H4(f(Q)) = 2.3 · log(2) .

For all larger n ≥ 5 we observe

Hn(f(Q)) = H4(f(Q)) +
(n− 4)

2
· log(2) > 0 .

Figuratively speaking, the individual levels have the following entropies for Q
ignoring the constant factor (log(2)): ⟨0.6, 0.6, 0.5, 0.6, 0.5, 0.5, 0.5, 0.5, 0.5, . . .⟩
and n-entropies ⟨0.6, 1.2, 1.7, 2.3, 2.8, 3.3, . . .⟩. Clearly, this last sequence is
pointwise greater than the corresponding sequence for f(P ). ■

The proof shows in fact that for any language there exist probability func-
tions P,Q ∈ P such that P has greater entropy than f(P ) and P has greater
entropy than Q, yet f(Q) has greater entropy than f(P ).

Interestingly, despite the possibility exposed by Proposition 44, our results
show that in many natural cases, the function that has maximal entropy is
invariant under reordering the constants:6

Theorem 45 (Invariance under Permutations of Constant Symbols). If 1 >

P=(φ) > 0 and 0 < c ≤ 1, then for {P †} = maxentEφc and {P †
f } =

maxentEf(φ)c it holds that for all ψ ∈ SL that

P †(ψ) = P †
f (f(ψ)) .

Proof: Let us first recall that by Lemma 42 we have f(P ) ∈ P. Furthermore,
from the definition of f(P ) we immediately obtain that P ∈ Eφc , if and only
if f(P ) ∈ Ef(φ)c .

6Landes et al. (2021, Footnote 2) show that Paris’ approach to maximising entropy,
which appeals to limits of entropy maximisers on finite languages, is invariant under finite
and infinite permutations of constant symbols where it is well defined. They demonstrate that
Paris’ approach agrees with the maximal entropy approach in many cases, and conjecture
that this agreement extends to all cases in which Paris’ limiting function is well defined. In
all such cases, invariance of this limit function implies that the maximal entropy approach is
invariant under permutations of constants.
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After observing that ⊨ f(φm) ↔ f(φ)m and that ⊨ f(¬φm) ↔ f(¬φ)m for
all large enough m, we apply Theorem 37 and find

P † =c · P=(·|φm) + (1− c) · P=(·|¬φm)

P †
f =c · P=(·|f(φm)) + (1− c) · P=(·|f(¬φm)) .

It now suffices to note that the equivocator function is as symmetrical as can
be: for all χ, ρ ∈ QFSL it holds that

P=(χ|ρ) = P=(f(χ)|f(ρ)) .

Hence P †(χ) = P †
f (f(χ)) for all quantifier free sentences χ ∈ QFSL. Gaif-

man’s Theorem Gaifman (1964) then delivers the result that P †(·) = P †
f (f(·)).

■

As expected this result generalises easily to a single premiss with an at-
tached uncertainty interval.

Corollary 46. If 1 > P=(φ) > 0 and interval ∅ ≠ X ⊂ [0, 1], then for

{P †} = maxentEφX and {P †
f } = maxentEf(φ)X it holds that for all ψ ∈ SL

that

P †(ψ) = P †
f (f(ψ)) .

Proof: For both premisses a unique maximum entropy function exists which is
equal to a Jeffrey update of the equivocator. These Jeffrey (or simply Bayesian)
updates are with respect to φNφ , respectively, the logically equivalent f(φNφ)
and (f(φ))Nφ . Furthermore, both Jeffrey updates are with respect to the same
x ∈ X (Corollary 38).

Finally, let us apply the proof of Theorem 45 to note that for all ψ ∈ SL it
holds that

P †(ψ) = P †
f (f(ψ)) .

■

9 Zero Measure Premisses

As Example 13 illustrates, there are cases of zero-measure premisses that are
entirely unproblematic and that can be handled using the entropy limit point
techniques introduced in §3.7 However, some zero-measure premisses are more
problematic, in that they generate sets E of probability functions in which
there is no function with maximal entropy. We will focus on these pathological
cases in this section. We first provide some examples of such cases and then we
discuss how best to proceed when they arise. We argue that these cases sug-
gest a refinement to the definition of maximal entropy and that they motivate
drawing inferences from any function with sufficiently great entropy.

7More generally, if φ is a universally quantified claim about a conjunction of literals then
it has zero measure but can be handled straightforwardly (Landes et al., 2021).
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To simplify the exposition in this section we assume in this section that
the underlying language L contains only the single relation symbol employed
in the respective propositions. The general case follows from the fact entropy
maximisation is language invariant (Paris, 1994, Chapter 6), because maxi-
mal entropy functions equivocate over all sentences mentioning only relation
symbols that are not mentioned by any premiss.

Proposition 47. For φ = ∃x∀yUxy and any P ∈ Eφ there exists a probability
function Q ∈ Eφ which has greater entropy than P . Hence, maxentEφ = ∅.

Proof: Suppose for contradiction that maxentEφ ̸= ∅ and let P ∈ maxentEφ.
We now show that this entails a contradiction. This is achieved by first defining
a probability function P ′ ∈ Eφ \ {P} such that Hn(P

′) ≥ Hn(P ) for all large
enough n. It is not necessarily the case that P ′ has greater entropy than P .
However, all probability functions that are a convex combination of P and P ′

are in Eφ (Eφ is convex) and have strictly greater n-entropy than P for all
large enough n (Hn(·) is concave). Hence, all the convex combinations are in
Eφ and have greater entropy than P . Contradiction.

Note that P=(φ) = 0 < 1 = P (φ). Hence, P ̸= P=. Let us now define a
probability function P ′ ∈ E by shifting all witnessing of ∃x∀yUxy by one and
then adding a constant t1 such that Ut1t

∗ is independent from all other literals
for all t∗ ̸= t1. Intuitively, the literals ±Utitk are replaced by ±Uti+1tk.

Formally, let ωn ∈ Ωn =
∧n
i,k=1 U

ϵi,ktitk be an arbitrary n-state. Then
define P ′ by

P ′(ωn) : = P (

n∧
i=2

n∧
k=1

U ϵi−1,kti−1tk) · P=(

n∧
k=1

U ϵ1,kt1tk)

=
P (
∧n−1
i=1

∧n
k=1 U

ϵi,ktitk)

2n
.

Firstly, we note P ′(∀yUt1y) = limn→∞ P ′(
∧n
k=1 Ut1tk) = limn→∞ 2−n = 0.

So, according to P ′ the constant t1 is not a witness of the existential premiss
sentence φ.

We next show that P ̸= P ′. Firstly, note that since
limn→∞ P (

∨n
i=1 ∀yUtiy) = P (∃x∀yUxy) = 1 the following minimum is

a finite number and thus obtains min{i ∈ N : P (∀yUtiy) > 0}. Armed with
this observation, we note that secondly and finally that

min{i ∈ N : P ′(∀yUtiy) > 0} = min{i ∈ N : lim
n→∞

P ′(

n∧
k=1

Utitk) > 0}

= min{i ∈ N : lim
n→∞

P (

n∧
k=1

Uti+1tk) > 0}

= 1 +min{i ∈ N : lim
n→∞

P (

n∧
k=1

Utitk) > 0}

= 1 +min{i ∈ N : P (∀yUtiy) > 0} .

So, P ̸= P ′.
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We also observe that for all i ∈ N, P ′(∀yUtiy) = P (∀yUti+1y) and further-
more P ′(

∨
i∈I ∀yUtiy) = P (

∨
i∈I ∀yUti+1y) for all finite index sets I. So,

P ′(∃x∀yUxy) = lim
n→∞

P ′(

n∨
i=1

∀yUtiy)

≥ lim
n→∞

P ′(

n∨
i=2

∀yUtiy)

= lim
n→∞

P (

n−1∨
i=1

∀yUtiy)

= lim
n→∞

P (

n∨
i=1

∀yUtiy)

= 1 .

This means that P ′(∃x∀yUxy) = 1 and thus, as advertised, P ′ ∈ Eφ.

We now calculate n-entropies of P and P ′ and find for n ≥ 1 that:

Hn(P ) = −
∑

ϵr,s∈{0,1}
2≤r≤n
1≤s≤n

∑
ϵu∈{0,1}
1≤u≤n

P (

n∧
k=1

U ϵkt1tk ∧
n∧
i=2

n∧
k=1

U ϵi,ktitk)

· log(P (
n∧
k=1

U ϵkt1tk ∧
n∧
i=2

n∧
k=1

U ϵi,ktitk))

Hn(P
′) = −

∑
ϵr,s∈{0,1}
1≤r,s≤n

P ′(

n∧
i,k=1

U ϵi,ktitk) · log(P ′(

n∧
i,k=1

U ϵi,ktitk))

= −
∑

ϵr,s∈{0,1}
2≤r≤n
1≤s≤n

∑
ϵu∈{0,1}
1≤u≤n

P ′(

n∧
k=1

U ϵkt1tk ∧
n∧
i=2

n∧
k=1

U ϵi,ktitk)

· log(P ′(

n∧
k=1

U ϵkt1tk ∧
n∧
i=2

n∧
k=1

U ϵi,ktitk))

= −
∑

ϵr,s∈{0,1}
2≤r≤n
1≤s≤n

∑
ϵu∈{0,1}
1≤u≤n

P (
∧n−1
i=1

∧n
k=1 U

ϵi,ktitk)

2n

· log(
P (
∧n−1
i=1

∧n
k=1 U

ϵi,ktitk)

2n
) .

Holding the first summation fixed, we note that since n-entropy is maximised
by maximally equivocating that Hn(P ) ≤ Hn(P

′). For example, if P is flat
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on
∧n
k=1 U

ϵn,ktntk, P (
∧n
k=1 U

ϵn,ktntk) = 2−n for all ϵn,k with 1 ≤ k ≤ n, and

all these conjunctions are independent of
∧n−1
i=1

∧n
k=1 U

ϵn,ktitk for all ϵ, then
Hn(P ) = Hn(P

′).

Now define Q := P+P ′

2 . Since Eφ is convex and P, P ′ ∈ Eφ, we observe
that Q ∈ Eφ.

Since n-entropy is a strictly concave function we conclude that
Hn(Q) > Hn(P ) whenever P and P ′ disagree on Ln. Since P ̸= P ′

there has to exists some finite M and quantifier free sentence ψ ∈ QFSLM
such that P (ψ) ̸= P ′(ψ) (Gaifman’s Theorem). Since Lm ⊂ Lm+1 for all
m we have that P disagrees with P ′ on Lm for all m ≥ M . We have hence
found a Q ∈ E such that Hn(Q) > Hn(P ) for all large enough n. Hence,
P /∈ maxentEφ. Contradiction. ■

We generalise this result to higher quantifier complexity in Appendix 3.
These results are summarised in the following theorem.

Theorem 48 (Zero Measure Premisses). For all n ≥ 1 and

• φ = ∃v2n∀v2n−1 . . . ∃v2∀v1Uv1v2 . . . v2n ∈ Σ2n or

• φ = ∀v2n+1 . . . ∃v2∀v1Uv1v2 . . . v2n+1 ∈ Π2n+1,

it holds that for all P ∈ Eφ there exists a probability function Q ∈ Eφ which
has greater entropy. Hence, maxentEφ = ∅.

Having introduced some pathological cases in which there is no maximal
entropy function, we now turn to the question as to what to do in such cases.

For simplicity of exposition, we focus on the case in which we have a
single premiss, φ = ∃x∀yUxy, considered in Proposition 47. We call a
proposition of the form ∀yUtiy a witness proposition. A probability func-
tion P that satisfies φ distributes probability 1 to the witness propositions,
limk→∞ P (

∨k
i=1 ∀yUtiy) = P (∃x∀yUx) = 1. We call a constant ti a witness if

P gives positive probability to the corresponding witness proposition ∀yUtiy.
Now, the equivocator function, which is the probability function with maximal
entropy, gives φ measure zero, P=(∃x∀yUx) = 0, and thus it has no witnesses.
Given P , one can construct a function Q that has greater entropy than P by
making Q ‘closer to’ the equivocator in one or both of two ways:

1. Delaying the witnesses. If there are infinitely many witnesses, then one
can createQ by increasing the index of each witness in an appropriate way
in order to make Q more like the equivocator than P for each fixed n. For
example, if ti1 , ti2 , . . . are the witnesses for P , one can construct Q with
witnesses ti2 , ti3 , . . ., ensuring that Q(∀yUti1y) = 0 and Q(∀yUtijy) =
P (∀yUtij−1

y) for each j > 1.

2. Flattening the distribution over witness propositions. Entropy can be
increased by increasing the number of witnesses, if there are finitely many,
and distributing probability more equally to the witnesses, decreasing the
rate at which the probability of

∨k
i=1 ∀yUtiy converges to 1.

The approach taken in the proof of Proposition 47 involved a mixture of
these strategies: delaying witnesses to give P ′, and then flattening the distri-
bution by taking a convex combination of P and P ′, to yield Q.

32



One might argue that although the first of these two strategies increases
n-entropy for sufficiently large n, it does not on its own lead to a function
that is more equivocal in an intuitive sense. Hence, this seems to be a case
in which the formal concept of maximal entropy fails to adequately explicate
the concept of being maximally equivocal. (In contrast, the second strategy is
unproblematic: flattening the distribution over witness propositions does seem
to be a genuine way of generating a more equivocal probability function.)

The explication of maximal entropy can however be refined to avoid this
problem: we can deem P to have greater entropy than Q just when, for ev-
ery reordering f of the constants that do not appear in the premisses, f(P )
dominates f(Q) in n-entropy for sufficiently large n. Note that this refinement
relativises the greater-entropy relation to the premisses.

This refinement eradicates the first of the two strategies: delaying witnesses
no longer increases entropy, because there are reorderings with respect to which
the witnesses are not delayed. The refinement leaves intact the second kind of
strategy.

If we accept this refinement, the question then becomes: what policy should
be adopted when there is no maximal entropy function because of increases in
entropy of the second kind?

Williamson (2010, pp. 29–30) suggests a pragmatic policy: to take infer-
ences to be determined by probability functions with sufficiently great entropy.
Here, the cut-off between functions that have sufficiently great entropy and
those that do not may depend on features of the problem or on the users of the
logic, and may not be precise. Choosing a probability function with sufficiently
great entropy amounts to a choice of P such that P (

∨k
i=1 ∀yUtiy) converges

to 1 sufficiently slowly.
Further desiderata may be imposed. For example, one might suggest equiv-

ocating between the constants by treating them equally. The thought here is
that each constant should be a witness, because the premiss gives no grounds
for discriminating between constants that are witnesses and those that are
not. This line of reasoning motivates giving each witness proposition the same
probability s > 0 and making witness propositions probabilistically indepen-
dent.8 In which case, P (

∨k
i=1 ∀yUtiy) = 1 − (1 − s)k, which converges to 1

as required. Now, decreasing s (and distributing the corresponding probabil-
ity equally amongst n-states) will lead to a probability function with greater
entropy—this is an application of the second of the two strategies outlined
above. The pragmatic policy then amounts to drawing inferences from proba-
bility functions that correspond to values of s that are sufficiently small. One
approach here is to take s to be sufficiently small just when taking s any smaller
would not make a significant difference with respect to practical purposes.

In sum, we see that although these pathological examples require refine-
ments to the overall approach, there is scope to devise policies that allow one
to extend objective Bayesian inductive logic even to these difficult measure-zero
cases.

8Such a distribution fits well with the maximal entropy approach, since it encapsulates
symmetry and independence properties that have been used to motivate entropy maximisa-
tion (Paris and Vencovská, 1997; Paris, 1998).
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10 Conclusion

Objective Bayesian inductive logic defines inductive entailment from a set of
(possibly probabilistic) premisses in terms of maximal entropy probability func-
tions that satisfy the given premisses. To be more precise, a set of premisses
inductively entails a conclusion if every probability function with maximal en-
tropy that satisfies the premisses also satisfies the conclusion. This is a very
natural approach to inductive logic that has been studied extensively in the
literature in the context of reasoning with propositional languages. An im-
mediate task that arises with this approach is then to find these maximal
entropy probability functions in order to perform inference. This is a straight-
forward, although possibly computationally expensive, problem when working
with propositional languages. For more expressive languages, however, it is not
clear how one should proceed to determine these maximal entropy probability
functions. In this paper, we have studied this problem for premisses and con-
clusion that are given in terms of constraints on the probabilities of sentences
of a first order language.

To do so we first introduced the notion of an entropy limit point and dis-
cussed its use for determining maximal entropy probability functions. Next
we distinguished what we call the measure-zero sentences from those that have
positive measure. Measure-zero sentences are sentences that are assigned prob-
ability zero by the equivocator function P=. Intuitively, measure-zero sentences
are those that have very few models. To be more precise, these are sentences
for which the proportion of term structures with a countably infinite domain
that satisfy them is negligible. We showed that for categorical premisses with
positive measure, the maximal entropy approach agrees with Bayesian condi-
tionalisation. This then generalizes to Jeffrey conditionalisation when dealing
with a non-categorical premiss that is given in terms of a constraint on the
probability of some sentence. With these results in place we then showed that
although the comparative entropy of probability function does in general de-
pend on the ordering of constants in the language, the probability functions
with maximal entropy remain invariant under such permutations in the cases
where it agrees with Bayesian of Jeffrey conditionalisation.

These results not only clarify which probabilities the maximal entropy prob-
ability functions assign for inductive inference but also give a constructive
method for calculating the maximal entropy probabilities. On the one hand,
this shows that the maximal entropy approach agrees with standard concep-
tions of baseline rationality. On the other, it witnesses the stability and gen-
erality of Bayesian conditionalisation as a process of probabilistic learning.

Finally, we turned our attention to inference from zero-measure premisses
and identified a certain class of zero-measure sentences for which there is no
maximal entropy probability function. This leaves the question of inductive
inference from these pathological zero-measure premisses open. The issue is
then to understand which inferences from zero measure premisses are rational
and how to systematically characterize such inferences in terms of a unified
inference process, and we developed a strategy for doing this.

Another interesting question is what more can be said about inductive infer-
ence from multiple non-categorical premisses. So far, our results on objective
Bayesian inductive logic have concerned languages containing only relation
symbols. It is natural to extend these considerations to languages also con-
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taining a symbol for equality and function symbols, which have already been
studied in Pure Inductive Logic (Landes, 2009; Landes et al., 2009; Paris and
Vencovská, 2015; Howarth and Paris, 2019; Paris and Vencovská, 2019). Fi-
nally, our hope here is that these results can also suggest new avenues for
investigating the open cases of the entropy limit conjecture that concerns the
equivalence of the two main approaches to inductive inference introduced in
§1.
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Appendix 1. Proofs of Proposition 11 and Theorem 12

First let us recount some basic information-theoretic facts.
The n-divergence of two probability functions P and Q is defined as the

Kullback-Leibler divergence of P from Q on Ln:

dn(P,Q)
df
=
∑
ω∈Ωn

P (ω) log
P (ω)

Q(ω)
.

A Pythagorean theorem holds for the n-divergence dn (Cover and Thomas,
1991, Theorem 11.6.1):

dn(P,Q) ≥ dn(P,Rn) + dn(Rn, Q),

for any convex F ⊆ P, if P ∈ F and Q ̸∈ F, where Rn ∈ arg infS∈F dn(S,Q).
Consequently, for any P ∈ E and Qn ∈ Hn (Landes et al., 2021, corollary

32):
Hn(Qn)−Hn(P ) ≥ dn(P,Qn).

Pinsker’s inequality connects the L1 distance to n-divergence (see, e.g.,
Cover and Thomas, 1991, Lemma 11.6.1):

dn(P,Q) ≥ 1

2
∥P −Q∥2n .

Proposition 11. If P is an entropy limit point of E then there are Qn ∈ Hn
such that ∥Qn − P∥n −→ 0 as n −→ ∞.
Proof: Putting our last two information-theoretic facts together we have that

Hn(Qn)−Hn(P ) ≥ dn(P,Qn)

≥ 1

2
∥P −Qn∥2n ,

for Qn ∈ Hn and P ∈ E.
Now, if P is an entropy limit point of E then there are Qn ∈ Hn such that

|Hn(Qn)−Hn(P )| −→ 0 as n −→ ∞. Hence ∥P −Qn∥2n also converge to zero,
as required. ■

Theorem 12. If E contains an entropy limit point P then

maxentE = {P}.
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Proof: First we shall show that P ∈ maxentE; later we shall see that there is
no other member of maxentE.

First, then, assume for contradiction that P ̸∈ maxentE. Then there is
some Q ∈ E such that Q has greater entropy than P . That is, for sufficiently
large n, Hn(Qn) ≥ Hn(Q) > Hn(P ), where the Qn ∈ Hn converge in entropy
(and, by Proposition 11, in L1) to P . N.b., Q ̸= P . Hence, for sufficiently large
n,

Hn(Qn)−Hn(P ) > Hn(Qn)−Hn(Q)

≥ dn(Q,Qn)

≥ 1

2
∥Q−Qn∥2n .

Since the Qn converge in entropy to P , they converge in L1 to Q. By the
uniqueness of L1 limit points, Q = P : a contradiction. Hence P ∈ maxentE,
as required.

Next we shall see that P is the unique member of maxentE. Suppose for
contradiction that there is some P † ∈ maxentE such that P † ̸= P . Then P
cannot eventually dominate P † in n-entropy—i.e., there is some infinite set
J ⊆ N such that for n ∈ J ,

Hn(P
†) ≥ Hn(P ).

Let R
df
= λP †+(1−λ)P for some λ ∈ (0, 1). Now by the log-sum inequality

(Cover and Thomas, 1991, Theorem 2.7.1), for all n ∈ J large enough that
P †(ωn) ̸= P (ωn) for some ωn ∈ Ωn,

Hn(R) > λHn(P
†) + (1− λ)Hn(P )

≥ λHn(P ) + (1− λ)Hn(P )

= Hn(P ).

Hence,

Hn(Qn)−Hn(P ) > Hn(Qn)−Hn(R)

≥ dn(R,Qn),

for large enough n ∈ J .
Now by Pinsker’s inequality and the definition of R,

dn(R,Qn) ≥ 1

2
∥R−Qn∥2n

=
1

2

∥∥P −Qn + λ(P † − P )
∥∥2
n

=
1

2

( ∑
ωn∈Ωn

∣∣P (ωn)−Qn(ωn) + λ(P †(ωn)− P (ωn))
∣∣)2

.

Let fn(φ)
df
= P (φ) − Qn(φ) + λ(P †(φ) − P (φ)) and ρn

df
=
∨
fn(ωn)>0 ωn.
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Then, ∑
ωn∈Ωn

|fn(ωn)| =
∑

ωn:fn(ωn)>0

fn(ωn)−
∑

ωn:fn(ωn)≤0

fn(ωn)

=
∑

ωn:fn(ωn)>0

fn(ωn)−
∑

ωn:fn(ωn )̸>0

fn(ωn)

= fn(ρn)− fn(¬ρn)
= 2fn(ρn)

after substituting P (¬ρn) = 1− P (ρn) etc.
Let us consider the behaviour of

fn(ρn) = P (ρn)−Qn(ρn) + λ(P †(ρn)− P (ρn))

as n −→ ∞. Now, P (ρn)−Qn(ρn) −→ 0 as n −→ ∞, because Qn converges in
L1 to P . However, λ(P †(ρn)− P (ρn)) ̸−→ 0 as n −→ ∞, as we shall now see.
P † ̸= P by assumption, so they must differ on some quantifier-free sentence ψ,
a sentence of Lm, say. Suppose without loss of generality that P †(ψ) > P (ψ)
(otherwise take ¬ψ instead) and let δ = P †(ψ)− P (ψ) > 0. Now for n≥m,

fn(ρn) =
∑

ωn:fn(ωn)>0

fn(ωn) ≥
∑
ωn|=ψ

fn(ωn) = fn(ψ) .

Since Qn converges in L1 to P we can consider n > m large enough that (Cover
and Thomas, 1991, Equation 11.137):

∥Qn − P∥n = 2 max
φ∈SLn

(Qn(φ)− P (φ)) < λδ .

In particular, since ψ is quantifier-free, Qn(ψ) − P (ψ) ≤ maxφ∈SLn(Qn(φ) −
P (φ)) < λδ/2. For any such n,

fn(ρn) ≥ fn(ψ)

= P (ψ)−Qn(ψ) + λ(P †(ψ)− P (ψ))

> −λδ
2

+ λδ

=
λδ

2
.

Putting the above parts together, we have that for sufficiently large n ∈ J ,

Hn(Qn)−Hn(P ) > dn(R,Qn) ≥
(2fn(ρn))

2

2
>
λ2δ2

2
> 0 .

However, that these Hn(Qn) − Hn(P ) are bounded away from zero
contradicts the assumption that the Qn converge in entropy to P . Hence, P
is the unique member of maxentE, as required. ■
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Appendix 2. Alternative proof of Corollary 16

This appendix provides a more direct proof of Corollary 16, which identifies
an important scenario in which the equivocator function conditioned on a cat-
egorical constraint is the maximal entropy function.

Corollary 16. If Hn contains P=(·|φ) for sufficiently large n then

maxentEφ = {P=(·|φ)}.

Proof: There are two cases: either P=(φ) = 1 or P=(φ) < 1.
If P=(φ) = 1 then P= ∈ Eφ and P=(·|φ) = P=(·). P= is the unique member

of maxentEφ because the equivocator function has greater entropy than any
other probability function, so maxentEφ = {P=(·|φ)}, as required.

If P=(φ) < 1 then we can proceed as follows.
Since P=(φ) > 0, P=(·|φ) is well defined. P=(φ|φ) = 1 so P=(·|φ) ∈ E.

Thus Eφ ̸= ∅.
Suppose for contradiction that maxentEφ ̸= {P=(·|φ)}. Then in Eφ there

must be some P † ̸= P=(·|φ) that is not eventually dominated in entropy by
P=(·|φ). That is, there is some infinite J ⊆ N such that Hn(P

†)≥Hn(P=(·|φ))
for all n ∈ J . (To see this consider that there are three cases: (i) if maxentEφ =
∅ then every member of Eφ is eventually dominated by some other in entropy,
so P=(·|φ) is dominated by some P † and P † is not dominated by P=(·|φ); (ii)
if P=(·|φ) ̸∈ maxentEφ = {P †, . . .} then P † is not dominated by P=(·|φ); (iii)
if maxentEφ = {P=(·|φ), P †, . . .} then P † is not dominated by P=(·|φ).)

Define a probability function Q
df
= λP †+(1−λ)P=(·|φ) for some λ ∈ (0, 1).

By the log-sum inequality (Cover and Thomas, 1991, Theorem 2.7.1), for all
n ∈ J large enough that P †(ω) ̸= P=(ω|φ) for some ω ∈ Ωn,

Hn(Q) > λHn(P
†) + (1− λ)Hn(P=(·|φ))

≥ λHn(P=(·|φ)) + (1− λ)Hn(P=(·|φ))
= Hn(P=(·|φ)).

However, that Hn(Q) > Hn(P=(·|φ)) for sufficiently large n ∈ J contra-
dicts the assumption that Hn contains P=(·|φ) for sufficiently large n. Hence
maxentEφ = {P=(·|φ)}, as required. ■

Appendix 3. Zero measure Premisses of Higher Quantifier
Complexity

Proposition 49 (Σ2m). For φ = ∃x2m∀x2m−1 . . . ∀x1Ux2mx2m−1 . . . x1 ∈
Σ2m it holds that for all P ∈ Eφ there exists a probability function Q ∈ Eφ
which has greater entropy. Hence, maxentEφ = ∅.

Proof: For ease of notation we will write Utit⃗ for Utitk2m−1
. . . tk1 and∧n

t=1 Utit⃗ for
∧n
k2m−1=1 · · ·

∧n
k1=1 Utitk2m−1

. . . tk1
Suppose for contradiction that maxentE ̸= ∅ and let P ∈ maxentE. Note

that P=(φ) = 0 < 1 = P (φ). Hence, P ̸= P=.
Let us now define a probability function P ′ ∈ E by shifting all witnessing

of ∃x2m∀x2m−1∃x2m−2....∀x1Ux⃗ by one and then adding a constant t1 such
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that Ut1t⃗ is independent from all other literals for all t⃗. Intuitively, the literals
±Utit⃗ are replaced by ±Uti+1t⃗.

Formally, let ωn ∈ Ωn =
∧n
i,t=1 U

ϵi,t⃗tit⃗ be an arbitrary n-state. Then define
P ′ by

P ′(ωn) : = P (

n∧
i=2

n∧
t=1

U ϵi−1,t⃗ti−1t⃗) · P=(

n∧
t=1

U ϵ1,t⃗t1t⃗)

=
P (
∧n−1
i=1

∧n
t=1 U

ϵi,t⃗tit⃗)

2n2m−1 .

Firstly, we note that

P ′(∀x2m−1∃x2m−2....∀x1Ut1x⃗) = lim
n→∞

P ′(

n∧
j=1

∃x2m−2....∀x1Ut1tj x⃗) =

lim
n→∞

P=(

n∧
j=1

∃x2m−2....∀x1Ut1tj x⃗) = 0 (10)

(reference). So, according to P ′ the constant t1 is not a witness of the existential
premiss sentence φ.

We next show that P ̸= P ′. Firstly, note that

lim
n→∞

P (

n∨
i=1

∀y∃x2m−2....∀x1Ut1yx⃗) = P (∃z∀y∃x2m−2....∀x1Uzyx⃗)) = 1

and thus min{i ∈ N : P (∀x2m−1∃x2m−2....∀x1Utix⃗) > 0} is a finite number
and thus obtains . With this and (10), we have

min{i ∈ N : P ′(∀x2m−1∃x2m−2....∀x1Utix2m−1x⃗) > 0}

= min{i ∈ N : lim
n→∞

P ′(

n∧
k=1

∃x2m−2....∀x1Utitkx⃗) > 0}

= min{i ∈ N : lim
n→∞

P (

n∧
k=1

∃x2m−2....∀x1Uti−1tkx⃗) > 0}

= 1 +min{i ∈ N : lim
n→∞

P (

n∧
k=1

∃x2m−2....∀x1Utitkx⃗) > 0}

= 1 +min{i ∈ N : P (∀x2m−1∃x2m−2....∀x1Utix2m−1x⃗) > 0} .

So, P ̸= P ′.
We also observe that for all i ≥ 2 it holds that

P ′(∀x2m−1∃x2m−2....∀x1Utix⃗) = P (∀x2m−1∃x2m−2....∀x1Uti−1x⃗)

and furthermore

P ′(
∨
i∈I

∀x2m−1∃x2m−2....∀x1Utix⃗) = P (
∨
i∈I

∀x2m−1∃x2m−2....∀x1Uti−1x⃗)
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for all finite index sets I. So,

P ′(∃y∀x2m−1∃x2m−2....∀x1Uyx⃗) = lim
n→∞

P ′(

n∨
i=1

∀x2m−1∃x2m−2....∀x1Utix⃗)

≥ lim
n→∞

P ′(

n∨
i=2

∀x2m−1∃x2m−2....∀x1Utix⃗)

= lim
n→∞

P (

n−1∨
i=1

∀x2m−1∃x2m−2....∀x1Utix⃗)

= lim
n→∞

P (

n∨
i=1

∀x2m−1∃x2m−2....∀x1Utix⃗)

= 1 .

This means that P ′(∃x∀yUxy) = 1 and thus, as advertised, P ′ ∈ E.
We now calculate n-entropies of P and P ′ and find for n ≥ 1 that:

Hn(P ) = −
∑

ϵi,t⃗∈{0,1}
2≤i≤n

∑
ϵ1,t⃗∈{0,1}

P (

n∧
t=1

U ϵ1,t⃗t1t⃗ ∧
n∧
i=2

n∧
t=1

U ϵi,t⃗tit⃗)

· log(P (
n∧
t=1

U ϵ1,t⃗t1t⃗ ∧
n∧
i=2

n∧
t=1

U ϵi,t⃗tit⃗))

Hn(P
′) = −

∑
ϵi,t⃗∈{0,1}
1≤i≤n

P ′(

n∧
i,t=1

U ϵi,t⃗tit⃗) · log(P ′(

n∧
i,t=1

U ϵi,t⃗tit⃗))

= −
∑

ϵi,t⃗∈{0,1}
2≤i≤n

∑
ϵ1,t⃗∈{0,1}

P ′(

n∧
t=1

U ϵ1,t⃗t1t⃗ ∧
n∧
i=2

n∧
t=1

U ϵi,t⃗tit⃗)

· log(P ′(

n∧
t=1

U ϵ1,t⃗t1t⃗ ∧
n∧
i=2

n∧
t=1

U ϵi,t⃗tit⃗))

= −
∑

ϵi,t⃗∈{0,1}
2≤i≤n

∑
ϵ1,t⃗∈{0,1}

P (
∧n−1
i=1

∧n
t=1 U

ϵi,t⃗tit⃗)

2n2m−1

· log(
P (
∧n−1
i=1

∧n
t=1 U

ϵi,t⃗tit⃗)

2n2m−1 ) .

Holding the first summation fixed, we note that since n-entropy is maximised
by maximally equivocating Hn(P ) ≤ Hn(P

′). Now define Q := P+P ′

2 . Since E
is convex and P, P ′ ∈ E, we observe that Q ∈ E.

Since n-entropy is a strictly concave function we conclude that
Hn(Q) > Hn(P ) whenever P and P ′ disagree on Ln. Since P ̸= P ′

there has to exists some finite M and quantifier free sentence ψ ∈ QFSLM
such that P (ψ) ̸= P ′(ψ) (Gaifman’s Theorem). Since Lm ⊂ Lm+1 for all
m we have that P disagrees with P ′ on Lm for all m ≥ M . We have hence
found a Q ∈ E such that Hn(Q) > Hn(P ) for all large enough n. Hence,
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P /∈ maxentE. Contradiction. ■

Proposition 50 (Π3). For φ = ∀x∃y∀zSxyz ∈ Π3 it holds that for all P ∈ Eφ
there exists a probability function Q ∈ Eφ which has greater entropy. Hence,
maxentEφ = ∅.

Proof: Let us first note that

Eφ = {P ∈ P : P (φ) = 1}
= {P ∈ P : P (∃y∀zSt1yz) = 1, P (∃y∀zSt2yz) = 1, . . . , } . (11)

Assume for contradiction that P ∈ maxentEφ. Since P=(φ) = 0, P cannot be
the equivocator. However, since P ∈ Eφ, it must also holds that for all ti (i ∈ N)
there has to exist some minimal tk∗i (k∗i ≥ 1) such that P (∀zStitk∗i z) > 0.

We now define a probability function Q ∈ Eφ which has greater entropy
than P , which contradicts that P ∈ maxentEφ. First, we postpone for all i
the witnessing (see Proposition 47) to k∗i + 1. This is again achieved by first
defining a probability function P ′ ∈ Eφ \ {P} such that Hn(P

′) ≥ Hn(P ) for
all large enough n:

P ′(

n∧
k=1

n∧
l=1

Sϵk,ltitktl) :=
P (
∧n−1
k=1

∧n
l=1 S

ϵk,ltitktl)

2n
.

As we saw in Proposition 47, it holds that P ′(∃y∀zStiyz) = 1 for all i ∈ N.
Furthermore, for all i ∈ N there exist an ni ∈ N and ϵk,l ∈ {0, 1}ni×ni such
that P ′(

∧ni

k=1

∧ni

l=1 S
ϵk,ltitktl) ̸= P (

∧ni

k=1

∧ni

l=1 S
ϵk,ltitktl).

Given the way we wrote Eφ (see (11)), we see that every extension of P ′ to
a probability function – which so far not be defined on the entire language –
will be in Eφ since membership in Eφ solely depends on sub-states where the
first constant is fixed to some ti.

We now define P ′ on an arbitrary n-state ωn of the language, and hence
via Gaifman’s Theorem on the entire language by

P ′(ωn) :=

n∏
i=1

P ′(

n∧
k=1

n∧
l=1

Sϵi,k,ltitktl) .

Because of the additivity of the entropy function (Csiszár, 2008, P. 63), we also
find for all n ∈ N that

Hn(P
′) = −

n∑
i=1

∑
ϵi,r,s∈{0,1}

1≤r≤n
1≤s≤n

P ′(

n∧
k=1

n∧
l=1

Sϵi,k,lt1tktl) · log(P ′(

n∧
k=1

n∧
l=1

Sϵi,k,lt1tktl)) .

Since the entropy function is maximised for independent variables we also find:

Hn(P ) ≥ −
n∑
i=1

∑
ϵi,r,s∈{0,1}

1≤r≤n
1≤s≤n

P ′(

n∧
k=1

n∧
l=1

Sϵi,k,ltitktl) · log(P ′(

n∧
k=1

n∧
l=1

Sϵi,k,ltitktl)) .
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Now recall that for all large enough fixed i ∈ N we saw in Proposition 47 that
the following inequality holds

iHn(P
′) : = −

∑
ϵr,s∈{0,1}
1≤r≤n
1≤s≤n

P ′(

n∧
k=1

n∧
l=1

Sϵk,ltitktl) · log(P ′(

n∧
k=1

n∧
l=1

Sϵk,ltitktl))

= −
∑

ϵr,s∈{0,1}
1≤r≤n
1≤s≤n

P ′(

n∧
k=1

n∧
l=1

U ϵk,ltktl) · log(P ′(

n∧
k=1

n∧
l=1

U ϵk,ltktl))

≥ −
∑

ϵr,s∈{0,1}
1≤r≤n
1≤s≤n

P (

n∧
k=1

n∧
l=1

U ϵk,ltktl) · log(P (
n∧
k=1

n∧
l=1

U ϵk,ltktl))

= −
∑

ϵr,s∈{0,1}
1≤r≤n
1≤s≤n

P (

n∧
k=1

n∧
l=1

Sϵk,ltitktl) · log(P (
n∧
k=1

n∧
l=1

Sϵk,ltitktl)) := iHn(P ) .

So, we have for all large enough n ∈ N that

Hn(P
′) =

n∑
i=1

iHn(P
′) ≥

n∑
i=1

iHn(P ) ≥ Hn(P ) .

We again put Q := P+P ′

2 and note that since P ̸= P ′ that Q ̸= P . Since
P ′ ∈ Eφ we easily find by applying the convexity of Eφ that Q ∈ Eφ.
Furthermore, Hn(Q) > Hn(P ) for all large enough n ∈ N since Q is a convex
combination of P and P ′ and Hn(P

′) ≥ Hn(P ) for all n ∈ N. ■

Proposition 51 (Π2m+3). For φ = ∀v1∃w1 . . . ∀vm∃wm∀x∃y∀zRv1w1 . . . vmwmxyz ∈
Π2m+1 it holds that for all P ∈ Eφ there exists a probability function Q ∈ Eφ
which has greater entropy. Hence, maxentEφ = ∅.

Proof: The proof proceeds by induction on the quantifier complexity m.
The base case m = 0 is Proposition 50.
The induction step for m ≥ 1 assumes the result for m− 1 ≥ 0. The proof

follows the blue print laid out in the base case.
Let us first note that

Eφ = {P ∈ P : P (φ) = 1}
= {P ∈ P : P (∃w1 . . . ∀vm∃wm∀x∃y∀zRt1w1 . . . vmwmxyz) = 1,

P (∃w1 . . . ∀vm∃wm∀x∃y∀zRt2w1 . . . vmwmxyz) = 1,

. . . , } . (12)

Assume for contradiction that P ∈ maxentEφ. Since P=(φ) = 0, P can-
not be the equivocator. However, since P ∈ Eφ, it must also holds that
for all ti (i ∈ N) there has to exist some minimal tk∗i (k∗i ≥ 1) such that
P (∀v2∃w2 . . . ∀vm∃wm∀x∃y∀zRtitk∗i v2w2 . . . vmwmxyz) > 0. We now postpone
this witnessing as usual.
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We begin by assigning probabilities to substates fixing ti

P ′(

n∧
b1=1

n∧
a2=1

. . .

n∧
am+1=1

n∧
bm+1=1

n∧
am+2=1

Rϵb1,a2,...,am+2 titb1ta2 . . . tam+2) :=

P (
∧n−1
b1=1

∧n
a2=1 . . .

∧n
am+1=1

∧n
bm+1=1

∧n
am+2=1R

ϵb1,a2,...,am+2 titb1ta2 . . . tam+2
)

2n
.

Again, it holds that P ′(∃w1 . . . ∀vm∃wm∀x∃y∀zRtiw1 . . . vmwmxyz) = 1 for all

i ∈ N. Furthermore, for all i ∈ N there exist an ni ∈ N and ϵ⃗ ∈ {0, 1}n
2m+2
i

such that

P ′(

ni∧
b1=1

ni∧
a2=1

. . .

ni∧
am+1=1

ni∧
bm+1=1

ni∧
am+2=1

Rϵb1,a2,...,am+2 titb1ta2 . . . tam+2
)

:̸= P ′(

ni∧
b1=1

ni∧
a2=1

. . .

ni∧
am+1=1

ni∧
bm+1=1

ni∧
am+2=1

Rϵb1,a2,...,am+2 titb1ta2 . . . tam+2
) .

In particular, P ′ ̸= P .
We now define P ′ on an arbitrary n-state ωn of the language, and hence

via Gaifman’s Theorem on the entire language by fixing ϵ⃗i ∈ {0, 1}n2m+2

for
1 ≤ i ≤ n and letting

P ′(ωn) :=

n∏
i=1

P ′(
∧

ϵ⃗i∈{0,1}n2m+2

Rϵ⃗itit⃗) .

Because of the additivity of the entropy function (Csiszár, 2008, P. 63), we also
find for all n ∈ N that

Hn(P
′) = −

n∑
i=1

∑
ϵ⃗i∈{0,1}n2m+2

P ′(
∧

ϵ⃗i∈{0,1}n2m+2

Rϵ⃗itit⃗) · log(P ′(
∧

ϵ⃗i∈{0,1}n2m+2

Rϵ⃗itit⃗))

: =

n∑
i=1

iHn,2m+2(P
′) .

We now use the proof of Proposition 49 to obtain that for all i and all large
enough n (depending on i) that

iHn,2m+2(P
′) ≥ iHn,2m+2(P ) .

iHn,2m(P ) is the n-entropy of a probability function P on a
language containing one 2m + 2-ary relation symbol U , φ =
∃w1∀v2∃w2 . . . ∃wm+1∀vm+2Uw1v2w2 . . . wm+1vm+2 ∈ Π2m+2 and P ∈ Eφ.

Since n-entropy is maximised by probability functions with a maximal prob-
abilistic independences, we again have

Hn(P ) ≥
n∑
i=1

iHn,2m+2(P ) ,

which overall gives the not-necessarily strict inequality:

Hn(P
′) =

n∑
i=1

iHn,2m+2(P
′) ≥

n∑
i=1

iHn,2m+2(P ) ≥ Hn(P ) .
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Taking Q to be any convex combination of P and P ′, we see that
Hn(Q) > Hn(P ) for all large enough n. This entails that Q has greater
entropy than P . ■
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Paris, J. B. and Vencovská, A. (1990). A note on the inevitability of maximum
entropy. International Journal of Approximate Reasoning, 4(3):183–223.
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