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Abstract

The maximum entropy principle is widely used to determine non-committal
probabilities on a finite domain, subject to a set of constraints, but its appli-
cation to continuous domains is notoriously problematic. This paper concerns
an intermediate case, where the domain is a first-order predicate language.
Two strategies have been put forward for applying the maximum entropy
principle on such a domain: (i) applying it to finite sublanguages and taking
the pointwise limit of the resulting probabilities as the size n of the sub-
language increases; (ii) selecting a probability function on the language as a
whole whose entropy on finite sublanguages of size n is not dominated by that
of any other probability function for su�ciently large n. The entropy-limit
conjecture says that, where these two approaches yield determinate proba-
bilities, the two methods yield the same probabilities. If this conjecture is
found to be true, it would provide a boost to the project of seeking a single
canonical inductive logic—a project which faltered when Carnap’s attempts
in this direction succeeded only in determining a continuum of inductive
methods. The truth of the conjecture would also boost the project of pro-
viding a canonical characterisation of normal or default models of first-order
theories.

Hitherto, the entropy-limit conjecture has been verified for languages
which contain only unary predicate symbols and also for the case in which
the constraints can be captured by a categorical statement of ⌃1 quantifier
complexity. This paper shows that the entropy-limit conjecture also holds
for categorical statements of ⇧1 complexity, for various non-categorical con-
straints, and in certain other general situations.
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1. Introduction

Inductive logic seeks to determine how much certainty to attach to a con-
clusion proposition  , given premiss propositions '1, . . . ,'k to which attach
measures of certainty X1, . . . , Xk respectively. That is, the main task is to
find Y such that

'
X1
1 , . . . ,'

Xk
k |⇡  

Y
,

where |⇡ signifies the inductive entailment relation. Often, X1, . . . , Xk, Y are
probabilities or sets of probabilities. There are many possible semantics for
inductive logic [1]. One key approach stems from the work of Carnap, who
provided a continuum of inductive entailment relations [2, 3, 4, 5]. An alter-
native approach, which is the focus of this paper, is to apply the maximum
entropy principle of Jaynes [6, 7]. According to this approach one should
consider, from all the probability functions that satisfy the premisses, those
with maximum entropy, and let Y be the set of probability values that these
functions give to the conclusion  .

If the underlying logical language is a finite propositional language, then
this latter proposal is rather straightforward to implement and has many nice
properties [8].1 However, if the language is a first-order predicate language
L with infinitely many constant symbols, certain intriguing questions arise.
In particular, there are two main ways to implement the proposal in the
predicate-language case, and it is not entirely clear as to whether the resulting
inductive logics agree.

One approach, due to Barnett and Paris [25], proceeds as follows: (i)
reinterpret the premisses as constraints on the probabilities of sentences of
a finite predicate language Ln that has n constant symbols; (ii) determine
the function P

n that maximises entropy on this finite language, subject to
constraints imposed by the reinterpreted premisses; (iii) draw inductive in-

ferences using the function P
1 defined by P

1(✓)
df
= limn!1 P

n(✓) for any
sentence ✓ of L. (The technical details will be explained below.)

A second approach, explored by Williamson [26, 27], proceeds as follows:
(i) consider probability functions defined on the language L as a whole; (ii)

1 Maximum entropy probability functions are of interest in numerous applications,
including the statistical analysis of multiple data-sets (meta analysis) [9, 10, 11], informa-
tion geometry [12], multi-expert reasoning [13], logical frameworks in artificial intelligence
[14, 15] and quantum mechanics [16], among others [17, 18, 19, 20, 21, 22, 23, 24].
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deem one probability function P to have greater entropy than another func-
tion Q if Hn(P ), where Hn is the entropy function on the finite sublanguage
Ln, dominates Hn(Q) for su�ciently large n; (iii) draw inductive inferences
using those functions P †, from all the probability functions on L that satisfy
the premisses, that have maximal entropy (i.e., no other function satisfying
the premisses has greater entropy). Again, see below for details.

The first approach, which we shall call the entropy-limit approach, has
the advantage that it is more constructive, so it can be easier to calculate the
probabilities required for inductive inference. The second approach, which
we shall call the maximal-entropy approach, has the advantage that it yields
determinate results in certain cases where the entropy-limit approach does
not. This is because the entropy-limit approach faces what is known as the
finite model problem: contingent premisses can become inconsistent when
reinterpreted as applying to a finite domain.

These approaches to inductive logic would be strengthened if it could be
shown that they give the same results where they are both applicable. Then
one could use the maximal-entropy approach to provide a general seman-
tics for inductive logic, but use the entropy-limit approach where a more
constructive approach is helpful.

Following some results of Rafiee Rad [28], discussed in the next section,
Williamson [27, p. 191] articulated the following conjecture:

Entropy-limit Conjecture. Where P1 exists and satisfies the constraints
imposed by the premisses, it is the unique function with maximal en-
tropy from all those that satisfy the premisses, i.e., P † = P

1 .

If the entropy-limit conjecture is true, this would lend support to the
claim that maximising entropy leads to a canonical inductive logic—a goal
that has hitherto proved very elusive [27]. In this paper, we provide new
evidence for the entropy-limit conjecture. We show that the entropy-limit
conjecture is true for a single premiss that takes the form of a categorical ⇧1

sentence 8~x✓(~x) where ✓(~x) is quantifier-free (Section 3); for various scenarios
in which there are multiple non-categorical premisses, 'X1

1 , . . . ,'
Xk
k where

Xi is a probability or set of probabilities that attaches to the sentence 'i

(Section 4); and for certain general cases in which convergence of the n-
entropy maximiser P n to the entropy limit P1 is su�ciently fast (Section 5).
While the general status of the entropy-limit conjecture remains open, these
new results verify important consequences of the conjecture. Thus, when
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taken together with previous results (outlined in Section 2), these new results
provide inductive support for the general entropy-limit conjecture.

Normal models. While the quest for a viable inductive logic provides key
motivation for this research, the results of this paper are also relevant to a
rather di↵erent problem: the characterisation of the most normal model of a
first-order theory.

Consider a first-order language L. Let T be a finite consistent set of
first-order axioms in L. There have been di↵erent approaches to defining the
default or most normal model for T , depending on how one would interpret
the default model. One can, for example, consider the prime models (the
smallest canonical models) as default models (see Chang and Keisler [29,
p. 96] and Hodges [30, p. 336] for instance). Another approach would be to
interpret normality in terms of closure properties and require default models
to be, for example, existentially closed. Other approaches have considered
the default model as the ‘average’ model and try to characterise this in terms
of the distribution of models (see for example [31, 32, 33, 34, 35]). Another
way that this question can be interpreted was posed in [36], and studied
further in [37, 38, 39], as:

Given a finite (consistent) set T of first-order axioms, from a language L
and a structureM with domain {t1, t2, . . .} over L, which we only know
to be a model of T , what probability should we assign to a sentence
✓(t1, . . . , tn) being true in M?

Then any set of first-order axioms can be seen as imposing a probability
function over the sentences of the language, in which the probability assigned
to a sentence ✓ is interpreted as the probability that it will hold in a random
model of T . The question is, how can a set of first-order axioms determine a
probability function in the most natural way [40]?

The constraint that M is a model for T requires the probability assign-
ment to give probability 1 to all sentences in T and consequently to all
sentences logically implied by them. There is, however, a large set of proba-
bility functions that will satisfy this constraint but which will di↵er on the
probability that they will assign to other sentences in L. One can further
trim this set by imposing extra conditions on the way that these probabilities
are to be assigned. And, by doing so specify what it means for M to be the
default model.
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One example is to make this assignment of probabilities in such a way
that captures the notion of averageness or typicality. This in the literature
is refered to as the limiting centre of mass assignment (see for example [8,
36, 41]). Another approach, followed in [37, 38, 39], and with which we
will be concerned here, characterises a default model as being maximally
uninformative with respect to the sentences of the language not implied by
T . These maximally uninformative probability assignments are taken to be
maximum entropy probability functions.

If the entropy-limit conjecture is true, this would lend support to the
claim that maximising entropy leads to a canonical model characterisation
for first-order theories. Thus, the results of this paper are relevant to the
characterisation of normal models.

2. The formal framework

In this section we set out the rudiments of the formal framework and
some notational conventions, and we survey previous work relevant to the
entropy-limit conjecture.

The predicate languages. Throughout this paper we consider a first-order
predicate language L, with countably many constant symbols t1, t2, . . . and
finitely many relation symbols, U1, . . . , Un. The atomic sentences, i.e., sen-
tences of the form Uiti1 · · · tik where k is the arity of the relation Ui, will
be denoted by a1, a2, . . ., ordered in such a way that atomic sentences in-
volving only constants among t1, . . . , tn occur before those atomic sentences
that also involve tn+1. We denote the sentences of L by SL and the set of
quantifier-free sentences by QFSL.

We will also consider the finite sublanguages Ln of L, where Ln has only
the first n constant symbols t1, . . . , tn but the same relation symbols as L. Ln

has finitely many atomic sentences a1, . . . , arn . We call the state descriptions
of Ln (i.e., the sentences of the form ±a1 ^ · · · ^ ±arn), n-states. We let ⌦n

be the set of n-states for each n. Note that |⌦n| = 2rn , and every n-state
!n 2 ⌦n has |⌦n+1|/|⌦n| = 2rn+1�rn many n+ 1-states, !n+1 which extend it
(i.e., !n+1 ✏ !n). We denote the sentences of Ln by SLn.

We use N' (or, when ' is clear from the context, simply N) to refer to
the largest number n such that tn appears in ' 2 SL.

For a sentence ' 2 SL and fixed n � N', we can reinterpret ' as a
sentence of Ln, by interpreting 9x✓(x) as ✓(t1) _ · · · _ ✓(tn) and 8x✓(x)as
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✓(t1) ^ · · · ^ ✓(tn). We use the notation (')n, or if there is no ambiguity,
simply 'n, to denote this reinterpretation of ' in Ln. For any sentence ' we
denote by [']n the set of n-states that satisfy '. We denote the number of
n-states in [']n by |'|n.

Example 1. If ' is 8x✓(x), then ['n]n = {! 2 ⌦n : ! |=
Vn

i=1 ✓(ti)}. For
quantification over l variables we have (8~x✓(~x))n =

Vl
j=1

Vn
ij=1 ✓(ti1 , . . . , tik)

and (9~x✓(~x))n =
Wl

j=1

Wn
ij=1 ✓(ti1 , . . . , tik).

Example 2. The 1-state !1 := Ut1t1 is a member of [(8x9yUxy)1]1 but
the 2-state !2 := Ut1t1 ^ Ut1t2 ^ ¬Ut2t1 ^ ¬Ut2t2 that extends !1 is not in
[(8x9yUxy)2]2, even though !2 ✏ !1. The 1-state ⌫1 := ¬Ut1t1 is not in
[(8x9yUxy)1]1; however, the extending 2-state ⌫2 := ¬Ut1t1^Ut1t2^Ut2t1^
Ut2t2 is in [(8x9yUxy)2]2.

Probability. A probability function P on L is a function P : SL �! R�0 such
that:

P1: If ⌧ is a tautology, i.e., |= ⌧ , then P (⌧) = 1.

P2: If ✓ and ' are mutually exclusive, i.e., |= ¬(✓ ^ '), then P (✓ _ ') =
P (✓) + P (').

P3: P (9x✓(x)) = supm P (
Wm

i=1 ✓(ti)).

A probability function on Ln is defined similarly. We shall use the no-
tation P and Pn to denote the set of all probability functions on L and Ln

respectively. Conditional probability is defined here in terms of unconditional
probabilities: P (✓|') := P (✓ ^ ')/P (') if P (') > 0. The following result is
central to probability as defined on a predicate language:

Theorem 3 (Gaifman’s Theorem [42]). Every probability function is deter-
mined by the values it gives to the quantifier-free sentences.

Since the probability of a quantifier-free sentence ' is determined by the
probability of the n-states, for any n � N', every probability function is
determined by the values it gives to the n-states.

Example 4 (Equivocator function). The equivocator function P= is de-
fined by:

P=(!n)
df
=

1

|⌦n|
=

1

2rn
for each n-state !n 2 ⌦n and each n = 1, 2, . . . .
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The equivocator function is a probability function on L. It is called the
equivocator function because it equivocates between n-states: it is the only
probability function that gives each n-state the same probability, for each n.
The restriction P=⌫Ln of P= to Ln is a probability function on Ln, for any
n. To simplify notation, we will use P= to refer to these restrictions, as well
as to the function on L itself. In addition, we will say that a sentence ✓ has
measure x if x is the probability that the equivocator function attaches to ✓,
P=(✓) = x.

Entropy. The n-entropy of a probability function P (which is defined on
either L or Ln) is defined as:

Hn(P )
df
= �

X

!2⌦n

P (!) logP (!).

We follow the usual conventions in taking 0 log 0 = 0 and the logarithm to
be the natural logarithm.

. We now turn to entailment relationships in inductive logic of the form

'
X1
1 , . . . ,'

Xk
k |⇡  

Y
,

where '1, . . . ,'k, 2 SL and each Xi is a member or subset of the unit
interval. In the case in whichXi = 1, the premiss 'i is certain, the superscript
Xi may be omitted, and 'i is called categorical.

We next introduce the two key approaches to making sense of such a
relationship, the entropy-limit approach and the maximal-entropy approach.

The entropy-limit approach. Suppose X1, . . . , Xn are probabilities or closed
intervals of probabilities. Let N = max{N'1 , . . . , N'k

}, so that tN is the
constant symbol, of all those occurring in '1, . . . ,'k, with the largest index.
For fixed n�N , reinterpret '1, . . . ,'k as statements of Ln. Let En be the
set of probability functions on Ln that satisfy ('1)X1

n , . . . , ('k)Xk
n . If En 6= ;

consider the entropy maximiser:

P
n df
= arg max

P2En

Hn(P ).

Since X1, . . . , Xn are probabilities or closed intervals of probabilities, En is
closed and convex and P

n is uniquely determined. Several considerations
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point to P
n as the most appropriate probability function for drawing infer-

ences from premisses on Ln [8]. When characterising normal models of a set
of first order axioms, i.e., when X1, . . . , Xn = 1, P n can be regarded as the
normal probabilistic characterisation of a random model of {'1, . . . ,'n} with
respect to Ln, where the normality is understood in terms of being minimally
constrained [40].

However, the premisses are intended as statements on L, not Ln, and the
question arises as to what would be the most appropriate probability function
for drawing inferences from these premisses when they are interpreted as
statements about an infinite domain, or what the default characterisation of
random model of the premisses would be with respect to the full language
L. If it exists, one can consider the function P

1 defined on L as a pointwise
limit of maximum entropy functions [25]:2

P
1(✓)

df
= lim

n!1
P

n(✓).

The entropy-limit approach takes P
1 for inference, attaching probability

Y = P
1( ) to sentence  .

There is one complication about the definition of P1 which we need to
address. While Barnett and Paris [25] define P

1 in terms of a pointwise
limit where the limit is taken independently for each sentence of L, Paris
and Rafiee Rad [28, 37, 39] define P

1 in a slightly di↵erent way: take the
pointwise limit on quantifier-free sentences and extend this to the (unique)
probability function on L as a whole which agrees with the values obtained
on the quantifier-free sentences, assuming that the pointwise limit exists and
satisfies the axioms of probability on quantifier-free sentences of L [42]. The
Rad-Paris definition circumvents a problem that can arise with the Barnett-
Paris definition, namely that the pointwise limit on L as whole may exist
but may fail to be a probability function (see Appendix Appendix A.1 for a

2Note that i) whether the entropy limit limt!1 P
n(') for ' 2 QFSL exists or not and

ii) its value in case the limit does exist do both not depend on the order of the constants
t1, t2, ..... Let us thus consider a bijective map f : N ! N, a permutation of possibly
infinitely many constants. If the entropy limit exists, then there are only finitely many
sublanguages Lk for which P

k(') is not close (within ✏) to the limit. Since f is a bijection,
this also holds after shu✏ing the constants. Hence, after shu✏ing the limit exists and is
unchanged. If the entropy limit does not exist, then there are infinitely many sublanguages
Lk for which the P k(') are not close. This remains true after shu✏ing and thus limit does
again not exist.
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discussion of this point). Since the entropy-limit conjecture with respect to
the Rad-Paris definition implies the entropy-limit conjecture with respect to
the Barnett-Paris definition, we consider the Rad-Paris definition of P1 in
this paper, with the aim of proving stronger results.

Note that P
n and En are defined on Ln not L. To simplify notation,

when P is defined on L, we will say P 2 En to mean that the restriction of
P to Ln is in En, P⌫Ln 2 En.

The maximal-entropy approach. This alternative approach avoids appealing
to the finite sublanguages Ln. Instead, consider E, the set of probability func-
tions on L that satisfy the premisses 'X1

1 , . . . ,'
Xk
k . For probability functions

P and Q defined on L, P is deemed to have greater entropy than function Q

if it has greater n-entropy for su�ciently large n, i.e., if there is some natural
number N such that for all n�N , Hn(P ) > Hn(Q). Then we can consider
the set of probability functions in E with maximal entropy:

maxentE df
= {P 2 E : there is no Q 2 E that has greater entropy than P}.

If maxentE 6= ;, one can draw inferences using the maximal entropy func-
tions P

†. Thus, the maximal-entropy approach attaches the set of proba-
bilities Y = {P †( ) : P † 2 maxentE} to  . Alternatively, if the premisses
are categorical one can take P

† as the default probabilistic description of a
random model of the premisses.

See [43] and [27, Chapter 9] for one kind of justification of this approach.

What is known so far. The entropy-limit conjecture says that if P1 exists
and is in E, then maxentE = {P1}. The majority of work in the literature
concerning the conjecture deals with the special case of categorical premisses
and concerns the probabilistic characterisation of models of a set of first
order axioms. Barnett and Paris study monadic first order languages and
show that the limit entropy approach is well defined, i.e., P

1 exists, for
a generalised set of linear constraints (i.e., categorical and non-categorical
premisses) on such languages [25]. Rafiee Rad considers the special case of a
set of first order axioms on monadic languages, derives the exact form of P1

and shows that the entropy-limit conjecture holds for these languages—see
[28, Theorem 29], and [40] for a more general case. Similarly, he derives the
exact form of P1 and shows that the conjecture is true in the categorical
⌃1 case, i.e., the case in which the premiss propositions '1, . . . ,'k are all ⌃1

statements [39, Corollary 1].
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He also shows that there exist cases in which maxentE = ;: for any
probability function satisfying the premiss 9x8yRxy there is another proba-
bility function with greater entropy that also satisfies that premiss [38]. This
involves considering sets of axioms with quantifier complexity of ⌃2. Landes
shows that the entropy limit also fails to be well-defined for this and other
premisses in ⌃2 [44]. Similarly, [28, Section 3.2] provides cases, with pre-
misses of ⇧2 quantifier complexity, in which P

1 is not well defined. (It is
not yet known whether or not the maximal entropy approach can yield an
answer for those cases.) See also [40] for a more general case. On the other
hand, [28, §4.1] shows that there are cases in which P

1 does not exist but
P

† does.
This leaves open the case concerning sets of axioms with quantifier com-

plexity ⇧1 as well as non-categorical premisses for polyadic languages. Paris
and Rafiee Rad investigate the existence of P1 for sets of ⇧1 sentences and
show that for a special case, which they call the slow ⇧1 sentences, the
entropy-limit approach is well defined [37].

Premisses P
†

P
1

P
† = P

1?
�0 exists and unique exists and unique X
⌃1 exists and unique exists and unique X
⇧1 ? ? ?
⌃2 not always well-defined not always well-defined ?
⇧2 ? not always well-defined ?

Table 1: Summary of what is known so far with respect to entropy maximisers for cate-
gorical premisses.

Plan of the paper. In Section 3 we show the entropy-limit conjecture holds
in cases involving categorical premisses (i.e., premisses that take the form of
sentences of the predicate language L without probabilities attached) of ⇧1

quantifier complexity. In Section 4 we extend these cases to ones in which the
premiss sentences do have probabilities attached. In Section 5 we provide a
general result which shows that the entropy-limit conjecture holds in certain
general cases in which the P

n converge fast enough to P
1. We sum up in

Section 6.

Summary of key notation. Key notation is summarised in Table 2. Note
that we use � to denote the set of constraints (premisses) currently under
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investigation. In cases where the constraints vary, we subscript P
1 or P

†

with the constraint currently operating.

rn number of atomic sentences of Ln

⌦n set of n-states. N.b., |⌦n| = 2rn

N' or N maximum n such that tn appears in '
(')n or 'n reinterpretation of ' in Ln

[']n set of n-states satisfying '
|'|n number of n-states satisfying '
P= equivocator function
P

1 entropy-limit function
P

† maximal-entropy function
� set of constraints under investigation

Table 2: Key notation

3. The categorical ⇧1 constraint

In this section we show that the entropy-limit conjecture holds in the
case in which there is a single categorical constraint ' which takes the form
of a satisfiable ⇧1 sentence 8~x✓(~x). As we shall now explain, this situa-
tion splits naturally into two cases: that in which ' has non-zero measure,
P=(8~x✓(~x)) > 0, explored in §3.1, and that in which ' has zero measure,
P=(8~x✓(~x)) = 0, explored in §3.2.

For all satisfiable 9~x✓(~x) 2 ⌃1 it is known that for N = N9~x✓(~x) ([39,
Theorem 4] and [39, Corollary 1]):

P
1
9~x✓(~x)(·) = P=(·|

_

!N2⌦N
!N^9~x✓(~x) is consistent

!N) = P=(·|9~x✓(~x)) = P
†
9~x✓(~x)(·) .

Intuitively, since ⌃1 and ⇧1 are natural duals, one suspects that something
similar is true for all satisfiable 8~x✓(~x) 2 ⇧1 and N = N8~x✓(~x):

P
1
8~x✓(~x)(·) = P=(·|

_

!N2⌦N
!N✏8~x✓(~x)

!N) = P=(·|8~x✓(~x)) = P
†
9~x✓(~x)(·) .

12



Unfortunately, this intuition only gets us so far, because there are no !N

to include in the disjunction i↵ 8~x✓(~x) has measure zero (Proposition 9).
In this case, the intuition breaks down because conditioning on a zero-
probability sentence is not defined. On the other hand, the intuition is
correct as long as at least one such !N exists (Corollary 10). The set of
such ⇧1-sentences is characterised in Proposition 9.

The case of satisfiable 8~x✓(~x) 2 ⇧1 with measure zero is much harder,
since P=(·|8~x✓(~x)) is simply not defined. Nevertheless, in Theorem 15 we
prove that Entropy Limit Conjecture does also hold for all measure zero
8~x✓(~x) 2 ⇧1. The technical di�culty is precisely that of defining a ‘condi-
tional probability’ conditional on a sentence that has measure zero.

The following proposition plays a key part in many of our later proofs.

Proposition 5. For all ; 6= S and all x > 0 it holds that

arg sup
f :S![0,x] :

P
y2S f(y)=x

�
X

y2S

f(y) log(f(y))

=
1

x
arg sup

g:S![0,1] :
P

y2S g(y)=1
�
X

y2S

g(y) log(g(y)) .

This proposition implies that entropy maximisation over a subset S of n-
states under a linear constraint can be achieved by maximising the n-entropy
of probability functions assigning S joint probability one and pointwise re-
scaling the maximal n-entropy function.
Proof: It su�ces to note that the n-entropy of g/x over S is an a�ne-linear
transformation of the n-entropy of the probability function g over S:

�
X

y2S

g(y)

x
log(

g(y)

x
) =� 1

x

X

y2S

g(y)(log(g(y))� log(x))

=
log(x)

x
+

Hn(g)

x
.

⌅

We use this proposition to show that distributing probability mass more
uniformly increases n-entropy in the following sense. Consider two probabil-
ity functions P,Q 2 P which disagree on non-empty subset S of n-states
such that a :=

P
!n2S P (!n) =

P
!n2S Q(!n) where P is uniform on S
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(P (!n) = a/|S|) and Q is not. Then P has greater n-entropy than Q,
Hn(P ) > Hn(Q).

The following lemma will be important in the remainder of this section.
Recall that P= is used to refer to the equivocator function both on L and its
finite sublanguages Ln:

Lemma 6 (Local Entropy Maximisation). For all � 2 SL with E = {P 2
P : P (�) = 1}, all n 2 N and all  2 SLn, if �n is satisfiable, then

P
n(·) = P=(·|�n) .

Proof: By definition of P n, P n can only assign non-zero probability to those
n-states which are in [�n]n. Since entropy is maximal if the probabilities are
uniform (Proposition 5), it follows that P

n has to assign equal probability
to all n-states in [�n]n—if [�n]n 6= ;. By assumption we have that [�n]n 6= ;,
and thus all n-states in [�n]n are assigned the same probability by P

n and
these probabilities sum to one. Hence, P n( ) = P=( |�n) for all n 2 N and
all  2 SLn. ⌅

First we consider the case in which 8~x✓(~x) has positive measure.

3.1. Non-zero measure, P=(8~x✓(~x)) > 0

Remark 7. Using Lemma 6 it is easy to see that for all sentences � 2 SL
with positive measure, if for all � 2 QFSL limn!1 P=(�|�n) exists, then

P
1
� (�) = lim

n!1
P=(�|�n) . (1)

In other words, P1 is obtained by considering the limit of equivocators
conditionalised on the premiss reinterpreted on Ln. The above lemma tells
us what these probability functions—the P

n—look like.

Theorem 8. For all � 2 ⇧1[⌃1, if one of the following two conditions hold

1. limn!1 P=(�n) 2 (0, 1) and for all � 2 QFSL, limn!1 P=(�|�n) exists,
2. limn!1 P=(�n) = 0,

then

P
1
¬� =

P= � P=(�) · P1
�

P=(¬�)
. (2)

14



Proof: For all � 2 QFSL and all large enough n such that P=(¬(�n)) > 0,
we have, by the law of total probability, that3

P=(�) = P=(�n)P=(�|�n) + P=(¬�n)P=(�|¬�n). (3)

Then notice that by assumption limn!1 P=(�n) 2 [0, 1) exists and limn!1 P=(¬�n) =
limn!1 1 � P=(�n) = 1 � limn!1 P=(�n) 2 (0, 1]. Then since the limits ex-
ist, it must be the case that limn!1 P=(�n) = P=(�), by axiom P3.4 Then
limn!1 P=(¬�n) = 1� P=(�) = P=(¬�).

Assume that P=(�) > 0 and thus for large enough n: P=(�n) > 0 and
P (·|�n) is well-defined. By Remark 7, limn!1 P=(�|�n) = P

1
� (�). Taking

the limit of (3) we obtain

P=(�) = P=(�) · P1
� (�) + P=(¬�) · lim

n!1
P=(�|¬�n)

= P=(�) · P1
� (�) + P=(¬�) · P1

¬�(�)

where the last equality follows from Remark 7, if the limit exists. But notice
that

lim
n!1

P=(�|¬(�n)) =
P=(�)� P=(�)P1

� (�)

P=(¬�)
.

3If P=(�n) = 0, then put for sake of simplicity P=(�n) · P=(�|�n) := 0. In actual fact,
P=(�|�n) is undefined.

4Note that for quantifier free �(~x), we have Q~x�(~x) 2 ⇧1 [ ⌃1 for Q 2 {8, 9}. The
equality P (Q~x�(~x)) = limn!1 P (�n) 2 [0, 1] for all probability functions P is a (repeated)
application of P3. In particular, these limits always exist.

It is, however, not always the case that P (�) = limn!1 P (�n). Consider the contingent
sentence � 2 ⇧2, which only has infinite models:

� = 8xzw9y(U1xy ^ [(U1xw ^ U1wz)! U1xz] ^ ¬U1xx) .

It easy to check that open orders satisfy �. On the other hand, � does not have a finite
model: for every element in the support a of a model of � there has to exist some other
element b which is greater than a, U1ab. Note that a 6= b (U1 is irreflexive). If U1

were cyclic, then transitivity entails U1dd for some d which contradicts �. Hence, for
every element in the finite model there must be some other element which is greater.
Contradiction. So, � only has infinite models. It holds for all probability functions P 2 P
that P (�n) = 0, since there are no finite models of �. Since, � is satisfiable, there exist
probability functions P 0 2 P such that P 0(�) > 0 ([5, p. 189]). And thus P 0(�n) = 0 < P

0(�)
for such a probability function P

0.
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Thus, the limit exists as the right hand side is well defined. Then (2) holds
for all quantifier-free sentences and thus by Gaifman’s Theorem it holds for
all sentences in SL.

Next assume that P=(�) = 0. Taking the limit of 3 we obtain

P=(�) =P=(�) · P1
� (�) + P=(¬�) · lim

n!1
P=(�|¬�n)

=P=(¬�) · lim
n!1

P=(�|¬�n) = lim
n!1

P=(�|¬�n) .

So, the limit on the right hand side exists and is equal to P=. Now conclude
as above that P= = P

1
¬�. ⌅

While Theorem 8 is informative about the entropy limit, it leaves open
certain questions. When is it the case that 8~x✓(~x) 2 ⇧1 has positive measure?
What exactly does the entropy limit look like? And does the entropy-limit
conjecture hold in that case? We shall address these questions in turn.

Proposition 9. For all ' = 8~x✓(~x) 2 ⇧1 the following are equivalent

1. P=(') > 0
2. Let 8~x

V
i2I
W

j2Ji �ij(~x,
~t) be the conjunctive normal form of '. Then

for all i 2 I there exists a j
⇤
i such that �ij⇤i (~x,

~t) does not mention a

variable and
V

i2I �ij⇤i (
~t) is consistent.

3. ✏ ' ! (
V

i2I �ij⇤i (
~t) _ '), where �ij⇤i (~t) is as in 2.

4. There exists an !N' 2 ⌦N' such that !N' ✏ '.
For example, P=(8x(Ux ! Ut1)) = P=(Ut1 _ 8x¬Ux) = 0.5 > 0 but

P=(8x((U1x_U2t1)^ (U3x_¬U2t1))) = 0. In the latter example, there is no
n-state entailing 8x((U1x _ U2t1) ^ (U3x _ ¬U2t1)) because the conjunction
of the two literals not mentioning a variable, U2t1 ^ ¬U2t1, is inconsistent.
Proof: To simplify notation we let N := N'.

2 ) 1: If ' 2 ⇧1 is of this form, then

P=(') =P=(8~x
^

i2I

_

j2Ji

�ij(~x,~t)) � P=(8~x
^

i2I

�ij⇤i
(~x,~t))

=P=(
^

i2I

�ij⇤i
(~t)) =

1

2|I|
> 0.

1 ) 2. We show that the negation of 2 entails the negation of 1, P=(') = 0.
We now assume that ' 2 ⇧1 is not of this form, and denote by ; ✓ I

⇤ ✓ I

16



those indices for which every �iji contains a variable. We consider two cases:
first suppose that I⇤ is not empty and let i 2 I

⇤.

Note that P=(8~x
W

j2Ji �ij(~x,
~t))

P3
= limn!1 P=((8~x

W
j2Ji �ij(~x,

~t))n). Let
us suppose for the moment that ' contains only a single variable, say x. Let
n > N and let !n be an n-state which satisfies (8x

W
j2Ji �ij(x,

~t))n. We now

count the number n+1-states which extend !n and satisfy (8x
W

j2Ji �ij(x,
~t))n+1.

Notice that !n has 2rn+1�rn extensions to Ln+1. Those that satisfy (8x
W

j2Ji �ij(x,
~t))n+1

are precisely those n+1-states which satisfy (8x
W

j2Ji �ij(x,
~t))n^

W
j2Ji �ij(tn+1,~t).

There are

2|Ji| � 1

2Ji
· 2rn+1�rn

such n+ 1-states. So,

P=(8x(
_

j2Ji

�ij(x,~t))n+1) =
2|Ji| � 1

2|Ji|
P=(8x(

_

j2Ji

�ij(x,~t))n) .

Thus,

lim
n!1

P=(8x(
_

j2Ji

�ij(x,~t))n)  lim
n!1

⇣2|Ji| � 1

2|Ji|

⌘n�N

= 0 .

If ' contains two or more variables, then the ()n-operation leads to more
conjunctions than in the single-variable case. Hence, when counting the n+1-
states which satisfy (8~x

W
j2Ji �ij(~x,~a))n+1 there is an even greater number

which we subtract from 2|Ji|. The limit is hence equal to zero, too. And so

P=(') = P=(8~x
^

i2I

_

j2Ji

�ij(~x,~t))  P=(8~x
^

i2I⇤

_

j2Ji

�ij(~x,~t))

 sup
i2I⇤

P=(8~x
_

j2Ji

�ij(~x,~t)) = sup
i2I⇤

lim
n!1

P=(8~x(
_

j2Ji

�ij(~x,~t))n) = 0.

For the second case, suppose that I
⇤ is empty. Then for every i 2 I there

exists at least one �iji which does not contain a variable. Furthermore, since
we are assuming that ' is not of the form given in (2), for every such choice
of ji,

V
i2I �iji is inconsistent.

So, if the n-state !n is such that !n ✏ 'n = (8~x
V

i2I
W

j2Ji �ij(~x,
~t))n (n �

N), !n cannot satisfy 'n by only satisfying a variable-free literal from each

17



conjunct (since, as mentioned above, they are jointly inconsistent). Then
there has to exist an i0 2 I such that !n is inconsistent with all variable-free
literals in

W
ji0
�i0ji0

(~t). Thus, !n and all its extensions !m which satisfy '

must satisfy literals in
W

ji0
�i0ji0

, which contain a variable. For the purposes
of counting extensions, we might as well ignore the variable-free literals ofW

ji02Ji0
�i0ji0

. We may now proceed as if I⇤ is not empty.

3 ) 1. Since
V

i2I �ij⇤i (
~t) is consistent, this easily follows:

P=(') = P=(
^

i2I

�ij⇤i
(~t) _ ') � P=(

^

i2I

�ij⇤i
(~t)) > 0 .

2 ) 3. ✏ '! (
V

i2I �ij⇤i (
~t) _ ') is trivially true.

For the direction from right to left it su�ces to notice that by 2, ✏ Vi2I �ij⇤i (
~t)!

'.
3 ) 4. Notice that

V
i2I �ij⇤i (

~t) 2 QFSLN since each conjunct only in-
volves constants, and N is the largest constant appearing in ✓(~x). And that
it is consistent by assumption since we have shown that 3 implies 1 and 1
implies 2. Hence, the conjunction is entailed by some N -state !N 2 ⌦N .
Then !N entails the logically weaker

V
i2I �ij⇤i (

~t) _ '.
4 ) 1. P=(') � P=(!N) > 0, where the strict inequality follows from the
definition of P=. ⌅

Corollary 10. For all ' = 8~x✓(~x) 2 ⇧1 such that P=(') > 0 it holds that

P
1
' (·) = P=(·|

_

!N2⌦N
!N✏'

!N) .

where N = N', i.e., the maximum n such that tn appears in '.

Proof: Since ' 2 ⇧1, if P=(') = 1 then ' is a tautology, as is 'N , so
{!N 2 ⌦N : !N ✏ '} = ⌦N . Hence, P= 2 En for all n � N and so for all
n > N , P n

' = P= and thus P1
' = P= = P=(· |⌦N).

If P=(') < 1 then, first, by [39, Theorem 4]:

P
1
9~x¬✓(~x)(·) = P=(·|

_

!N2⌦N
!N^9~x¬✓(~x) is consistent

!N) .

18



and notice that limn!1 P=⌫n((9~x¬✓(~x))n) = 1� P=(') [5, Lemma 3.8]. The
limit is hence well-defined and in [0, 1). Thus we can use Theorem 8 to obtain

P
1
' (·) = P=(·)� P=(9~x¬✓(~x)) · P=(·|9~x¬✓(~x))

P=(')
. (4)

Next, applying [39, Lemma 5], we have

P=(9~x¬✓(~x)) = P=(
_

!N2⌦N
!N^9~x¬✓(~x) is consistent

!N).

So,

P=(') = 1� P=(
_

!N2⌦N
!N^9~x¬✓(~x) is consistent

!N) .

Inserting this back into (4) gives

P
1
' (·)[1� P=(

_

!N2⌦N
!N^9~x¬✓(~x) is consistent

!N)]

= P=(¬
_

!N2⌦N
!N^9~x¬✓(~x) is consistent

!N) · P1
' (·)

= P=(·)� P=(
_

!N2⌦N
!N^9~x¬✓(~x) is consistent

!N) · P=(·|
_

!N2⌦N
!N^9~x¬✓(~x) is consistent

!N) .

Applying the Theorem of Total Probability to P=(·) on the right hand side
and simplifying the equation, we obtain

P
1
' (·) =P=(·|¬(

_

!N2⌦N
!N^9~x¬✓(~x) is consistent

!N))

=P=(·|
_

!N2⌦N
!N✏8~x✓(~x)

!N) .

⌅
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Lemma 11. Suppose ' 2 ⇧1 is such that P=(') > 0 and N = N'. Then
for all N-states !N such that !N 2 ['N ]N and !N 2 ' it holds that

|{!n 2 ⌦n : !n ✏ !N &!n 2 ['n]n}| ·
|⌦N |
|⌦n|

.

converges exponentially (or faster) to zero in n > N .

This lemma says that N -states compatible with the constraint on LN

which do not entail ' have only very few extensions which satisfy the con-
straints on more expressive languages.
Proof: As above, write ' in conjunctive normal form, say

V
i2I
W

ji2Ji �iji(~x,
~t),

with the standard convention that �iji(~x,~t) means that �iji(~x,~t) mentions at
most the variables in ~x and at most the constant symbols in ~t but not nec-
essarily all of them.

First notice that for !N 2 ['N ]N such that !N 2 ', there has to exist
at least one disjunction, say

W
ji2Ji �iji(~x,

~t), such that !N fails to entail

all literals in �iji(~x,~t) that do not mention a variable. To see this, notice
that if !N entails one such literal in every disjunction then !N entails the
whole disjunction and thus '. That contradicts our assumption. Notice
that if the literal does mention a variable then !N cannot entail it, since !N

only mentions constants t1, . . . , tN but no variable. We now let �(~x,~t) :=W
ji2Ji �iji(~x,

~t) be one such disjunction.
Next notice that this also holds for any !n extending !N . That is every !n

which extends !N fails to satisfy all literals in �(~x,~t) which do not mention a
variable. To see this notice that all literals in �(~x,~t) only mention constants
t1, . . . , tN , and since !n agrees with !N on Ln, if it satisfies any such literal,
that literal is satisfied by !N , which cannot be the case, as just discussed
above.

Now consider an n-state !n 2 ['n]n which is logically equivalent to
(
V

i2I
W

ji2Ji �iji(~x,
~t))n. Since !n does not satisfy a single literal �iji(~x,~t)

of �(~x,~t) which does not mention a variable, !n must satisfy the interpreta-
tion of at least one of its literals, say �iji(~x,~t), mentioning a variable in Ln.
In �iji(~x,~t) a variable has been replaced by a constant by the ()n-operation.

Let us consider !n+1 that extends !n and !n+1 ✏ (8~x�(~x,~t))n+1. Since
!n mentions all constants in � (n � N), its extension, !n+1 cannot satisfy
a literal in (�(~x,~t))n+1 with no variable replaced by a constant. This is so
because by the discussion above !n does not satisfy any such literal in�(~x,~t).

20



But since !n+1 ✏ (8~x�(~x,~t))n+1 it has to satisfy, in Ln+1, the interpretation
of one literal in �(~x,~t) with variables. That is, it has to satisfy some literal,
with variables, of �(~x,~t) in which the variable is replaced by a constant.

Since ' 2 ⇧1, for all variables there is at least one 8-quantifier in front
of the �(~x,~t) which binds them. Since !n+1 ✏ (8~x�(~x,~t))n+1, we have
!n+1 ✏ �(tn+1, . . . , tn+1,~t) (we have instantiated all the universally quantified
variables with tn+1). And so

{!n+1 2 ⌦n+1|!n+1 ✏ !n ^ 'n+1}
✓{!n+1 2 ⌦n+1|!n+1 ✏ !n &!n+1 ✏ �(tn+1, . . . , tn+1,~t)}
={!n+1 2 ⌦n+1|!n+1 ✏ !n &!n+1 6✏ ¬�(tn+1, . . . , tn+1,~t)}

={!n+1 2 ⌦n+1|!n+1 ✏ !n &!n+1 6✏
^

ji

¬�iji(tn+1, . . . , tn+1,~t)} .

Let d be the maximal number of literals in any disjunction in the CNF
of '. In particular,

V
ji
¬�iji(tn+1, . . . , tn+1,~t) has no more than d literals —

which is independent of n. And thus

|{!n+1 2 ⌦n+1|!n+1 ✏ !n ^ 'n+1}| 
|⌦n+1|
|⌦n|

2d � 1

2d
.

And thus for all n > N

|{!n 2 ⌦n : !n ✏ !N &!n 2 ['n]n}| ·
|⌦N |
|⌦n|

 |⌦N |
|⌦n|

|⌦n|
|⌦N |

(
2d � 1

2d
)n�N

(2
d � 1

2d
)n�N

.

⌅

Theorem 12. For all ' = 8~x✓(~x) 2 ⇧1 with positive measure,

maxentE = {P †
'} = {P1

' } = {P=(·|
_

!N2⌦N
!N✏'

!N)} .

where N = N', i.e., the maximum n such that tn appears in '.

Proof: If ' is a tautology, then P
†
' = P

1
' = P= = P=(·|⌦n).
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Otherwise let 8~x
V

i

W
ji
�iji(~x,~t) be the conjunctive normal form of '.

Then from Proposition 9 every !N 2 ⌦N such that !N ✏ ' entails at least
one �ij⇤i (

~t) (i.e., literal with no variable) for each i. Hence, every extension
!n of !N also entails ' and thus 'n. To see this notice that such literals
only mention constants and will thus be quantifier free sentences in LN , and
every extension of !N agrees with !N on LN . Also note that if !0

N /2 ['N ]N
then for all n > N and all its extensions !0

n it holds that !0
n /2 ['n]n. And so

we find for all n � N that P n
' (!

0
N) = 0 = P

n
' (!

0
n).

Now consider an N -state !N 2 ['N ]N which does not entail '. By
Lemma 11, the ratio of its extensions that satisfy 'n decreases at least ex-
ponentially quickly in n. Since P

n equivocates on those n-states which are
models of 'n (Lemma 6), it follows that

P
1
' (!n) =

(
1

|{!n2⌦n|!n✏'}| =
1

|'N |N · |⌦N |
|⌦n| if !n ✏ '

0 otherwise .

To complete the proof we need to show that P1
' = P

†
'. To show this we show

that P1
' defined above has greater entropy than every probability function

P
0 2 E in the sense required by the maximal entropy approach.

Use S to denote the set of N -states which entail '. First notice that P1
'

defined above has greater entropy than any probability function P
0 which

assigns probability one jointly to the N -states in S. To see this notice that
for each n > N , P 0 assigns non-zero probability only to extensions of state
descriptions in S but so does P1

' and P
1
' does so in a completely equivocal

way, dividing the probability equally between them. So for each n > N , P1
'

has strictly greater n-entropy than P
0 for all n such that P and P

0 disagree
on Ln.

Next we calculate the n-entropy of P1
' :

Hn(P
1
' ) = �

X

!n2⌦n
!n⌫N2S

P
1
' (!n) log(P

1
' (!n))

= �
X

!n2⌦n
!n⌫N2S

|⌦N |
|S| · |⌦n|

log
⇣ |⌦N |
|S| · |⌦n|

⌘

= � log
⇣ |⌦N |
|S| · |⌦n|

⌘
= log(|⌦n|)� log

⇣ |⌦N |
|S|

⌘
.
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where !n⌫N is the restriction of !n to the first N constants.
If P 0 is a probability function in E which assigns joint probability 1�k < 1

to the N -states in S, then it must assign joint probability k > 0 to the N -
states not in S. To maximise n-entropy, P

0 equivocates on the n-states
extending those N -states not in S – as much as possible. We find

Hn(P
0) = �

X

!n2⌦n
!n⌫N2S

P
0(!n) log(P

0(!n))�
X

!n2⌦n
!n⌫N /2S
!n✏'n

P
0(!n) log(P

0(!n)) (5)

To calculate this we first notice a couple of things: first that each !N 2
⌦N has the same number of extensions to Ln for n > N , which is |⌦n|

|⌦N | .

So, the number of !n in the first sum is |S|. |⌦n|
|⌦N | and the probability mass

1� k is divided equally between them to maximise n-entropy, assigning each
such !n measure (1�k)·|⌦N |

|S|·|⌦n| . Second, the number of !n in the second sum

is M = |{!n 2 ⌦n|(!n)⌫N /2 S, !n ✏ 'n}| and these are jointly assigned
probability mass k, so the entropy on this set is maximal, if this probability
is divided equally between them. Then for (5) we have

Hn(P
0) �

X

!n2⌦n
!n⌫N2S

(1� k) · |⌦N |
|S| · |⌦n|

log
⇣(1� k) · |⌦N |

|S| · |⌦n|

⌘
�

X

!n2⌦n
!n⌫N /2S
!n✏'n

k

M
· log

⇣
k

M

⌘

=� (1� k) · log
⇣(1� k) · |⌦N |

|S| · |⌦n|

⌘
� k · log

⇣
k

M

⌘

=(1� k) log(|⌦n|)� (1� k) · log
⇣(1� k) · |⌦N |

|S|

⌘
+ k log(M)� k log(k) .

By Lemma 11, for large n, M ⌧ |⌦|n. Thus, for large n

(1� k) log(|⌦n|)� (1� k) · log
⇣(1� k) · |⌦N |

|S|

⌘
+ k log(M)� k log(k)

⌧ log(|⌦n|)� log
⇣ |⌦N |

|S|

⌘
.

So, P1
' has greater entropy than P

0. And so, P1
' has greater entropy than

all other P 0 2 E. Hence, we have P
†
' = P

1
' . ⌅
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3.2. Zero measure, P=(8~x✓(~x)) = 0
If ' = 8~x✓(~x) has measure zero, then another strategy is required, as

explained at the start of the section. We can, however, solve one case easily
(Proposition 13). We then show why this solution strategy does not work in
the general measure-zero case.

Proposition 13. For all conjunctions of literals ✓(~x,~t) it holds for consistent
' = 8~x✓(~x,~t) 2 ⇧1 with P=(') = 0 that

maxentE = {P †
'} = {P1

' } .

Proof: Let n � N and ' = 8~x
VI

i=1 �i(~x,~t) where all �i are literals. Note
that for all !n 2 ⌦n it holds that !n 2 ['n]n, if and only if ['n]n is a
sub-formula of !n. Hence, all !n 2 ['n]n have equally many k + n-states
extending them which are in ['n+k]n+k. Since the entropy maximisers on
finite languages Lm assign all those states which do not satisfy 'm probability
zero for large enough m, all probability mass is assigned to those states in
['n]n.

First, note that P=(·|'n) has maximum n-entropy among all probability
functions with P ('n) = 1. Thus, P n

' = P=(·|'n).
Second, observe that P=(·|'n+1) agrees with P=(·|'n) on ⌦n since ✓(~x)

is a contingent conjunction of literals. To see this notice that P=(·|'n+1)
divides the probability mass equally between the n + 1-states that satisfy
'n+1 but these are all extensions of n-states that satisfy 'n and all of these
have an equal number of extensions to n+ 1-states that satisfy 'n+1.

We hence find for all m � N and all m-states !m that P
1
' (!m) =

limn!1 P
n
' (!m) = limn!1 P=(!m|'n) = P=(!m|'m). This shows that P1

' is
well defined on all m-states for all m > N and it satisfies P1 and P2 since
it is a limit of probability functions. Thus, by Gaifman’s Theorem it can be
uniquely extended to L.

Also, limn!1 P=(·|'n) eventually dominates all other probability func-
tions in E in entropy, by the first observation. So, P †(·) = limn!1 P=(·|'n).
⌅

As soon as there are disjunctions in 8~x✓(~x) 2 ⇧1, matters are more
involved, because di↵erent disjuncts in ✓(~x) may have di↵erent consequences:

Example 14. For ' = 8xy((U2t1^U1x)_¬U2y) 2 ⇧1 and the language con-
taining only the two unary relation symbols U1, U2, we have P=(8xy((U2t1 ^
U1x) _ ¬U2y)) = 0.
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There are two sorts of n-states which entail 'n. Those which entail
U2t1 ^

Vn
i=1 U1ti and those which entail

Vn
i=1 ¬U2ti. No state can entail

both sentences. At every level n � 2, exactly half of all extensions satis-
fying 'n are extensions satisfying 'n+1. Furthermore, at every level there
are twice as many n-states which entail

Vn+1
i=1 ¬U2ti than those which entail

U2t1 ^
Vn+1

i=1 U1ti.
Hence, P n

' ((8x¬U2x)n) = 2P n
' ((8x(U2t1 ^ U1x))n). The disjuncts in '

(U2t1^U1x and ¬U2y) are thus treated di↵erently in the entropy maximising
process.

Theorem 15. If � = {8~x✓(~x)} where 8~x✓(~x) 2 ⇧1, and P
1 exists, then

maxentE = {P1} = {P †} .

Proof: Let ' be 8~x✓(~x), N = N' and t > N . Let’s first observe that, then
for all t � N and all t-states !t 2 ⌦t using Lemma 6

P
1(!t) = lim

n!1
P

n(!t) = lim
n!1

X

!n2['n]n
!n✏!t

P
n(!n)

= lim
n!1

|{!n 2 [(8~x✓(~x))n]n | !n ✏ !t}|
|'n|n

.

Since P
1 exists by assumption, this limit is well-defined, i.e., it takes a

definite value for all !t 2 ⌦t.
This, then, defines P1 on all t-states, for all t � N . But this means that

P
1 is uniquely determined. By the fact that P

1 is a unique probability
function, it must be the case that P2 holds, in particular, for all t-states !t 2
⌦t it holds that P1(!t) =

P
!t+1✏!t

P
1(!t+1). Since 1 = limn!1 P

n('n) =
P

1(') it follows that P1 2 E.
Next, we show that P

1 = P
†. To show this we will show that P

1

has greater entropy than every other probability function in E. So let Q 2
E \ {P1}. If t � N , then for every t-state !t that is inconsistent with 't,
it holds that !t is inconsistent with '. Hence, Q(!t) = 0. We consider two
cases: first we look at those Q that assign non-zero probability to some t-
state, t > N with vanishingly few extensions that satisfy 'n for large n, and
next those Q that assign zero probability to all such t-states.

Case 1. Suppose that there is some t-state !t that satisfies 't and
Q(!t) > 0 such that there exists some other t-state µt that satisfies 't
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with many more extensions compatible with ' than !t. Then the limit of
|{!n2['n]n | !n✏!t}|
|{⌫n2['n]n | ⌫n✏⌫t}| is zero. Suppose that t � N is minimal with this property.
Now define a probability function P 2 E which agrees with Q everywhere
except for !t, ⌫t and (at least some of) their extensions. Let P (!t) := 0 and
P (⌫t) := Q(⌫t) + Q(!t) > Q(⌫t). Note that this forces P (!n) = 0 for all
extensions !n of !t. For the extensions ⌫n of ⌫t we define a real number
↵ > 0 by the unique solution of ↵ · P1(⌫t) = Q(!t) + Q(⌫t). Then simply
put P (⌫n) := ↵ · P1(⌫n) for all extensions ⌫n of ⌫t. We need to show is that
this is a probability function. For this is it is enough to observe that for all
k � 0 and all ⌫n+k that satisfy 'n+k extending ⌫n,

P (⌫n+k) =↵P
1(⌫n+k) = ↵

X

⌫n+k+1✏⌫n+k
⌫n+k+12['n+k+1]n+k+1

P
1(⌫n+k+1)

=↵
X

⌫n+k+1✏⌫n+k

P
1(⌫n+k+1)

=
X

⌫n+k+1✏⌫n+k

P (⌫n+k+1) .

Next, note that for all large enough n � t it holds that (Proposition 5)

�
X

�n2⌦n
�n✏(!t_⌫t)

Q(�n) · log(Q(�n)) < �
X

�n2⌦n
�n✏(!t_⌫t)

P (�n) · log(P (�n)) .

Since Q and P only disagree on !t, µt and (at least some of) their extensions,
this means that Hn(Q) < Hn(P ) for all large enough n. This entails that
Q /2 maxentE.

Case 2. Consider a Q 2 E which assigns zero probability to all !t which
have vanishingly few extensions satisfying 'n for large n. Suppose further-
more that Q does not always assign probabilities according to asymptotic
ratios of the number of extensions, i.e., there exists a minimal t � N and
two t-states !t, ⌫t 2 ['t]t with P

1(!t), P1(⌫t) > 0 such that

Q(!t)

Q(⌫t)
> lim

n!1

|{!n 2 ['n]n|!n ✏ !t}|
|{⌫n 2 ['n]n|⌫n ✏ ⌫t}|

=
P

1(!t)

P1(⌫t)
.

Define a function P 2 E which agrees with Q except for !t, ⌫t and (at least
some of) their extensions. Put for all n � t

P (!n) :=
Q(!t) +Q(⌫t)

P1(!t) + P1(⌫t)
P

1(!n) for !n that extend !t
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P (⌫n) :=
Q(!t) +Q(⌫t)

P1(!t) + P1(⌫t)
P

1(⌫n) for ⌫n that extend ⌫t .

So, P assigns the same joint probability mass to !t, ⌫t and its extensions as Q.
However, P does so by adhering to the same ratios as P1. By Proposition 5
it holds for all large enough n � t:

�
X

�n2⌦n
�n✏(!t_⌫t)

Q(�n) · log(Q(�n)) < �
X

�n2⌦n
�n✏(!t_⌫t)

P (�n) · log(P (�n)) .

Since Q and P only disagree on !t, ⌫t and (at least some of) their extensions,
this means that Hn(Q) < Hn(P ) for all large enough n. This entails that
Q /2 maxentE.

This means, that we can always improve in the entropy ordering by assign-
ing probability zero to t-states with vanishingly few extensions compatible
with ' (case 1). We can also improve in the entropy ordering by assigning
probabilities according to the same ratios as P1. There is however only one
probability function that satisfies both these conditions, which is P1. Hence,
P

1 has greater entropy than every other function Q 2 E \ {P1}. And so
P

† = P
1. ⌅

This proof leaves two open questions. 1) What is the concrete form of P1,
assuming it exists for ' 2 ⇧1? 2) Does the existence of a unique maximal
entropy function, maxentE = {P †}, entail that the entropy limit exists and
that they are equal, P † = P

1, for all ' 2 ⇧1?
While we do not know the answers to these questions, we do know that

there are premiss sentences ' = 8~x✓(~x) 2 ⇧1 of which Theorem 15 holds
nontrivially.

Definition 16 (Slow Premisses, [37], p. 346). A premiss sentence ' 2 SL is
called slow, if and only if |'n|n is polynomially bounded in n.

Proposition 17 (Entropy Limit of Slow Premiss Sentences, [37], Theo-
rem 3). For all consistent and slow ' 2 ⇧1 the entropy limit exists and
assigns probability one to the premiss ', P1 2 E.

Remark 18. Theorem 15 requires that the consistent premiss ' = 8~x✓(~x) 2
⇧1 has a well-defined entropy limit. Slow sentences do have such a well-
defined entropy limit. Hence, the entropy-limit conjecture holds non-trivially
for every consistent slow premiss ' = 8~x✓(~x) 2 ⇧1.
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Furthermore, for all consistent premiss sentences ' = 8~x✓(~x) 2 ⇧1 in
which ✓(~x) is a conjunction of literals, the entropy limit is well-defined
(Proposition 13) and thus the entropy-limit conjecture holds non-trivially
for all these sentences too.

4. Non-Categorical Premisses and Je↵rey Updating

In Section 3, we saw that entropy maximisation on predicate languages for
categorical ⇧1 (and also ⌃1) premisses amounts to updating the equivocator
(the prior probability function in a state of maximal uncertainty, i.e., no
evidence is available at all) by conditionalisation. This mirrors the finite
case in which entropy maximisation agrees with conditionalisation in case of
categorical evidence [45]. We now turn to non-categorical premisses of the
form '

X , X 2 (0, 1) and show that, for ⇧1 and for ⌃1 premiss propositions,
the entropy-limit conjecture holds and entropy maximisation amounts to
Je↵rey updating (Theorem 22). Again, this mirrors the finite case in which
entropy maximisation agrees with Je↵rey updating in case of non-categorical
premisses of the form '

X [45]. Our result is also in line with the literature
that shows that MaxEnt updating agrees with Je↵rey updating on infinite
domains [46].

4.1. Point probabilities

While ⇧k and ⌃k categorical constraints require di↵erent approaches to
maximise entropy, this is no longer so for non-categorical constraints. Every
non-categorical ⇧k constraint is equivalent to a non-categorical ⌃k constraint,
since � = {'X} is equivalent to {¬'1�X}.

Lemma 19. For all contingent ' 2 SL such that P
1
' and P

1
¬' both exist

and all X 2 (0, 1) it holds that

P
1
'X = X · P1

' + (1�X) · P1
¬' .

Furthermore, if P1
' (') = 1 and P

1
¬'(¬') = 1, then P

1
'X (') = X.

So, if the entropy limit exists for both categorical premisses ',¬', then
the entropy limit for the non-categorical premiss(es) 'X (and ¬'1�X) ex-
ists and is obtained by a weighted average inspired by Je↵rey updating. If
P

1
¬' = P=(·|¬') and if P1

' = P=(·|'), then the entropy limit for the non-
categorical premiss(es) 'X (and ¬'1�X) is indeed given by Je↵rey updating
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of the equivocator. In many cases where the premisses only involve one type
of quantifier (either 8 or 9 but not both), this is indeed the case, as we showed
in Section 3.
Proof: First, note that E = {P 2 P : P (') = X andP (¬') = 1 � X}.
Next, we observe that Qn := X ·P n

' +(1�X) ·P n
¬' satisfies all the constraints

on Ln, Qn('n) = X and Q
n(¬'n) = 1�X.

We now see that for all n 2 N that X ·P n
' maximises entropy over the set

{P : ⌦n ! [0, 1] :
X

!n2⌦n
!n✏'n

P (!n) = X

X

!n2⌦n
!n✏¬'n

P (!n) = 0} ,

and that (1�X) · P n
¬' maximises entropy over the set

{P : ⌦n ! [0, 1] :
X

!n2⌦n
!n✏'n

P (!n) = 0
X

!n2⌦n
!n✏¬'n

P (!n) = 1�X} .

We see this by recalling Proposition 5. For all functions f : {1, . . . , N}! R�0

it holds that

arg sup
f :
PN

i=1 f(i)=X

�
NX

i=1

f(i) log(f(i)) =
arg supf :

PN
i=1 f(i)=1�

PN
i=1 f(i) log(f(i))

X
.

Finally, observe that the objective function is additive with respect to n-
states in the following sense:

Hn(P ) = �
X

!n2⌦n

⇣ X

!n✏'n

P (!n) log(P (!n)) +
X

!n✏¬'n

P (!n) log(P (!n))
⌘
.

Hence, if there exist two sets of n-states (here: ['n]n and [¬'n]n) such that
every constraint applies to exactly one of these sets of n-states, then the
maximum entropy function can be found by maximising entropy separately
over these two sets. Hence, this shows that P n

'X = Q
n = X ·P n

'+(1�X)·P n
¬'.

By the assumption that P
1
' , P1

¬' are well-defined, we get that P
1
'X :=

limn!1 X · P n
' + (1 � X) · P n

¬' = X · P1
' + (1 � X) · P1

¬' satisfies P1 and
P2 on QFSL. By Gaifman’s Theorem [42], P1

'X is (uniquely extendible to)
a probability function on SL.

Furthermore, if P1
' (') = 1 and P

1
¬'(¬') = 1, then it is obvious that

P
1
'X (') = X and so P

1
'X 2 E. ⌅
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Lemma 20. Under the assumption of Lemma 19, if maxentE' = {P †
'} =

{P1
' } and maxentE¬' = {P †

¬'} = {P1
¬'}, then

maxentE'X = {P †
'X} = {P1

'X} = {X · P1
' + (1�X) · P1

¬'} .

Proof: By the above, P1
'X 2 E'X . Denote by Hn⌫S(P ) the n-entropy of P

evaluated on all n-states in S ✓ ⌦n. So,

Hn⌫['n]n(P ) := �
X

!n2⌦n
!n✏'n

P (!n) log(P (!n)) .

By assumption P
†
' exists and is unique, it must hence be in E'. Since

maxentE' = {P †
'}, and since P

†
' it has greater entropy than every other

probability function R with R(') = 1, we have that X · P †
' will dominate

any probability function Q with Q(') = X in entropy. In the same way
(1�X)P †

¬' will dominate any probability function Q with Q(¬') = 1�X in
entropy. Then by Proposition 5 and the discussion immediately after that,
X · P †

' + (1�X) · P †
¬' will dominate every probability function in E'X . By

assumption, however, X ·P †
'+(1�X)·P †

¬' = X ·P1
' +(1�X)·P1

¬' = P
1
'X . ⌅

It is worth noting two points here. First, an application of Lemma 20
requires that P1 and P

† are defined for both ' and ¬'. (It is not su�cient
that P1

' and P
†
' are well defined.) For example, if ' is a slow ⇧1 sentence,

then ¬' 2 ⌃1 and we know that P1 and P
† are well-defined for both ' and

¬'. Lemma 20 also applies non-trivially to consistent ' = 8~x✓(~x) 2 ⇧1 in
which ✓(~x) is a conjunction of literals (Remark 18).

Second, we note that nothing in the proof of Lemma 20 hinges on work-
ing with a single non-categorical premiss. Indeed, all that was needed for
that result was that for any satisfiable sentence ', the pair {'n,¬'n} give
a partition of n-states for all n. The result can thus be generalised in a
straightforward way to any set of premisses that satisfy this condition.

Definition 21. A non-empty set of sentences '1, . . . ,'k 2 SL is called a
partition on the large Ln, if and only if there exists a J 2 N such that for all
n � J ,

• the ('i)n are satisfiable, ('i)n 2 ? for all 1  i  k,

• the ('i)n are mutually exclusive, ✏ (('i)n ^ ('j)n)! ? for i 6= j,
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• the ('i)n exhaust the n-universe, ✏ Wk
i=1('i)n $ >.

Notice that a set of sentences will trivially fail to satisfy this condition if
at least one sentence does not have finite models of size n for all su�ciently
large n, even if it does have an infinite model. Consider for example the
sentence ' = 8xzw9y(U1xy ^ [(U1xw ^ U1wz) ! U1xz] ^ ¬U1xx) which
only has infinite models. One may think of {',¬'} as partitioning the
full language by partitioning the class of models of the language L. Since
P ('n) = 0 = 1 � P (¬'n) holds for all n 2 N and all probability functions
P 2 P, P ('n) = X for all X 2 (0, 1) is unsatisfiable and hence En = ; for
all n. We hence require partitions on finite sublanguages.

Vice versa, not every partition on the large Ln partitions the class of
models of L.  1 := ' _ U2t1 and  2 := ¬U2t1 form a partition of all finite
sublanguages but  1^ 2 has infinite models characterised by '^¬U2t1. So,
{ 1, 2} does not partition the class of models of L.

Theorem 22 (Entropy Maximisation and Je↵rey Updating). If � = {'X1
1 , . . . ,'

Xk
k }

where '1, . . . ,'k is a partition on the large Ln and X1, . . . , Xk � 0 such thatPk
i=1 Xi = 1, and if for all 1  i  k such that Xi > 0 it holds that

maxentE'i = {P †
'i
} = {P1

'i
}, then

maxentE = {P †
�} = {P1

� } = {
kX

i=1
Xi>0

Xi · P1
'i
} .

Proof: The proof follows immediately by applying the argument in the proof
of Lemma 20 a finite number of times. ⌅

4.2. Generalisation to probability intervals

We now show how to use the above results to prove that the entropy-limit
conjecture holds for certain non-categorical premisses 'X where X is a set
of probabilities.

Proposition 23. Suppose X ✓ [0, 1] is a compact interval, � = {8~x✓(~x)X}
where ' = 8~x✓(~x) 2 ⇧1 and P=(') = 0. If the entropy limits exists for the
categorical constraint �1 := {8~x✓(~x)1}, then

P
1
'X = P

1
'inf X = P

†
'X = P

†
'inf X .
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Proof: First note that it follows from Lemma 19 that the entropy limits
exist for the non-categorical constraint �x := {8~x✓(~x)x} for all x 2 [0, 1].
We use P

n
x to denote the unique probability function on Ln with maximal

n-entropy subject to the constraint �x = {'x}.
It easy to check that for all x � ✏ > 0 there exists some M 2 N such that

for all n � M , Hn(P n
x ) < Hn(P n

x�✏). It follows that P
n
'X = P

n
'inf X . Hence,

P
1
'X = P

1
'inf X .

Applying Theorem 15 we note that P †
'1 = P

1
'1 . In particular, P †

'1 exists,

is unique and it satisfies the constraint �1. Applying Theorem 22 we obtain
P

†
'x = P

1
'x for all x 2 X.

Using the proof technique from Lemma 20 we see that for all y 2 X \
{infX} there exists some M 2 N such that for all n � M it holds that
Hn(P

†
'y) < Hn(P

†
'inf X ). Hence, P †

'inf X has greater entropy than every other

probability function in E and hence P
†
'X = P

†
'inf X . ⌅

Proposition 24. Suppose X ✓ [0, 1] is a compact interval, � = {8~x✓(~x)X}
where ' = 8~x✓(~x) 2 ⇧1, P=(') > 0 and � := arg infx2X |P=(')�x|. It holds
that

P
1
'X = P

1
'� = P

†
'X = P

†
'� .

Proof: The proof is an easy adaptation of the proof of the previous propo-
sition replacing infX by �.

It easy to check that for all x 2 X\{�} there exists someM 2 N such that
for all n � M it holds that Hn(P n

x ) < Hn(P n
� ). It follows that P n

'X = P
n
'� .

Hence, P1
'X = P

1
'� .

Note first that by Theorem 12 the entropy limit exists and is equal to the
maximum entropy function for the categorical constraint �1, P †

'1 = P
1
'1 . In

particular, P †
'1 exists, is unique and it satisfies the constraint �1. Applying

Theorem 22 we obtain P
†
'x = P

1
'x for all x 2 X.

Using the proof technique from Lemma 20 we see that for all y 2 X \{�}
there exists some M 2 N such that for all n � M , Hn(P

†
'y) < Hn(P

†
'�).

Hence, P †
'� has greater entropy than every other probability function in E

and hence P
†
'X = P

†
'� . ⌅
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Theorem 25. Suppose X ✓ [0, 1] is a compact interval, � = {8~x✓(~x)X}
where ' = 8~x✓(~x) 2 ⇧1.

• If � := P=(') = 0 and the entropy limits exists for the categorical
constraint �1 := {8~x✓(~x)1}, then

P
1
'X = P

1
'inf X = P

†
'X = P

†
'inf X .

• If P=(') > 0 and � := arg infx2X |P=(')� x|, then

P
1
'X =P

1
'� = P

†
'X = P

†
'�

=P=(') · P=(·|
_

!N2⌦N
!N✏'

!N) + P=(¬') · P=(·|
_

!N2⌦N
!N^¬' is consistent

!N) ,

where N = N'.

Proof: The only thing left to prove is the last equality which follows from
Theorems 12, 15 and 22. ⌅

5. Convergence in entropy

In this section we show that there are some rather general conditions
under which the entropy-limit conjecture is true. We suppose only that
E,E1,E2, . . . are convex sets of probability functions generated by some con-
sistent set � of constraints involving probabilities of sentences of L and that
the P

n df
= argmaxP2En Hn(P ) exist for su�ciently large n. For example, if

� = {'X1
1 , . . . ,'

Xk
k } and the X1, . . . , Xk are probabilities or closed intervals

of probabilities, then the En are closed and this guarantees the existence of
the P

n for non-empty En.
The main condition required for the general result is that P n converges

to P
1 in entropy. Thus, we first introduce this kind of convergence and

compare it to L1 convergence, which also plays a role in what follows:

Definition 26 (Convergence in Entropy). Suppose P and Qn, for n =
1, 2, . . ., are probability functions on L. The (Qn)n�1 converge in entropy
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to P if |Hn(Qn)�Hn(P )| �! 0 as n �!1.5

We define L1 distance as follows,

k P �Qkn
df
=
X

!n2⌦n

|P (!n)�Q(!n)| = 2 max
'2SLn

(P (')�Q(')) . (6)

The latter equality follows as per [47, Equation 11.137].

Definition 27 (Convergence in L1). Suppose P and Qn, for n = 1, 2, . . ., are
probability functions on L. The (Qn)n�1 converge in L1 to P if kQn � Pkn �!
0 as n �!1.

The entropy function Hn is not 1-1. Therefore, that the Qn converge to
P in entropy does not imply that they converge in L1 to P , nor that, if they
do additionally converge in L1 to P , then P is the unique function to which
they converge in entropy.

Example 28. Suppose L is a language with a single predicate U which
is unary. Define P by P (Ut1 ^ Ut2 ^ · · · ^ Utn) = 1 for all n and R by
R(¬Ut1 ^ ¬Ut2 ^ · · · ^ ¬Utn) = 1 for all n. For k = 0, 1, 2, . . . let Q2k = P

and Q2k+1 = R. Since Hn(P ) = Hn(R) = 0 for all n, the Qn converge in
entropy to both P and R but converge in L1 to neither function.

Example 29. Proceed as in the previous example, except let Qn = P for all
n. Now the Qn converge in L1 to P , but converge in entropy to both P and
R, among other functions.

However, it turns out that, under certain conditions, if the n-entropy
maximisers P n converge in entropy to P 2 E then they converge in L1 to P .
To show this we need two lemmas.

First, a Pythagorean theorem holds for what we call the n-divergence dn

[47, Theorem 11.6.1]:

Definition 30 (n-divergence). The n-divergence of two probability functions
P and Q is defined as the Kullback-Leibler divergence of P from Q on Ln:

dn(P,Q)
df
=
X

!2⌦n

P (!) log
P (!)

Q(!)
.

5This notion of convergence invokes a kind of diagonalisation: in the matrix of values
(Hi(Qj)�Hi(P ))i,j , the focus is on whether there is convergence to zero along the diagonal,
where i = j. A similar point can be made about the definition of convergence in L1,
Definition 27.
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Lemma 31 (Pythagorean theorem). For any convex F ✓ P, if P 2 F and
Q 62 F, then

dn(P,Q) � dn(P,Rn) + dn(Rn, Q) ,

where Rn = arg infS2F dn(S,Q).

Corollary 32. For any convex F ✓ P, if P 2 F and Rn = arg supS2F Hn(S),
then

Hn(Rn)�Hn(P ) � dn(P,Rn) ,

Proof: If the equivocator function P= 62 F, then we can apply the Pythagorean
theorem to Q = P= and simplify.

Otherwise, Rn = P=⌫Ln and the inequality holds with equality:

dn(P, P=) =
X

!2⌦n

P (!) log
P (!)

1/2rn

=
X

!2⌦n

P (!) logP (!) +
X

!2⌦n

P (!) log 2rn

= �Hn(P ) + rn log 2

= �Hn(P ) +Hn(P=) .

⌅

The second lemma connects the L1 distance to n-divergence [see, e.g., 47,
Lemma 11.6.1]:

Lemma 33 (Pinsker’s Inequality). dn(P,Q) � 1
2 kP �Qk2n.

Apart from convergence in entropy, the other key condition invoked by
our general entropy-limit theorem is regularity :

Definition 34 (Regularity). The set � of constraints that generate E,E1,E2, . . .

is regular if, for su�ciently large n, the P
n df
= argmaxQ2En Hn(Q) dominate

members of E in n-entropy, in the sense that P n = argmaxQ2Fn Hn(Q), where

Fn
df
= hP n

,E⌫Lni, the convex hull of P n and E⌫Ln

df
= {P⌫Ln : P 2 E}.

Example 35. If ✓ = 8~x✓(~x) 2 ⇧1 and � = {✓}, then E = {P 2 P :
P (8~x✓(~x)) = 1} and En = {P 2 Pn : P ((8~x✓(~x))n) = 1} for all n. If
8~x✓(~x) 2 ⇧1, then � is regular. This is because En ◆ En+1⌫Ln ◆ · · · ◆ E⌫Ln ,
so Fn ✓ En for all n.

35



Proposition 36. Suppose � is regular. If the P
n converge in entropy to

P 2 E, then they converge in L1 to P .

Proof: By regularity, P n = argmaxQ2Fn Hn(Q) for su�ciently large n and
convex Fn. So by Corollary 32, for su�ciently large n,

Hn(P
n)�Hn(P ) � dn(P, P

n)

� 1

2
kP � P

nk2n

by Pinsker’s inequality. Hence, that the P n converge in entropy to P implies
that kP � P

nk2n converges to zero, which in turn implies that the P
n con-

verge in L1 to P . ⌅

Note that the regularity condition can be dropped if P is the equivocator
function P=:

Proposition 37. If the P
n converge in entropy to P=, then they converge in

L1 to P=.

Proof: As we saw in the proof of Corollary 32,

dn(P
n
, P=) = Hn(P=)�Hn(P

n) .

So,

Hn(P=)�Hn(P
n) = dn(P

n
, P=)

� 1

2
kP= � P

nk2n

by Pinsker’s inequality. Hence, that the P
n converge in entropy to P= im-

plies that kP= � P
nk2n converges to zero, which in turn implies that the P

n

converge in L1 to P=. ⌅

Importantly for our purposes, convergence in entropy guarantees the ex-
istence of the pointwise entropy limit P1 in these cases:

Proposition 38. Suppose � is regular or P is the equivocator function. If
the P

n converge in entropy to P 2 E, then P
1 exists and P = P

1.
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Proof: Applying Proposition 36 if � is regular, or Proposition 37 if P is the
equivocator, together with Equation 6, we see that if the P

n converge in
entropy to P , then P ( ) = limn!1 P

n( ) for every quantifier-free sentence
 . P is the unique such limit of the P n because it is in E and so a probability
function, and hence determined by its values on the quantifier-free sentences
of L [42].

Now, P1 is defined as the unique extension to L of pointwise limit of
P

n on quantifier-free sentences, assuming that this pointwise limit exists and
satisfies the axioms of probability on quantifier-free sentences of L. This
latter assumption holds because, as we have seen, limn!1 P

n( ) = P ( ) for
quantifier-free  , where P is a probability function. Since P

1 is the unique
extension to L, it must agree with P on L as a whole. Therefore P

1 exists
and P = P

1. ⌅

We can now progress to the main result of this section:

Theorem 39 (Entropy-Limit Theorem under convergence in entropy). Sup-
pose � is regular or P is the equivocator function. If the P

n converge in
entropy to P 2 E, then P

1 exists and

maxentE = {P} = {P1} .

Proof: The existence of P1 and the fact that P = P
1 is an application of

Proposition 38. So it remains to show that maxentE = {P1}.
If P is the equivocator function, this fact follows straightforwardly. P =

P
1 = P= 2 E and for any other function Q in E, P and Q must di↵er

on some n-states for large enough n. P= has greater n-entropy than Q for
all such n; this holds for any other Q 2 E, so P= is the unique member of
maxentE.

We turn next to the case in which P is not the equivocator function—this
is the case in which � is regular. First we shall show that P1 2 maxentE;
later we shall see that there is no other member of maxentE.

First, then, assume for contradiction that P1 62 maxentE. Then there is
some Q 2 E such that Q has greater entropy than P

1. I.e., for su�ciently
large n, Hn(P n) � Hn(Q) > Hn(P1). N.b., Q 6= P

1. Hence, for su�ciently
large n,

Hn(P
n)�Hn(P

1) > Hn(P
n)�Hn(Q)

� dn(Q,P
n)
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� 1

2
kQ� P

nk2n ,

where the latter two inequalities hold by Corollary 32 (given regularity) and
Pinsker’s inequality. Hence, since the P

n converge in entropy to P
1, they

converge pointwise to Q. By the uniqueness of pointwise limits, Q = P
1: a

contradiction. Hence, P1 2 maxentE, as required.
Next we shall see that P1 is the unique member of maxentE. Suppose

for contradiction that there is some P
† 2 maxentE such that P

† 6= P
1.

Then P
1 cannot eventually dominate P

† in n-entropy—i.e., there is some
infinite set J ✓ N such that for n 2 J ,

Hn(P
†) � Hn(P

1) .

Let R
df
= �P

† + (1 � �)P1 for some � 2 (0, 1). Now by the log-sum
inequality [47, Theorem 2.7.1], for all n 2 J large enough that P

†(!n) 6=
P

1(!n) for some !n 2 ⌦n,

Hn(R) > �Hn(P
†) + (1� �)Hn(P

1)

� �Hn(P
1) + (1� �)Hn(P

1)

= Hn(P
1) .

Hence,

Hn(P
n)�Hn(P

1) > Hn(P
n)�Hn(R)

� dn(R,P
n) ,

for large enough n 2 J , by Corollary 32 and regularity.
Now by Pinsker’s inequality (Lemma 33) and the definition of R,

dn(R,P
n) � 1

2
kR� P

nk2n

=
1

2

��P1 � P
n + �(P † � P

1)
��2
n

=
1

2

 
X

!n2⌦n

��P1(!n)� P
n(!n) + �(P †(!n)� P

1(!n))
��
!2

.

Let fn(')
df
= P

1(')�P
n(')+�(P †(')�P

1(')) and ⇢n
df
=
W

fn(!n)>0 !n.
Then,

X

!n2⌦n

|fn(!n)| =
X

!n:fn(!n)>0

fn(!n)�
X

!n:fn(!n)0

fn(!n)
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=
X

!n:fn(!n)>0

fn(!n)�
X

!n:fn(!n) 6>0

fn(!n)

= fn(⇢n)� fn(¬⇢n)
= 2fn(⇢n)

after substituting P
1(¬⇢n) = 1� P

1(⇢n) etc.
Let us consider the behaviour of

fn(⇢n) = P
1(⇢n)� P

n(⇢n) + �(P †(⇢n)� P
1(⇢n))

as n �!1. Now, P1(⇢n)�P n(⇢n) �! 0 as n �!1, because P n converges
in L1 to P

1 (Proposition 36). However, �(P †(⇢n)�P
1(⇢n)) 6�! 0 as n �!

1, as we shall now see. P
† 6= P

1 by assumption, so they must di↵er on
some quantifier-free sentence  , a sentence of Lm, say. Suppose without
loss of generality that P †( ) > P

1( ) (otherwise take ¬ instead) and let
� = P

†( )� P
1( ) > 0. Now for n�m,

fn(⇢n) =
X

!n:fn(!n)>0

fn(!n) �
X

!n|= 

fn(!n) = fn( ) .

Since P
n converges in L1 to P

1 we can consider n > m large enough that
(see equation 6):

kP n � P
1kn = 2 max

'2SLn

(P n(')� P
1(')) < �� .

In particular, since  is quantifier-free, P n( )�P1( )  max'2SLn(P
n(')�

P
1(')) < ��/2. For any such n,

fn(⇢n) � fn( )

= P
1( )� P

n( ) + �(P †( )� P
1( ))

> ���
2

+ ��

=
��

2
.

Putting the above parts together, we have that for su�ciently large n 2 J ,

Hn(P
n)�Hn(P

1) > dn(R,P
n) � (2fn(⇢n))

2

2
>
�
2
�
2

2
> 0 .
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However, that these Hn(P n)�Hn(P1) are bounded away from zero con-
tradicts the assumption that the P

n converge in entropy to P
1. Hence, P1

is the unique member of maxentE, as required. ⌅

One can use this result to test whether some hypothesised function P 2 E
is both the entropy limit P

1 and maximal entropy function P
†, via the

following procedure:

1. Determine P
n as a function of n.

2. Determine whether P n converges in entropy to P .
3. Determine whether � is regular or P is the equivocator function.
4. If these last two conditions hold, then P = P

† = P
1.

With regard to step 2, a rapid form of convergence in L1 is su�cient (but
not necessary) for convergence in entropy. Recall that rn is the number of
atomic sentences in Ln:

Lemma 40. If rn kQn � Pkn �! 0 as n �! 1, then the Qn converge in
entropy to P .

Proof: By [47, Theorem 17.3.3], for su�ciently large n we have that:

Hn(Qn)�Hn(P )  �kQn � Pkn log
kQn � Pkn

2rn
= rn kQn � Pkn log 2� kQn � Pkn log kQn � Pkn .

Both these latter terms tend to zero with n, by the fact that rn kQn � Pkn
tends to zero together with (in the case of the second term) the fact that
x log x �! 0 as x �! 0. ⌅

In the remainder of this section we provide a range of examples to illus-
trate the usage of the above algorithm.

Example 41. Suppose � = {9xUx}, where L has a single unary predicate
U . Letting ' be 9xUx, 'n is defined as Ut1 _ · · · _ Utn. We have that
E = {P 2 P : P (') = 1} and En = {P 2 Pn : P ('n) = 1}. The n-entropy
maximiser gives probability 0 to the n-state ¬Ut1 ^ · · · ^ ¬Utn and divides
probability 1 amongst the 2n � 1 other n-states:

P
n(!n) =

⇢
1

2n�1 : !n |= 'n

0 : !n 6|= 'n
.
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We shall use Lemma 40 to show that the P
n converge in entropy to the

equivocator function P=:

rn kP n � P=kn = n

X

!n2⌦n

|P n(!n)� P=(!n)|

= n


(2n � 1)

✓
1

2n � 1
� 1

2n

◆
+

✓
1

2n
� 0

◆�

= n


1� 2n � 1

2n
+

1

2n

�

=
2n

2n
�! 0 as n �!1 .

Note that P= 2 E:

P=(9xUx) = lim
n!1

P=(
n_

i=1

Uti) = lim
n!1

(1� P=(
n̂

i=1

¬Uti)) = 1� lim
n!1

1

2n
= 1 .

Now � is not regular. This is because E⌫n = Pn, so Fn = hP n
,Pni and

argmaxQ2Fn Hn(Q) is P= rather than P
n. However, because the P

n con-
verge in entropy to the equivocator function, the Entropy-Limit Theorem
(Theorem 39) nevertheless implies that maxentE = {P1} = {P=}.

Example 42. Suppose � = {8xUx
X}, where L has a single unary predicate

U and X 2 [0, 1]. Letting ' be 8xUx, 'n is Ut1 ^ . . . ^ Utn. We have
that E = {P 2 P : P (') = X} and En = {P 2 Pn : P ('n) = X}. Then
the n-entropy maximiser gives probability X to the n-state 'n and divides
probability 1�X amongst all other n-states:

P
n(!n) =

⇢
X : !n = 'n

1�X
2n�1 : !n |= ¬'n

.

Let us consider whether the P
n might converge in entropy to the following

function:

P (!n) =

⇢
X + xn : !n = 'n
1�X�xn
2n�1 : !n |= ¬'n

where xn = 1�X
2n . Now,

|P n(!n)� P (!n)| =
⇢

xn : !n = 'n
xn

2n�1 : !n |= ¬'n
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and,

rn kP n � Pkn = rn

X

!n2⌦n

|P n(!n)� P (!n)|

= 2rnxn

= 2(1�X)
n

2n
�! 0 as n �!1 .

Hence the P n do indeed converge in entropy to P . Moreover, P 2 P becauseP
!n2⌦n

P (!n) = 1 and for !n = 'n,

X

!n+1|=!n

P (!n+1) = X+
1�X

2n+1
+

1

2n+1 � 1

✓
1�X � 1�X

2n+1

◆
= X+

1�X

2n
= P (!n)

and for !n 6= 'n,

X

!n+1|=!n

P (!n+1) = 2
1

2n+1 � 1

✓
1�X � 1�X

2n+1

◆
=

1�X

2n
= P (!n) .

Moreover, P 2 E:

P (8xUx) = lim
n!1

n̂

i=1

P (Uti) = lim
n!1

X + xn = X .

In addition, if X > 0 then � is regular. To see this, observe that for any
Q 2 E, X = Q(')  Q('n) because ' |= 'n. Therefore, when n is large
enough that X >

1
2n we have that P=(') = 1

2n < X = P
n('n)  Q('n)

and so, since P
n spreads the remaining probability 1�X evenly across the

remaining n-states, Hn(P n) � Hn(Q). On the other hand, if X = 0 then P is
the equivocator function. Either way, we can apply Theorem 39 to conclude
that P = P

1 = P
† in this example.

Example 43. Suppose � = {8x(Ux! Ut3)
X}, where L is a unary language

with a single unary predicate U and X 2 [0, 1]. Let ' be 8x(Ux ! Ut3).
Note that ' ⌘ Ut3 _ 8x¬Ux. Now,

['n] = {±Ut1^±Ut2^Ut3^±Ut4^· · ·^±Utn,¬Ut1^¬Ut2^¬Ut3^· · ·^¬Utn}

and
|'n|n = 2n�1 + 1 .
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The n-entropy maximiser will give these n-states the same probability:

P
n(!n) =

⇢ X
2n�1+1 : !n |= 'n
1�X

2n�1�1 : !n 6|= 'n
.

Let us consider

P (!n) =

⇢
X

2n�1 : !n |= Ut3
1�X
2n�1 : !n 6|= Ut3

.

and ask whether the P
n converge to P 2 E in entropy:

rn kP n � Pkn = n

X

!n2⌦n

|P n(!n)� P (!n)|

= n

0

@
����

X

2n�1 + 1
� 1�X

2n�1

����+
X

!|=Ut3

����
X

2n�1 + 1
� X

2n�1

����+
X

!|=¬'n

����
1�X

2n�1 � 1
� 1�X

2n�1

����

1

A

=
n

2n�1 + 1

����2X � 1� 1�X

2n�1

����+ n2n�1

����
�X

2n�1(2n�1 + 1)

����+ n(2n�1 � 1)

����
1�X

2n�1(2n�1 � 1)

����

=
n

2n�1 + 1

����2X � 1� 1�X

2n�1

����+
nX

2n�1 + 1
+

n(1�X)

2n�1

�! 0 as n �!1 .

because each of the three terms tends to zero with n. � is regular as long
as X > 1/2, for otherwise P has greater n-entropy than P

n for su�ciently
large n. Hence, we can invoke Theorem 39 to conclude that P = P

1 = P
†

when X > 1/2.

In cases where the condition of Lemma 40 does not hold, the following
lemma can come in useful:

Lemma 44. Probability functions (Qn)n�1 converge in entropy to P if and
only if

X

!2⌦n:P (!)>0

(P (!)�Qn(!))

"
1 + logP (!)�

1X

j=1

1

j(j + 1)

✓
1� Qn(!)

P (!)

◆j
#

�
X

!2⌦n:P (!)=0

Qn(!) logQn(!)

�! 0 as n �!1 .
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Note that if Qn(!) is zero whenever P (!) is zero then the second term,
�
P

!2⌦n:P (!)=0 Qn(!) logQn(!), vanishes.
Proof: Let x = x! = Qn(!) and a = a! = P (!) > 0 and consider the Taylor
series expansion of x log x at a:

x log x = a log a+ (1 + log a)(x� a) +
(x� a)2

2!a
� (x� a)3

3!a2
+

2(x� a)4

4!a3
� · · ·

= a log a+ (1 + log a)(x� a) +
1X

j=2

(�1)j(j � 2)!(x� a)j

j!aj�1

= a log a+ (1 + log a)(x� a) +
1X

j=2

(a� x)j

j(j � 1)aj�1

= a log a+ (1 + log a)(x� a) + (a� x)
1X

j=1

(a� x)j

j(j + 1)aj

= a log a+ (x� a)

"
1 + log a�

1X

j=1

1

j(j + 1)

⇣
1� x

a

⌘j
#

.

So,

Hn(Qn)�Hn(P ) =
X

!2⌦n

�x! log x! + a! log a!

=
X

!2⌦n:a!>0

(a! � x!)

"
1 + log a! �

1X

j=1

1

j(j + 1)

✓
1� x!

a!

◆j
#

�
X

!2⌦n:a!=0

x! log x! .

The left-hand side converges to zero just when the right-hand side converges
to zero. ⌅

Example 45. Let us return to the case of � = {8x(Ux ! Ut3)X}. Recall
from Example 43 that:

P
n(!) =

⇢ X
2n�1+1 : ! |= 'n
1�X

2n�1�1 : ! 6|= 'n

and

P (!) =

⇢
X

2n�1 : ! |= Ut3
1�X
2n�1 : ! 6|= Ut3

44



We shall apply Lemma 44 to see that the P
n converge in entropy to P . Let

�n
df
= Hn(P n) �Hn(P ). If X = 1 then P

n and P are not zero on the same
n-states and the second term in Lemma 44 does not vanish. Suppose first,
then, that X < 1:

�n =
X

!2⌦n

(P (!)� P
n(!))

"
1 + logP (!)�

1X

j=1

1

j(j + 1)

✓
1� P

n(!)

P (!)

◆j
#

=
X

!|=Ut3

✓
X

2n�1
� X

2n�1 + 1

◆"
1 + log

X

2n�1
�

1X

j=1

1

j(j + 1)

✓
1� X

2n�1 + 1

2n�1

X

◆j
#

+
X

!|=
Vn

i=1 ¬Uti

✓
1�X

2n�1
� X

2n�1 + 1

◆"
1 + log

1�X

2n�1
�

1X

j=1

1

j(j + 1)

✓
1� X

2n�1 + 1

2n�1

1�X

◆j
#

+
X

! 6|='n

✓
1�X

2n�1
� 1�X

2n�1 � 1

◆"
1 + log

1�X

2n�1
�

1X

j=1

1

j(j + 1)

✓
1� 1�X

2n�1 � 1

2n�1

1�X

◆j
#

=2n�1

✓
X

2n�1(2n�1 + 1)

◆✓
1 + log

X

2n�1

◆
� 2n�1

1X

j=2

X

2n�1(2n�1 + 1)jj(j � 1)

+

 
1� 2X + 1�X

2n�1

2n�1 + 1

!✓
1 + log

1�X

2n�1

◆
�

1X

j=2

�
1�2c
1�X + 1

2n�1

�j
(1�X)

2n�1
�
1 + 1

2n�1

�j
j(j � 1)

+ (2n�1 � 1)

✓
X � 1

2n�1(2n�1 � 1)

◆✓
1 + log

1�X

2n�1

◆
� (2n�1 � 1)

1X

j=2

(�1)j(1�X)

2n�1(2n�1 � 1)jj(j � 1)

=
X(1 + logX � (n� 1) log 2)

2n�1 + 1
�

1X

j=2

X

(2n�1 + 1)jj(j � 1)

+
(1 + log(1�X)� (n� 1) log 2)

�
1� 2X + 1�X

2n�1

�

2n�1 + 1
�

1X

j=2

�
1�2X
1�X + 1

2n�1

�j
(1�X)

2n�1
�
1 + 1

2n�1

�j
j(j � 1)

+
(X � 1)(1 + log(1�X)� (n� 1) log 2)

2n�1
�

1X

j=2

(�1)j(1�X)

2n�1(2n�1 � 1)j�1j(j � 1)

�! 0 as n �!1,

because each of the component terms individually tend to zero with n. Hence
we do have convergence in entropy for X < 1. If X = 1, the third line in
the above sum disappears and we have to rewrite the second line, which

45



corresponds to the n-states
Vn

i=1 ¬Uti on which P
n is positive but P is zero:

�n =
1� (n� 1) log 2

2n�1 + 1
�

1X

j=2

1

(2n�1 + 1)jj(j � 1)

+
1

2n�1 + 1
log

1

2n�1 + 1
.

The first line of the sum tends to zero as before; the second line is approxi-
mately �(n�1) log 2

2n�1 which also tends to zero. Hence, we also have convergence
in entropy when X = 1. Recall that � is regular as long as X > 1/2.
Hence, we can again invoke Theorem 39 to conclude that P coincides with
the maximal entropy function P

† when X > 1/2.

Finally, here is an example involving a ⇧2 constraint, which shows that the
entropy-limit conjecture holds in cases other than those covered by previous
sections of the paper.

Example 46. � = {8x9yUxy}. Let ' be 8x9yUxy. Here rn = n
2, 'n =Vn

i=1

Wn
j=1 Utitj, |'n|n = (2n � 1)n and for all ! 2 ⌦n

P
n(!) =

⇢ 1
|'n|n : ! |= 'n

0 : ! 6|= 'n
.

Now P
n converges in entropy to the equivocator P=:

Hn(P=)�Hn(P
n) = �

X

!2⌦n

1

2n2 log
1

2n2 +
X

!|='n

1

(2n � 1)n
log

1

(2n � 1)n

= 2n
2 1

2n2 log 2
n2 � (2n � 1)n

1

(2n � 1)n
log(2n � 1)n

= �n log
2n � 1

2n

= � log

✓
1� 1

2n

◆n

.

So

lim
n!1

Hn(P=)�Hn(P
n) = lim

n!1
� log

✓
1� 1

2n

◆n

= � log lim
n!1

✓
1� 1

2n

◆n

= � log 1 = 0 .
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To verify the penultimate identity above, consider that:

lim
n!1

✓
1� 1

2n

◆2n

= lim
n!1

✓
1� 1

n

◆n

=
1

e
,

so

lim
n!1

✓
1� 1

2n

◆n

= lim
n!1

"✓
1� 1

2n

◆2n
#n/2n

=

"
lim
n!1

✓
1� 1

2n

◆2n
#limn!1 n/2n

=


1

e

�0
= 1.

This follows because:

log lim
n!1

"✓
1� 1

2n

◆2n
#n/2n

= lim
n!1

log

"✓
1� 1

2n

◆2n
#n/2n

= lim
n!1

n

2n
log

✓
1� 1

2n

◆2n

=
⇣
lim
n!1

n

2n

⌘ 
lim
n!1

log

✓
1� 1

2n

◆2n
!

=
⇣
lim
n!1

n

2n

⌘ 
log lim

n!1

✓
1� 1

2n

◆2n
!

= 0⇥ log
1

e

= 0,

so

lim
n!1

"✓
1� 1

2n

◆2n
#n/2n

= e
0 = 1.

Moreover, the equivocator is in E:

P=(8x9yUxy) = lim
n!1

P=(
n̂

i=1

9yUtiy)

� lim
n!1

(1�
nX

i=1

P=(¬9yUtiy)

= lim
n!1

(1�
nX

i=1

P=(8y¬Utiy)
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= lim
n!1

(1�
nX

i=1

0) = 1 .

Theorem 39 then implies that maxentE = {P=} = {P1}.

6. Conclusions

We have shown that the entropy-limit conjecture holds in the following
scenarios:

Categorical ⇧1. � = {8~x✓(~x)} and 8~x✓(~x) 2 ⇧1 (Theorem 12 and Theo-
rem 15).

Non-categorical partition. � = {'X1
1 , . . . ,'

Xk
k } where '1, . . . ,'k is a par-

tition on the large Ln and X1, . . . , Xk � 0 such that
Pk

i=1 Xi = 1, and
for all 1  i  k such that Xi > 0 it holds that maxentE'i = {P †

'i
} =

{P1
'i
} (Theorem 22).

Convergence in Entropy. The P
n converge in entropy to P 2 E and ei-

ther � is regular or P is the equivocator function (Theorem 39).

Taking into account previous work (see Section 2), the entropy-limit con-
jecture has now been verified in quite a broad range of di↵erent scenarios.
Future work might proceed in one of two directions. The first is to further
extend the range of scenarios in which the conjecture is tested—e.g., to cat-
egorical constraints of greater quantifier complexity or to a broader range
of non-categorical constraints. The second is to consider inference processes
other than the maximum entropy principle, which might be relevant to ques-
tions other than the search for a canonical inductive logic or a canonical
characterisation of normal models. There are several example of such in-
ference processes that have been proposed and studied in the literature, for
example Centre of Mass, Minimum Distance and the spectrum of inference
processes based on generalised Rényi entropies [48]. These inference pro-
cesses di↵er in the structural properties that they impose on the probability
function that they pick for inference. There are, however, several such prop-
erties that are in common between them that allow for a generalisation of
some of our results—see [8] for a detailed analysis of these structural prop-
erties for di↵erent inference processes. Of particular interest is a symmetry
property called the Renaming Principle.
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The Renaming Principle (RP) is a symmetry axiom that ensures that the
choice of the probability function is invariant under a uniform renaming of
the set of state descriptions of finite sublanguages.

An inference process ◆, defined on the finite languages Ln, satisfies Re-
naming Principle if for two sets of linear constraints � and �0 of the form

� ={
rnX

j=1

ajiP (!j) = bi | i = 1, . . .m}

�
0 ={

rnX

j=1

ajiP (!0
j) = bi | i = 1, . . .m} ,

where the !0
1, . . . ,!

0
rn are a permutation of the n-states !1, . . . ,!rn of Ln, it

holds that:
◆�(!j) = ◆�0(!0

j).

What is special about RP in our context is that almost all the results we
have provided (as well as those given in [28, 37, 38]) hold for any inference
process that satisfies RP. This is a rather large class of inference processes
that includes not only the Maximum Entropy but also the examples given
above (Center of Mass, Minimum Distance and those based on generalised
Rényi entropies). For a detailed discussion on this point see [40].

We give another symmetry result that follows from RP in the Appendix.
An immediate question, which we hope to study further in future work, is
whether or not the conjecture and the results thereof can be generalised if
we take an approach analogous to the maximal-entropy approach for defining
these other inference processes on first order languages.

Another promising avenue for further research is the introduction of func-
tions to the underlying language, as recently studied by Howarth and Paris
[49].

Appendix A. Appendices

Appendix A.1. Defining the entropy limit
As pointed out in the Section 2 there are two ways to define the entropy-

limit approach on first order languages. One, the Barnett-Paris definition, is
to define the entropy-limit function as the limit of local entropy maximisers
directly on all sentences of L. That is to take

P
1( ) = lim

r!1
P

r( r)
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if the limit exists for all for all  2 SL, and to take P
1 as undefined oth-

erwise. The second approach, the Rad-Paris definition, is to define P
1 on

quantifier free sentences as the limit of local entropy maximisers and then
take its unique extension (by Gaifman’s Theorem) to the whole of SL.

If the pointwise limit given by the first approach exists and is a probability
function, then it agrees with the one obtained from the second approach. To
see this let the probability function W be given by the pointwise limit and
let P

1 be the one obtained from the Rad-Paris definition. Then for all n
and n-states !n

W (!n) = lim
r!1

P
r((!n)r) = lim

r!1
P

r(!n) = P
1(!n) .

Thus, W agrees with P
1 on all n-states and so on all quantifier free sentences

and hence, by the uniqueness criteria in Gaifman’s Theorem they agree on
all SL.

The main issue with the Barnett-Paris approach is that the pointwise
limit on the whole of SL might exist but not be a probability function.
This is obviously circumvented by the second approach: defining P

1 on
quantifier free sentences as the above limit ensures that axioms P1 and P2
are satisfied, and Gaifman’s Theorem guarantees a unique extension of P1

to be a probability function over all SL. To see how the first approach can
fail in this respect, consider the following example. Let L be language with
equality and a single binary relation U , and consider the following set of
sentences: '1 = 8x¬U(x, x), '2 = 8x, y, z((U(x, y) ^ U(y, z)) ! U(x, z)),
'3 = 8x, y(¬(x = y)! (U(x, y)_U(y, x))) and '4 = 8x9yU(x, y). Note that
'1,'2 and '3 are the axioms for a linear strict order and adding '4 ensures
that there are no end points. As noted above, these sentences together have
no finite model. Let

' = '1 ^ '2 ^ '3.

First consider P1 defined by Rad-Paris definition. For each n and n-state
!n

P
1
' (!n) = lim

r!1
P

r
'(!n) = lim

r!1

X

!r✏!n

P
r
'(!r) .

As we have observed already, P r assigns the full probability mass equally
among those r-states that are consistent with ', i.e., those r-states that
characterise a strict linear order over t1, . . . , tr. There are r! many such
r-states. If !n is inconsistent with ', then all its r-state extensions are
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inconsistent with it and we have P
r
'(!n) = 0 for all r > n. If, on the other

hand, !n does characterise a strict linear order over t1, . . . , tn, then it can
be extended to a strict linear order over t1, . . . , tr in ⇧r�n

i=1 (n+ i) = r!
n! many

ways each receiving the same probability of 1/r! under P r
', thus

P
1
' (!n) = lim

r!1

X

!r✏!n

P
r
'(!r) =

(
(r!/n!)

r! = 1/n! if !n is consistent with '

0 otherwise .

Then P
1
' ('4) = 1. To see this first notice that by P3,

P
1
' ('4) = lim

m!1
P

1
' (

m̂

i=1

9yU(ti, y)) (A.1)

Second notice that by our result for the ⌃1 sentences,

P
1
' (9yU(ti, y)) = lim

n!1
P

1
' (

n_

k=1

U(ti, tk)) = lim
n!1

lim
r!1

P
r
'(

n_

k=1

U(ti, tk)).

Let n > i. Then since
Wn

k=1 U(ti, tk) 2 SLn there are n-states !1, . . . ,!s

such that ✏ Wn
k=1 U(ti, tk)$

Ws
i=1 !i. Thus

P
1
' (9yU(ti, y)) = lim

n!1
lim
r!1

P
r
'(

n_

k=1

U(ti, tk)) = lim
n!1

lim
r!1

sX

i=1

P
r
'(!i) .

The local entropy maximiser P r
' assigns probability zero to those n-states

that do not correspond to a strict linear ordering of t1, . . . , tn and assigns
probability of 1/n! to each of the rest. Of these, only one does not appear
among {!1, . . . ,!s}, namely the one which puts ti as the final element in the
ranking. Hence,

P
1
' (9yU(ti, y)) = lim

n!1
lim
r!1

sX

i=1

P
r
'(!i) = lim

n!1
lim
r!1

n!� 1

n!
= 1 .

Then P
1
' assigns probability 1 to each conjunct in (A.1) and hence will

give probability 1 to the whole conjunction, P1
' (
Vm

i=1 9yU(ti, y)) = 1, and
we have

P
1
' ('4) = lim

m!1
P

1
' (

m̂

i=1

9yU(ti, y)) = lim
m!1

1 = 1 .
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Now for all  2 SL let W ( ) = limr!1 P
r
'( 

r) as given by the Barnett-
Paris definition and assume the limit is well defined for all  and that W is
a probability function on SL. Then by the discussion above W agrees with
P

1
' on all SL but then

1 = P
1
' ('4) = W ('4) = lim

r!1
P

r
'(('4)r) = lim

r!1
0 = 0,

a contradiction. Notice that the penultimate equality follows from the fact
that '1 ^'2 ^'3 ^'4 has no finite models. Thus, if W is well defined on all
SL, it cannot be a probability function.

We have shown two things: (i) The Barnett-Paris approach might fail to
produce a probability function (violating P3); (ii) The Rad-Paris approach
does produce a probability function in all cases in which the Barnett-Paris
entropy-limit is well-defined on QFSL. Note finally that the Rad-Paris
entropy-limit function may fail to satisfy the constraints �. The maximal
entropy function, if unique, always satisfies the constraints since it is by
definition a member of E, the set of probability functions satisfying �.

Appendix A.2. Symmetries

We show here that symmetries are deeply engrained in the entropy-limit
approach.

Definition 47 (Symmetrical Treatment, adapted from [27], p. 160). For
'1, . . . ,'k 2 SL and Xi 2 [0, 1] for all 1  i  k, we say that for n � N two
n-states !n,!

0
n 2 ⌦n are treated symmetrically by the premisses 'X1

1 , . . . ,'
Xk
k ,

if and only if for all m � n there exists a bijection fm : {!m 2 ⌦m : !m ✏
!n} ! {!0

m 2 ⌦m : !0
m ✏ !

0
n} such that for all 1  i  k it holds that

!m 2 [('i)m]m  ! fm(!m) 2 [('i)m]m6

Proposition 48. If two n-states !n,!
0
n 2 ⌦ are treated symmetrically by the

premisses and if P1 exists, then P
1(!n) = P

1(!0
n)

Proof: Suppose not and let !n,!
0
n 2 ⌦n be treated symmetrically by the

premisses such that P1(!n) 6= P
1(!0

n). We now derive a contradiction.

6It is worth noting that the notion of symmetrical treatment by the evidence used
here is an strengthening of the one introduced by Williamson in [27]. The notion as
introduced by Williamson requires the existence of a bijection f from the extensions of
!n to extensions of !0

n but the one used here requires a (possibly di↵erent) bijection fm

between these extensions at every Lm for m > n.
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Since P
1 is a limit of probability functions P

n which, eventually, all
assign a definite probability to !n and !0

n, there has to exist somem � n such
that, say, Pm(!n) > P

m(!0
n) and so

P
!m✏!n

P
m(!m) >

P
!0
m✏!0

n
P

m(!0
m).

Let us now define a probability function Qm on SLm which agrees with
P

m on all m-states which are neither an extension of !n nor of !0
n. For those

extensions we let

Qm(!m) := P
m(fm(!m))

Qm(!
0
m) := P

m(f�1
m (!0

m)) .

Note that Qm disagrees with P
m on some m-states.

We now show that Qm satisfies the constraints reinterpreted on Lm by
showing that Qm(('i)m) = P

m(('i)m). Consider an arbitrary 1  i  k and
observe that

Qm(('i)m) =
X

⌫m2[('i)m]m
⌫m✏¬(!n_!0

n)

P
m(⌫m))

+
X

⌫m2[('i)m]m
⌫m✏!n

P
m(fm(⌫m)) +

X

⌫m2[('i)m]m
⌫m✏!0

n

P
m(f�1

m (⌫m))

= P
m(('i)m) .

So, Qm and P
m both satisfy the linear constraints on Lm. Since the con-

straints are all linear, the set of probability functions satisfying the con-
straints is convex and hence 0.5(Qm + P

m) satisfies the constraints on Lm

and is di↵erent from Qm and P
m. Applying Proposition 5 we note that

0.5(Qm + P
m) has strictly greater m-entropy than P

m which is a contradic-
tion to P

m being the unique m-entropy maximiser satisfying the constraints
on Lm. ⌅

Hence, all states which are treated symmetrically by the premisses have
the same probability under P1, if P1 exists.
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