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Abstract There are various ways to reach a group decision on a factual yes–no ques-
tion. Oneway is to vote and decidewhat themajority votes for. This procedure receives
some epistemological support from the Condorcet Jury Theorem. Alternatively, the
group members may prefer to deliberate and will eventually reach a decision that
everybody endorses—a consensus. While the latter procedure has the advantage that
it makes everybody happy (as everybody endorses the consensus), it has the disad-
vantage that it is difficult to implement, especially for larger groups. Besides, the
resulting consensus may be far away from the truth. And so we ask: Is deliberation
truth-conducive in the sense that majority voting is? To address this question, we con-
struct a highly idealized model of a particular deliberation process, inspired by the
movie Twelve Angry Men, and show that the answer is ‘yes’. Deliberation procedures
can be truth-conducive just as the voting procedure is. We then explore, again on the
basis of our model and using agent-based simulations, under which conditions it is
better epistemically to deliberate than to vote. Our analysis shows that there are con-
texts in which deliberation is epistemically preferable and we will provide reasons for
why this is so.
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1 Introduction

Consider a group that has to decide on a a factual yes–no question. A jury in court, for
example, has to decide whether the defendant is guilty or not. An environmental com-
mittee has to decide on a certain policy recommendation for the government. Situations
like these raise the following questions: (1) Which decision-making procedure should
be applied here? (2) What justifies the chosen decision-making procedure in general?
And: (3) What justifies the application of the chosen decision-making procedure in
the specific situation?

There are three types of criteria to evaluate a proposed decision-making procedure:
First, there are practical reasons: The procedure should be easy to implement; it should
be implementable for groups of a given size; and following the procedure should not
take too much time to arrive at a decision. Second, there are procedural reasons: The
procedure should implement certain principles of rational decision-making; it should
be fair; and it should end up in a consensus that all groupmembers endorse. Third, there
are epistemic reasons: The group decision should be reliable and it should coincide
with the fact of the matter if it is the task of the group to decide on a fact of the
matter (e.g. the group decision should be ‘guilty if and only if the defendant is guilty).
Unfortunately, there is no decision-making procedure that scores highest on each of
these criteria. Hence, in any given decision-making situation some compromise has
to be made.

Let us now introduce two decision making procedures and their advantages and
disadvantages. First, there ismajority voting. Here each group member casts a vote,
and the group decision is the one that the majority (or a supermajority) of group mem-
bers supports. This procedure ranks high on practical grounds: It is easy to implement,
it works for groups of large size, and it does not take long to arrive at a group decision.
There are also strong epistemic reasons in favor of majority voting: Most relevant here
is the Condorcet Jury Theorem which considers a group of n independent voters each
of whom has a probability greater than 1/2 to make the right decision. It then follows
(from the Weak Law of Large Numbers) that the probability that the majority makes
the right decision converges to one if n goes to infinity.1 Hence, majority voting is
a reliable procedure if one is interested in tracking the truth. Concerning procedural
reasons, majority voting does not fare too well: The procedure can leave almost half
of the group unhappy, which may be considered as unfair. it also does not result in a
consensus that everyone endorses.

Second, there are deliberation procedures. These procedures are more dynamical
than the voting procedure. Here the group members argue for their verdict, they try
to convince each other, they may learn from each other and change their mind as a

1 There are various improvements of the result, such as: (1) The conclusion also holds if one makes the
weaker assumption that the average reliability of the voters is greater than 1/2. (2) List and Goodin (2001)
generalized the theorem to cases with more than two choice options. (3) Dietrich and Spiekermann (2010)
proved a modified version of the Condorcet Jury Theorem where they differentiate between individual
dependencies and dependencies on a common cause.
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result of this. If all goes well, a deliberation procedure results in a consensus, i.e. in
a decision that everyone supports and endorses. It lies in the nature of deliberation
procedure that they do not follow a strict rule. For example, there is usually no given
order in which the various groupmembers speak, and there are no rules that govern the
belief change dynamics. There is not just one deliberation procedure, there are many
and every deliberation is in a way special. This makes it harder to evaluate deliberation
procedures according to the criteria listed above. But let us try. Deliberation procedures
are certainly not optimal on practical grounds. It is impossible to implement them for
larger groups (think about the citizens of a country) and it may take very long until
the group reaches a consensus (if it reaches a consensus at all). The main advantage of
deliberation procedures is procedural: It is good that all group members have a chance
to actively participate in the decision making process, that the group productively
interacts, and that everyone endorse the resulting consensus. Finally, there is a large
literature which defends the view that deliberation is also epistemically advantageous.
Here it is stressed that the collective evaluation of arguments increases the chance of
identifying errors and that the chances of manipulation are lower in this case as the
group controls the flow of information.2

There is, however, no formal analysis which (i) shows that deliberation procedures
are truth-conducive (in a similar way as majority voting is truth conducive according
to the Condorcet Jury Theorem) and that (ii) explores which procedure does better
(under certain conditions) epistemically. We will address these question in this article
by constructing and analyzing a simple and highly idealized model of deliberation. It
remains an open question whether the results we obtain also hold for more detailed
and realistic models. The proposed model will be a good starting point for further
studies.

The remainder of this article is organized as follows. Section 2 presents and moti-
vates our model of deliberation. Section 3 explores the consequences of the model
and shows that deliberation is, under certain conditions, truth conducive. Section 4
compares the probability of making the right decision using majority voting with the
probability of making the right decision using deliberation. Finally, Sect. 5 concludes
and suggests a number of questions which should be addressed in future research.

2 A Bayesian model of deliberation

In this section, we first formalize the voting procedure and its probabilistic analysis
(Sect. 2.1). Then we introduce our new model of deliberation (Sect. 2.2). As we want
to compare the two procedures, we make sure that the parameters that characterize
the epistemic performance of the agents in the voting procedure also show up in the
model of deliberation. Our model of deliberation is Bayesian, i.e. we assume that
the group members have partial beliefs about the truth or falsity of some hypothesis
(e.g. ‘the defendant is guilty’) on the basis of which they cast a (first) vote. In the
course of deliberation, they then update their beliefs, taking the (previous) votes of the

2 See Bohman and Rehg (1997), Cohen (1989), Dryzek (1990), Elster (1998), Fearon (1998), Marti (2006),
and Nino (1996).
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other group members into account and using Bayes Theorem. Our models specifies
the details of this procedure.

2.1 The voting procedure

We consider a group of n members, denoted by a1, . . . , an , who deliberate on the
truth or falsity of some hypothesis. Throughout this article, we assume that n is an odd
number. To proceed we introduce a binary propositional variableH with the values, H:
the hypothesis is true, and ¬H: the hypothesis is false. For reasons of symmetry that
will become apparent immediately, we assume that the hypothesis is true. The group
members express their individual verdicts in terms of a yes/no vote. The votes are
represented by binary propositional variables Vi (for i = 1, . . . , n) with the values:
Vi : Group member ai votes that the hypothesis is true, and ¬Vi : Group member ai
votes that the hypothesis is false.

Next, we make two assumptions: First, we assume that the votes are independent,
given the truth or falsity of the hypothesis, i.e.

Vi ⊥⊥ V1, . . . , Vi−1, Vi+1, . . . , Vn|H ∀i = 1, . . . , n. (1)

Second, we assume that each group member ai is partially reliable with a first order
reliability ri defined as follows:

ri := P(Vi|H) = P(¬Vi|¬H). (2)

Here we assume that the rate of false positives equals the rate of false negatives. This
assumption can, of course, be easily relaxed.

We can now calculate the probability that the majority makes the right judgment:

PV =
n∑

k= n+1
2

∑

{a j1 ,...,a jk
}

⊂{a1,...,an}

∏

t∈{ j1,..., jk }

rt
∏

t /∈{ j1,..., jk }

(1 − rt ) . (3)

If all group members are equally likely to make the right individual judgment, i.e. if
ri =: r for all i = 1, . . . , n, then the expression in Eq. (3) simplifies to

PV =
n∑

k=(n+1)/2

(
n

k

)
rk(1 − r)n−k . (4)

With the help of Eqs. (3) and (4), we can explore the truth-tracking properties of
majority voting. It is well known that PV in Eq. (4) strictly monotonically increases
with n and converges to 1 for r > 0.5. This is the Condorcet Jury Theorem; PV in Eq.
(3) strictly monotonically increase with n and converge to 1 if the average of the ri ’s
is greater than 0.5.
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2.2 The deliberation procedure

Our model is inspired by the movie Twelve Angry Men. Here the members of a jury
in court meets in a closed room after attending the procedure in the court room. They
are allowed to leave the room only after coming up with a consensual verdict. During
the procedure, no new evidence comes up (everything was already presented in the
court room). However, some people forgot or did not notice certain pieces of evidence.
There is also disagreement about the strength of certain pieces of evidence. Initially,
the jury members do not know each other at all (they were randomly assembled).
They therefore do not know how much weight they can assign to the verdicts of their
colleagues. However, during the course of deliberation they get to know each other
much better. They see how the others argue, how they criticize the arguments of others,
and what they remember of the details of the case. This helps them to better assess
how reliable the other group members are and which weight to assign to their verdicts.
The deliberation procedure proceeds in several rounds of voting (with discussions in
between). It starts with an initial voting in which 11 jurors are for ‘guilty’ and 1 for
‘innocent’. Afterwards a discussion takes place, followed by the next round of voting.
The result is now 9:3 and so on until the result of another round of voting is 1:11. The
group then convinces the last member in favor of guilty to change his mind, and the
movie ends.

The movie inspires our model of deliberation as it presents a clearly structured
deliberation process for a situationwhere all groupmembers have the same knowledge
(as they all attended the procedure in court and no new information comes in). The
big challenge for modeling this procedure is to specify what happens in between the
rounds of voting. Here, people present arguments and criticize each others arguments.
This is impossible to do in a model as general and as simple as the one we want
to present. To proceed that we are only interested in the result of the deliberation
process. We assume that it is the interest of each group member that the probability
that the final verdict of the group corresponds to the truth is as large as possible. Each
group member wants to to maximize this probability, and to do so it is important that
each group member estimates the reliability of the other group members well. Here
we assume, as in the previous section, that each group member ai has a first order
reliability ri to make the right judgement. However, the other group members do not
know this reliability. They can only estimate it. They will do so on the basis of what
the other groupmembers say in the course of deliberation. This suggests that the group
members get better and better in assessing the reliability of the other group members.
This implies that each group member also becomes better and better to make the right
judgement in the various voting rounds provided that they are fairly competent to
judge the reliability of the other group members well.

To model this, we assume that each group member has a second order reliability ci
to judge the first order reliability of the other group members. If ci = 1, then group
member ai assigns the correct first order reliability r j to group member a j �= ai . (We
assume that all group members have perfect access to their own reliability which is an
assumption that may be wrong empirically but it can be relaxed easily). If ci = 0, then
groupmember ai assigns a random reliability from the interval (0, 1) to group member
ai . If ci ∈ (0, 1), thenwe follow the procedure specified belowwhich basically assigns
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a reliability drawn from a more or less broad distribution around ri (depending on the
value of the second order reliability). This reliability weights the verdict of group
member a j in each voting round.

The group members are therefore characterized by two parameters. The first order
reliability ri to make the right decision, and the second order reliability ci to assess the
first order reliability of the other groupmembers.We assume that these two reliabilities
are independent. There may be people who have a high first order reliability and a
high second order reliability, but there are also people who are good at getting the
facts right, but fail to assess the reliability of others. And vice versa. So, without any
further knowledge about the particular group we are interested in, we are on the safe
side if we assume that the two reliabilities are independent.

We assume that the first order reliability is kept fixed during the course of delibera-
tion. It characterizes, in general terms, how good a certain group member is in making
the right judgement. In the course of the deliberation, the quality of the judgement of
the group member only goes up because she learns to better weigh the judgements of
the other groupmembers. That is, we assume that the second order reliabilities increase
in the course of the deliberation because they learn to better judge the reliabilities of
the other group members as the deliberation process reveals new information about
their reliability (but not about the fact under consideration).

The deliberation procedure we propose then works as follows. The group has to
decide on the truth or falsity of a hypothesis H. Each group member assigns a certain
probability to H. Then each group member casts a vote on the basis of this probability.
Then each group member updates her probability on the basis of the votes of the other
group members, weighted according to the estimated reliabilities as explained above.
The procedure is iterated, and in each round the second order reliabilities are increased
which leads to a more accurate estimation of the reliability of the votes of the other
group members. After a number of rounds, this process converges.

One disclaimer beforewe continue:we call the processwemodel here a deliberation
as it (i) involves the change of belief of the group members in every round and as it
(ii) leads to a consensus (as we will see). The model involves several idealizations
and black-boxes what happens in between the various rounds of voting. We insist,
however, that what happens effectively models a deliberation process.

Let us formalize things now a bit more. First, every group member casts an initial
vote, V (0)

i or¬V (0)
i , for or against the hypothesis in question.We introduce parameters

p(k)
i and set p(k)

i = 1 if V (k)
i and p(k)

i = −1 otherwise. These initial votes, for each

person, come from an initial probability assignment P(0)
i (H). We assume that group

member ai will initially vote Vi if P
(0)
i (H) ≥ 0.5 and ¬Vi otherwise.3 This relates

to the first order reliabilities in an obvious way, that is, the group member with first
order reliability ri will assign an initial probability greater or equal to 0.5 (and thus
vote correctly) with probability ri . Next, every group member ai estimates the first

3 As we disregard strategic considerations in our model, a group member’s vote is only determined by the
probability the group member assigns to the corresponding proposition.
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Fig. 1 The β-distribution with parameters α = 2 and β = 1.625 corresponding to r j = 0.75 and ci = 0.6.
a β-distribution on (0 , 1). b β-distribution in (a) transferred to the open interval (0.35, 1)

order reliability r j of her fellow group members a j , viz.

r (0)
i j := P(0)

i

(
Vj|H

) = P(0)
i

(¬Vj|¬H
)
. (5)

The higher ai ’s second order reliability, the better is ai ’s assessment of the first order
reliability of a j , i.e. the closer is r

(0)
i j to r j . If the initial second order reliability c

(0)
i = 1,

then r (0)
i j = r j . If the initial second order reliability c

(0)
i = 0, ai randomly assigns a first

order reliability from the interval (0, 1) to a j (for j = 1, . . . , n). If the initial second

order reliability is in between the extremes, then agent ai assigns a reliability r (0)
i j to

agent a j by drawing from a β-distribution whose width is small if ai ’s second order
reliability is large and whose width is large if ai ’s second order reliability is small.
To model this, we assume that the estimated first order reliability r (0)

i j is calculated
from a β-distribution translated to an interval around r j . The length of this interval is

defined by the c(0)
i . Higher values of c(0)

i will result in smaller intervals surrounding
r j and thus a more accurate estimation. To do so we consider a β-distribution with
parameters

α = 2 , β =
min

(
1, r j − c(0)

i + 1
)

− max
(
0, r j + c(0)

i − 1
)

r j − max
(
0, r j + c(0)

i − 1
)

in [0,1] which is then linearly transferred to the interval
[
max(0, r j + c(0)

i − 1),

min(1, r j − c(0)
i + 1)

]
. This procedure is illustrated in Fig. 1. The values α and β are

set such that the β-distribution has the mode r j after it is transferred to the required
interval.

It turns out that our results do not vary much with the value of α. What counts is
that the β-distribution has the mode r j after it is transferred to the interval defined by

r j and c(0)
i .

We furthermore assume that the group members become more competent in esti-
mating the first order reliabilities of the other group members. That is, we assume that
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the second order reliability c(k)
i in round k increases linearly as a function of the num-

ber of rounds until a maximum value Ci ≤ 1 is reached after M rounds. Afterwards,
c(k)
i remains constant. Hence,

c(k)
i =

{(
Ci − c(0)

i

)
· k/M + c(0)

i : 0 ≤ k ≤ M

Ci : k > M
. (6)

Note that this is a very simplified (and non-Bayesian) updating process for the sec-
ond order reliabilities. It effectively models the epistemic effect of the exchange of
arguments. We come back to this below.

Using these reliability estimates, each group member ai calculates the likelihood
ratios4

x (0)
i j := P(0)

i

(
Vj|¬H

)

P(0)
i

(
Vj|H

) = 1 − r (0)
i j

r (0)
i j

, (7)

for j �= i = 1, . . . , n. The revision process is carried out on the basis of the votes cast
by the other group members and their estimated likelihood ratios:

P(1)
i (H) = P(0)

i

(
H|Vote(0)

1 , . . . ,Vote(0)
i−1,Vote

(0)
i+1, . . . ,Vote

(0)
n

)

= P(0)
i (H)

P(0)
i (H) +

(
1 − P(0)

i (H)
) ∏n

k �=i=1

(
x (0)
ik

)pk . (8)

HereVote(0)
i ∈ {Vi ,¬Vi }. To derive Eq. (8), we have assumed independence condition

Vi ⊥⊥ V1, . . . , Vi−1, Vi+1, . . . , Vn|H ∀i = 1, . . . , n. (9)

This condition, which is also assumed in the derivation of the Condorcet Jury Theorem
(see Eq. (1)) makes sense for a procedure of rational deliberation: The only cause for a
groupmembers’ verdict is the truth or falsity of the hypothesis in question. The verdicts
of the other group members do not have any direct influence on a group members
revised verdict. However, the verdicts of the other group members are evidence for the
truth or falsity of the hypothesis, and a rational group member should take them into
account by updating on them (weighted, effectively, with the estimated reliability of
the other group members).

Note that the independence condition (9) is assumed to hold in each round of the
deliberation process. This requirement is a plausible condition for rational agents,
though it may be empirically violated. What our model does, then, is to provide a
normative benchmark for the assessment of actual deliberations.

4 We follow the convention used in Bovens and Hartmann (2003). Note that r (0)
i j ≥ 1/2 implies that

0 ≤ x(0)
i j ≤ 1 and r (0)

i j ≤ 1/2 implies that x(0)
i j ≥ 1.
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The group members will then vote again and again based on their updated proba-
bilities. As before, a group member votes for the hypothesis if her updated probability
is greater than or equal to 0.5, otherwise she votes against it. For example, the sec-
ond round of deliberation starts with the prior probabilities P(1)

i (H), and everybody
repeats updating her probability assignments as before by considering the new votes.
As a result, we find that the individual votes converge to a group consensus. Our sim-
ulations show that the convergence process is fairly fast. We often need less rounds to
arrive at a consensus than the twelve angry men. Therefore the specific value of Ci in
Eq. (6) does not matter. We set is to 0.6 in our simulations.

3 Truth tracking

In this section, we explore underwhich conditions the proposed deliberation procedure
is truth-tracking. Todo so,wedistinguish between homogeneous groups (Sect. 3.1) and
inhomogeneous groups (Secy. 3.2). In a homogeneous group, all group members have
the same first order reliability. In this case, we obtain several analytical results. In an
inhomogeneous group, different group members have different reliabilities and results
can only be obtained in agent-based simulations. In these simulations we randomly
assign reliabilities to the various group members from a uniform distribution and
average the results over many runs.

3.1 Homogeneous groups

Let G be a homogeneous group of n members, i.e. a group whose members have
the same first order reliability. This group deliberates on the truth or falsity of
the hypothesis H. We assume that each group member has access (through some
shared history for example) to each others’ first order reliabilities (corresponding to
ci = 1, i = 1, . . . , n). We furthermore assume that the group members revise their
probability assignment for the truth of the hypothesis using the above procedure.With-
out loss of generality we assume the hypothesis to be true. Then the following theorem
holds.

Theorem 1 For a homogeneous group G with reliable group members (i.e. for r >

0.5), the following three claims hold:

(i) Theprobability that the group reaches a consensus in finitelymany steps increases
with the size of the group and approaches 1 as the size of the group increases.

(ii) If the majority of the group members vote correctly in the first round, the sub-
jective beliefs will stabilize on the truth in finitely many steps, i.e. after finitely
many steps, each group member assigns subjective probability 1 to the truth
of the hypothesis after which the deliberation process will no more change the
probability assignments.

(iii) If the majority of the group members vote incorrectly in the first round, the
subjective beliefs will stabilize on the wrong belief in finitely many steps, i.e.
after finitely many steps, each group member assigns subjective probability 0
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to the truth of the hypothesis after which the deliberation process will no more
change the probability assignments.

Proof See Appendix 1. 	

For a homogeneous group G with partially reliable members, i.e. a group whose

members have a first order reliability r < 0.5, the situation is more complicated
and the emergence of a consensus depends strongly on the size of the group and the
initial probabilities. To see this notice that for r < 0.5 we will have x > 1 and thus

x
∑n

j=1 p(0)
j < 1 if and only if

∑n
j=1 p

(0)
j < 0, i.e. if the majority of the group members

vote incorrectly in the first round. Using the same argument as in the Condorcet Jury
Theorem the chance that the majority of the groupmembers (with first order reliability
less than 0.5) will vote incorrectly increases with the size of the group and approaches
1. Thus using the argument in the proof of Theorem 1 if the majority of the group
members start with initial subjective probabilities of less than 0.5 for H and hence
vote incorrectly in the first round, the probability assignments will increase in the next
round and this continues until at some point, say at round t, the majority assigns a
probability greater than 0.5 for H and thus votes correctly. After this stage the process
will reverse and the probabilities will start to decrease since

∑n
j=1 p

(t)
j > 0 and thus

x
∑n

j=1 p(t)
j > 1. If the size of the group, the likelihoods and the initial probabilities are

such that at some round s-1 the majority assign probabilities less than 0.5 (and thus
vote incorrectly) but the probabilities increase in such a way that in round s all the
probability assignments are above 0.5 then the group reaches a consensus at this round
s. On the other hand if the probability assignments increase until at some round s-1 the
majority but not all group members assign a probability above 0.5 (so the probabilities
decrease in the next round) and in round s all probabilities decrease to less than 0.5 then
the group will again reach a consensus but this time on the wrong answer. Otherwise
the group can oscillate (not necessarily in consecutive rounds) between the case where
the majority vote correctly and the case where the majority vote incorrectly. In any
case, the subjective beliefs of the groupmembers will not stabilize for partially reliable
groups.

Theorem 2 For a homogeneous group G with partially reliable group members (i.e.
for r < 0.5), the subjective beliefs of the group members will not stabilize even if the
group reaches a consensus.

Proof See Appendix 2. 	

Notice that in the proof of Theorem 1, the actual value of the likelihood ratio x is

not relevant. All that matters is whether x > 1 or x < 1. This allows for an immediate
generalization of these results.

The situation in Theorems 1 and 2 is highly idealized as we assume that the second
order reliability is 1, which means that the group members have access to each others’
objective first order reliabilities. In such a context it will be hard to justify the iteration
of the deliberation process after the second round. Assuming that group members are
able to weight each others’ opinion by the actual objective first order reliabilities there
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Fig. 2 PD for a homogeneous
group as a function of the group
size. Each group member has a
reliability of 0.4
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is no room for improvement of such opinions by iteration of the deliberation process
more than once. Corollary 1 allows a generalization that makes the iteration of the
deliberation process meaningful and extends our results to nontrivial cases where the
second order reliabilities are less than 1.

Corollary 1 For a homogeneous group G with first order reliability r, let the second
order reliabilities ci for i = 1, . . . , n be less than 1 (so the group members won’t have
access to each others’ actual first order reliabilities) but high enough so that the group
members can correctly assess whether or not the other group members are reliable,
that is let ci be high enough so that ri j > 0.5 if and only if r j > 0.5 for j = 1, . . . , n.
Then the results of Theorems 1 and 2 still hold.

According to Corollary 1, to have the results in Theorem 1 one does not need the
agents to know each other’s first order reliability precisely. Rather, one should require
the second order reliabilities to be high enough that the agents can correctly distinguish
between the reliable and partially reliable members of the group. It is also important
to note that this does not need to be the case as the deliberation starts. As the group
members become better and better in assessing each other’s first order reliabilities in
the course of deliberation (because they listen to each others’ arguments and reasons),
the second order reliabilities increase. So even for groups with low second order
reliabilities, if the deliberation process continues long enough, the iteration of the
deliberation process will improve these second order reliabilities until the assumption
of Corollary 1 is satisfied and so the emergence of convergence will be guaranteed.

We conclude this subsection with some simulation results. In Fig. 2 we consider a
partially reliable homogeneous group. As we argued above the probability of reaching
a consensus on the correct answer can oscillate as the group moves from the case
where the majority vote correctly to the case where the majority vote incorrectly.

3.2 Inhomogeneous groups

Let us now consider inhomogeneous groups with second order reliabilities less than 1.
Our simulations suggest that the deliberation process also tracks the truth in this case
(under plausible conditions). We will also present an illustration of Theorem 2 and
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Fig. 3 PD for inhomogeneous
groups as a function of the group
size. a 1/4 of the group members
has a reliability of 0.25, the rest
has a reliability of 0.7 (solid
line). b 1/4 of the group
members has a reliability of 0.7,
the rest has a reliability of 0.25
(dotted line)

P
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0,475
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0,825

1

Group Size
4 12 20 28 36 44 52 60 68 72

the argument preceeding it. To control the noise in the simulation results, we average
over 105 to 106 runs.

Figure 3, shows the probability of tracking the truth in the deliberation as a function
of group size. We examine inhomogeneous groups with partially reliable members
comprising the minority (Fig. 3a) and the majority (Fig. 3b) of the group members.
As the simulation results suggest, in both cases the deliberation tracks the truth for
large group sizes. Notice that the group in Fig. 3b has an average first order reliability
of less than 0.5, but given the low second order reliabilities the group members do not
have access to each others correct likelihood and only estimate these values in a rather
large interval.

We conclude that the deliberation procedure (as modeled above) is truth-conducive
under similar conditions that hold for the Condorcet Jury Theorem. Note, however,
that we do not have an analytical proof for this. The statement is only suggested by
the results of the simulations presented here (and many others which we do not show
for reasons of space).

4 Which procedure is better?

Let us now compare the two procedures. We ask: which procedure is better if our
sole goal is to arrive at group decision that is as reliable as possible? We will see that
the answer depends on the specific context. There are contexts where the deliberation
procedure outperforms majority voting epistemically, and there are contexts where
it is the other way around. Which decision procedure is chosen will, of course, also
take other considerations into account (as argued in Sect. 1). Section 4.1 focuses on
homogeneous groups, and Sect. 4.2 focuses on inhomogeneous groups.

4.1 Homogeneous groups

Let X = {(±V1, . . . ,±Vn) | + Vi = Vi ,−Vi = ¬Vi } be the set of all possible voting
profiles for a group of size n. A decision rule on X is a function f : X → {V,¬V },
that for each voting profile returns a (collective) vote for the hypothesis. As argued in
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details in Dietrich (2006) the epistemically optimal decision rule is the weighted aver-
age where the weights are given by the likelihood ratios. For homogeneous groups
this weighted average is reduced to simple majority voting as all group members
have the same likelihood ratio and thus the same weight in the averaging process.
For groups with very high second order reliabilities the estimated likelihood ratios
correspond to the correct values and as one can notice from Theorem 1, for reliable
homogeneous groups, the deliberation process will result in a group consensus on
the correct (respectively, wrong) answer if and only if the majority of group mem-
bers vote correct (respectively, wrong) initially. By the same theorem the subjective
beliefs will stabilize on the true belief (respectively, wrong belief) if and only if the
majority of group members vote correctly (respectively, wrongly) in the beginning.
Thus:

Proposition 1 For a reliable homogeneous group G with high second order reliabil-
ities, the deliberation process has no epistemic advantage to majority voting and vice
versa.

This result is hardly surprising as the weighted average, of which the majority rule
for voting is a special case (i.e. all voters get the same weight), has been shown to
be epistemically optimal. See Nitzan and Paroush (1982) and Gradstein and Nitzan
(1986). That is, if one knows that the group is homogeneous, or if onewants to consider
the group to be homogeneous (for political or whatever reasons), then majority voting
does best.

The advantage of the deliberation process for these groups, however, is that the
group will arrive at a consensus and all group members agree on the collective
decision. This is in contrast to majority voting where a minority has to accept the
resulting compromise without actually endorsing it. Hence, the advantage of deliber-
ation to majority voting for these groups is merely procedural. For partially reliable
homogeneous groups, however, the deliberation process comes with some epistemic
advantage. For these groups the majority voting is doomed to end with the wrong
choice for large groups by the same argument as in the Condorcet Jury Theorem.
The deliberation process, however, may converge to the correct answer (depend-
ing on the group size and the initial probabilities). One can of course argue that
partially reliable homogeneous group are not the right context for comparison of
the two procedures since they fall outside the domain in which the majority voting
can be considered a justified decision making procedure. Nevertheless we point to
how the procedures compare for these groups for the sake of completeness. For reli-
able homogeneous groups with lower second order reliabilities, however, one would
expect the majority voting to preform better than the deliberation procedure. This
is so because the deliberation in a reliable homogeneous group G with high second
order reliabilities is epistemically more efficient than the deliberation in a group G ′
with the same first order reliabilities as in G but with low second order reliabili-
ties. On the other hand, by Proposition 1, voting (in G or G ′, notice that it does not
matter since group members in G and G ′ have the same first order reliabilities) is
epistemically as efficient as deliberation inG and thus more efficient than deliberation
in G ′.
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4.2 Inhomogeneous groups

Let us now consider inhomogeneous groups. We have already argued that the deliber-
ation process presents no epistemic advantage over majority voting for homogeneous
groups with high second order reliabilities and that for reliable homogeneous groups
with low second order reliabilities majority voting does better than our deliberation
procedure.5 On the other hand for partially reliable homogeneous groups the majority
voting is doomed to give the wrong result while the deliberation process can end with
the consensus on the correct answer as pointed out in the discussion after the Propo-
sition 1. Let us now compare both procedures for various inhomogeneous groups.

In what follows, let PD and PV denote the probability of converging to the correct
result through deliberation and voting respectively and let

� = PD − PV .

Unless otherwise stated, we plot � as a function of the group size n. Unless expressed
differently, in all simulations the second order reliability of the group members start
from 0.6 and is increased linearly, notice that the second order reliability of 0.6 defines
an interval of maximum length 0.8 centered around each r j (cut at zero or one when
necessary) thus allowing for possibly very inaccurate estimations.

In Fig. 4a, b, the majority of the group members (2/3 and 4/5, respectively) have
a high first order reliability and the rest have a low first order reliability. In Figs. 4c,
d the situation is reversed while in all cases the average first order reliability is above
0.5. The simulation results suggest that for inhomogeneous groups the deliberation
procedure shows epistemic advantage over majority voting. The difference, however,
is more visible for small and medium size groups and becomes smaller as the size
of the group increases. This is, of course, not surprising as both PV (pace Condorcet
Jury Theorem) and PD (as suggested by our simulations) coverage to 1. Figure 5
shows the comparison between the deliberation procedure and majority voting for
two inhomogeneous groups with average reliabilities of less than 0.5.

The comparisonof the deliberation procedure and the votingprocedure also depends
the second order reliabilities. The probability of the correct choice in deliberation is
positively correlated with the second order reliabilities while voting depends only
on the first order reliabilities. Thus the difference between deliberation and voting
increases for the higher values of second order reliabilities and decreases for lower
values.

Figure 6 shows the difference between truth tracking in deliberation and voting
as a function of the (initial) second order reliability for three different groups sizes
(n = 15, 27 and 33) with the same distribution of (first order) reliabilities: 2/3 of the
group has reliabilities of 0.6 and the rest has reliabilities of 0.75. As we can see, the

5 Notice that the deliberation procedure gives better results for reliable homogenous groups with high
second order reliabilities compared to the same group (same first order reliabilities) but with lower second
order reliabilities. This is because the higher second order reliabilities imply more accurate weighting of
the votes (with respect to their actual reliabilities). Since for reliable homogenous groups voting does at
least as good as deliberation with the assumption of high second order reliabilities, it thus performs better
than deliberation with the assumption of low second order reliabilities.
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Fig. 4 � as a function of the group size. a 2/3 of the group has a reliability of 0.7, the rest has a reliability
of 0.25. b 3/4 of the group has a reliability of 0.6, the rest has a reliability of 0.35. c 1/3 of the group has a
reliability of 0.8, the rest has a reliability of 0.4. d 1/5 of the group has a reliability of 0.95, the rest has a
reliability of 0.45
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Fig. 5 � as a function of the group size. a 1/3 of the group has a reliability of 0.75, the rest has a reliability
of 0.35. b 1/4 of the group has a reliability of 0.8, the rest has a reliability of 0.25.

result of the comparison depends highly on the (initial) second order reliabilities. Initial
second order reliabilities greater than 0.6, 0.5 and 0.4 make the deliberation procedure
epistemically better for groups of size n = 15, 27 and 33, respectively, while for lower
(initial) second order reliabilities the voting procedure performs better.

Finally, Fig. 7 shows a group with one highly reliable member where the other
group members have near average reliabilities.
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Fig. 6 � as a function of the
(initial) second order reliability
for different group sizes n:
n = 15 (dotted line), n = 27
(solid line), and n = 33 (dashed
line)
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Fig. 7 � for a group with only one highly reliable member. One member has a reliability of 0.9, the rest
has a reliability of 0.55. The (initial) second order reliability is 0.85

Note that the deliberation procedure proposed here does not assume that the first
order reliabilities of all group members are known to, say, the chairman of the group.
If there were such a person who would have this information, then the weighted
average would give the epistemically optimal result, see Nitzan and Paroush (1982)
and Gradstein and Nitzan (1986). However, in a real deliberation situation it is often
not wanted (for moral or political reasons) that this information is made known, and
so a deliberation procedure such as the one proposed here, which relies on the best
estimates of the reliabilities of the group members, is the preferred procedure.

5 Conclusions

Voting and deliberation are two standard procedures to reach a group decision. The
goal of this paper was (i) to present a new Bayesian model for non-strategic rational
deliberation, (ii) to study the emergence of consensus and its truth tracking properties,
and (iii) to compare this deliberation process with majority voting in terms of their
truth-tracking properties. To this end, we proposed a Bayesian model which allows
for such a comparison. The model is based on two attributes of the group members:
we assumed that each group member has a first order reliability to make the right
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decision and a second order reliability which specifies how good the group member
is in estimating the first order reliability of the other group members. The first order
reliability is identical with the reliability used in the modeling of the voting procedure.
This identification allows us to compare the two procedures in a meaningful way. Our
model focuses on the situation where all group members have the same information
about the fact they have to assess (remember the twelve angry men) and where the
deliberation process is structures as a sequence of voting procedures. When casting a
new vote, each group members takes the verdicts of the other group members in the
previous round into account, weighted according to their estimated reliability.

Ourmodel is clearly highly idealized and includes several black boxes. For example,
the presentation of arguments and counter-arguments in between the various rounds
of voting is modeled effectively by its effect on the assessment of the reliability of
the corresponding group member. And so one has to take the results we obtain with
a grain of salt. However, the results are plausible and it has to be seen whether more
sophisticated models reproduce them.

What are our main results? We have shown that the deliberation process results in
a consensus and correctly tracks the truth for groups of large size in the following
cases: (i) homogeneous groups with a first order reliability greater than 0.5 and with
a high second order reliability. (ii) inhomogeneous groups with average first order
reliabilities above 0.5 and with a high (initial) second order reliability. In this sense the
deliberation procedure manifests the same epistemic properties as the majority voting
while adding the benefit of a group consensus which for groups with average first order
reliabilities above 0.5 and high (initial) second order reliabilities will make sure that
all group members reach a stable correct belief about the hypothesis in finitely many
steps. We furthermore provided simulation results that indicate that the deliberation
procedure tracks the truth even in cases that do not fall under the conditions stated in
the Condorcet Jury Theorem for majority voting as well as for groups with low second
order reliabilities.

Clearly, these results are consequences of our assumptions. But how robust are the
results? Do they also hold if we make changes in our deliberation model and relax
some of its idealizations? Here are three topics which we would like to address in
future work.

First, we want to study the effect of relaxing the independence assumption (9).
While it makes sense for voting, the independence assumption is questionable for
deliberations from a descriptive, but not from a normative point of view as more and
more links between the group members are established in the course of deliberation.
This makes the group members (and henceforth also their verdicts) directly dependent
on each other. At the end of the deliberation process, when a consensus is reached, it is
as if the original assembly of independent individuals has become one homogeneous
entity, with all group members endorsing the consensus. The challenge, then, is to
model how an increasingly connected social network emerges in the course of the
deliberation process and what this entails for the decision-making of the group. We
believe that the work presented in this article will be a good starting point for these
studies.

Second, we want to study the updating mechanisms for the first order reliabilities.
The assumption that the first order reliability remains unchanged during the deliber-
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ation makes sense in the context of this article. Note that we are only focusing on
contexts where the group members share the same information (they all attended the
procedure in court and have no additional knowledge about the case). However, when
dealing with situations where different group members have different information at
their disposal it is plausible that the first order reliability of the groupmembers changes
as a result of the deliberation. It will be interesting to see what taking this into account
implies for the main questions we addressed in this article.

Third, it might also be valuable to study more sophisticated updating mechanisms
for the second order reliabilities. For example, one can imagine scenarios where the
first and second order reliabilities are not independent.

Forth, we have assumed that the agents have no other interests than to track the
truth. This is (unfortunately!) an unrealistic assumption inmany real deliberations. Are
these other interests always negatively interfering with the epistemic goal considered
in this article? To address this question, game theoretical models have to be developed.

Addressing these questions requires more detailed models than the one presented
here andwehope that ourmodelwill be the starting point ofmany future investigations.
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Appendix 1: Proof of theorem 1

First notice that since all group members have the same reliability ri = r and the
same second order reliability ci = 1, the estimated reliabilities in each round will be
equal to the actual reliabilities and the likelihood ratio will be the same for all group
members in each round, i.e. x (k)

i j =: x = (1 − r (k)
i j )/r (k)

i j = (1 − r)/r . So

P(k+1)
i (H) = P(k)

i

(
H|Vote(k)

1 , . . . ,Vote(k)
i−1,Vote

(k)
i+1, . . . ,Vote

(k)
n

)

= P(k)
i (H)

P(k)
i (H) +

(
1 − P(k)

i (H)
) ∏n

j �=i=1

(
x (k)
i j

)p(k)
j

= P(k)
i (H)

P(k)
i (H) +

(
1 − P(k)

i (H)
)
x

∑n
j �=i=1 p(k)

j

, (10)

where p(k)
j ∈ {0, 1} is the vote of group member a j in round k and p(k)

j = 1 if

Vote(k)
j = Vj , i.e. if group member a j has voted (correctly) for the truth of the
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hypothesis and p(k)
j = −1 otherwise. Simplifying this we have P(k+1)

i (H) > P(k)
i (H)

if and only if x
∑n

j �=i=1 p(k)
j < 1.

The votes in the first round are given by the initial probability assignments that
arise from the group members’ reliabilities r . This means that group member a j will

start by initially voting correctly, i.e. p(0)
j = 1 (or equivalently P(0)

j (H) ≥ 0.5) with

probability r and incorrectly, i.e. p(0)
j = −1 (or equivalently P(0)

j (H) < 0.5) with

probability 1 − r . Thus P(1)
i (H) > P(0)

i (H) if and only if x
∑n

j �=i=1 p(0)
j < 1. Since

r > 0.5 and x < 1, x
∑n

j �=i=1 p(0)
j < 1 if and only if

∑n
j �=i=1 p

(0)
j > 0 that is if the

majority of the group members (excluding ai ) vote correctly in the first round.
Notice that if the majority of the group members votes correctly in some round,

say in round t , and if p(t)
i = −1 then the majority of the group excluding ai has voted

correctly in round t and thus
∑n

j �=i=1 p
(t)
j > 0. If, however, p(t)

i = 1 it is possible

that
∑n

j �=i=1 p
(t)
j = 0 that is when there are exactly the same number of correct

and incorrect votes in the rest of the group. In this later case P(t+1)
i (H) = P(t)

i (H).
However, since the probability assignment for any member who has voted incorrectly
in round t strictly increases, after some finite number of rounds, say l, the probability
assignment for at least one of these group members, say as , will increase enough
such that p(t+l)

s = 1 and from then on we have that the number of correct votes
in the whole group is at least two more than the number of incorrect ones and thus∑n

j �=i=1 p
(t+l)
j > 0 for i = 1, . . . , n. Thus for simplicity of notation and without

loss of generality we can assume that when the majority of the group votes correctly
initially, the number of correct votes is at least two more than the number of incorrect
votes. Thus

∑n
j �=i=1 p

(0)
j > 0 for i = 1, . . . , n and so P(1)

i (H) > P(0)
i (H) for

i = 1, . . . , n. Similarly when we consider the case where the majority of the group
members vote incorrectly in the first roundwe shall assume that the number of incorrect
votes is at least two more than the number of correct ones.

In the second round of the deliberation the votes will be casted on the basis of the
updated probability assignments. Thus if P(1)

i (H) > P(0)
i (H) for i = 1, . . . , n then

∑n
j �=i=1 p

(1)
j ≥ ∑n

j �=i=1 p
(0)
j > 0 since each group member j who had voted for the

truth of the hypothesis on the basis P(0)
j (H) will still vote the same on the basis of the

equal or higher probability P(1)
j (H) while some of the group members who had voted

against the hypothesis may change their vote if their subjective probability has been
raised to a value above 0.5. Hence from

∑n
j �=i=1 p

(1)
j > 0we have P(2)

i (H) > P(1)
i (H)

for i = 1, . . . , n.
Repeating the same argument the subjective probabilities of the groupmembers (for

the truth of the hypothesis) will increases in each round and will be greater or equal to
0.5 in finitely many steps. Thus if the majority of the group members vote correctly in
the first round the group will reach a consensus on the correct answer in finitely many
steps. If the group members keep repeating the deliberation process (possibly even
after the consensus is reached) the probabilities will increase until at some round t ,
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we have P(t)
i (H) = 1 for i = 1, . . . , n after which repeating the deliberation process

will no more change the probabilities. This proves part (ii).
By the same argument, if the majority of the group members vote incorrectly in the

first round the probability assignments will decreases until after finitely many steps all
group members will assign probability zero to H and the group will reach a consensus
and the subjective beliefs will stabilize (on the wrong belief) and this gives the result
for part (iii). Parts (ii) and (iii) will together imply part (i), as it is either the case that
the majority have voted correctly in the first round or that the majority have voted
incorrectly and in either case the group will reach a consensus in finitely many rounds
(on the correct answer and incorrect answer respectively).

If r ≥ 0.5 then by the Condorcet Jury Theorem the probability that the majority of
the group members would vote correctly in the first round (and thus the group reaches
a consensus on the correct answer), increases with the size of the group and approaches
1 as the size of the group increases. Similarly if r < 0.5 by the same argument as in
the Condorcet Jury Theorem the probability that the majority of the group members
would vote incorrectly in the first round (and thus the group reaches a consensus on
the wrong answer), increases with the size of the group and approaches 1 as the size
of the group increases. This proves part (i).

Appendix 2: Proof of theorem 2

Since r < 0.5 and thus x > 1, by the argument in the proof of Theorem 1, if the
majority of the group members start by voting incorrectly we have that

∑n
j �=i=1 p

(0)
j

< 0 and thus x
∑n

j �=i=1 p(0)
j < 1 and the probability assignments increases until the

majority will assign a subjective probability above 0.5 to hypothesis at some round t

(and thus vote correctly) after which x
∑n

j �=i=1 p(t)
j > 1 and the subjective probabilities

will decrease and this will repeat. Similarly if the majority start by voting correctly
the subjective probabilities will decrease until at some stage the majority will assign
a probability less than 0.5 to the hypothesis after which they will vote incorrectly and
thus the probability assignments will start to increase, etc.
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