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Abstract This paper provides a categorical equivalence between two types of quantum
structures. One is a complete orthomodular lattice, which is used for reasoning about
testable properties of a quantum system. The other is an orthomodular dynamic algebra,
which is a quantale used for reasoning about quantum actions. The result extends to more
restrictive lattices than orthomodular lattices, and includes Hilbert lattices of closed sub-
spaces of a Hilbert space. These other lattice structures have connections to a wide range
of different quantum structures; hence our equivalence establishes a categorical connection
between quantales and a great variety of quantum structures.
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1 Introduction

Different quantum structures emphasize different aspects of quantum reasoning. In this
paper, we focus on two types of quantum structures. One structure is a complete ortho-
modular lattice, whose points are viewed as testable properties of a quantum system. While
these structures are natural settings for reasoning about the properties of a system, they
leave implicit important quantum structures, such as quantum actions. The other structure
is the quantum dynamic algebra, a quantale augmented with an orthocomplementation.
These structures were proposed in [2] as providing a type of algebraic quantum structure
that makes actions first-class citizens. A quantale is a complete lattice with an additional
semi-group (often a monoidal) operator, and this additional operator is viewed as func-
tion composition, with the lattice points abstractions of functions. (Please refer to [5] for a
detailed survey of quantales.) In this way, quantales are often described as abstractions of
operator algebras such as C∗-algebras, though their connection to orthomodular lattices or
even the more restrictive Hilbert lattices (lattice of closed subspaces of a Hilbert space) has
received little attention.

The goal of this paper is to compare the quantale with the orthomodular lattice, and
we do so by establishing a categorical equivalence between complete orthomodular lattices
and orthomodular dynamic algebras, a type of quantum dynamic algebra. This equivalence
clarifies how dynamics arises from orthomodular or Hilbert lattices, and establishes a clearer
connection between quantales and orthomodular lattices, thus clarifying how they can be
used for quantum reasoning.

The best connection we have found between orthomodular lattices and quantum dynamic
algebras is in [2]. The goal of that work was to connect to quantum dynamic frames, a
graph-like counterpart to the Hilbert lattice. But it did more to suggest connections than to
establish rigorous equivalence, and it did not involve categorical structure.

Categorical equivalence along with categorical duality have been extensively used to
establish meaningful relationships among different structures and to help transfer results
about one structure to results about another. A categorical equivalence consists of a pair
of functors from each category to the other such that the composition of the two functors
(composed in either way) is naturally isomorphic to the corresponding identity functor. A
duality is an equivalence between one category and the opposite of another category, that is,
where in the second category all morphisms are reversed.

Categorical equivalences with quantum significance include those between quantum
geometries and quantum lattices (between Hilbert geometries and propositional systems, as
well as projective geometries and projective lattices), as given in [7], and significant cate-
gorical dualities include those between quantum lattices and quantum graph-like structures
(between Piron lattices and quantum dynamic algebras), as given in [3]. Our equivalence
connects quantales to these structures by connecting them to a class of lattices that includes
propositional systems and Piron lattices.

The paper is organized as follows. In Section 2, we introduce the categories of com-
plete orthomodular lattices and orthomodular dynamic algebras. In Section 3, we define
the functors that make up the categorical equivalence. These involve defining translations
from each object in one category to an object in the other category, and mapping mor-
phisms in one to morphisms in the other. In Section 4, we prove the functors defined
in the previous section form a categorical equivalence. This involves defining appropriate
natural isomorphisms between the compositions of the functors and the identity functors.
Finally, in Section 5, we conclude the paper with some remarks and suggestions for future
work.
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2 The Categories

2.1 The Category L of Complete Orthomodular Lattices

Definition 1 Consider a tuple L = (L,≤,−⊥) where L is a non-empty set, ≤ ⊆ L × L

is a partial order and −⊥ : L → L is a function. It is an ortho-lattice, if it satisfies (1)–(3)
below. It is a complete orthomodular lattice, if it satisfies (1)–(5).

1. (L,≤) is a lattice: any p, q ∈ L have a least upper bound p ∨ q in L, called the join,
and a greatest lower bound p ∧ q in L, called the meet;

2. there are O, I ∈ L such that O ≤ p ≤ I , for each p ∈ L;
3. −⊥ is an orthocomplementation, i.e. for any p, q ∈ L;

(a) p ∧ p⊥ = O and p ∨ p⊥ = I ;
(b) p ≤ q ⇒ q⊥ ≤ p⊥;
(c) p⊥⊥ = p;

4. (L,≤) is a complete lattice: for any {pi ∈ L | i ∈ I }, they have a join
∨{pi ∈ L | i ∈

I } and a meet
∧{pi ∈ L | i ∈ I } in L;

5. orthomodularity holds, i.e. for any p, q ∈ L, p ≤ q implies that p = q ∧ (p ∨ q⊥).

In an ortho-lattice L = (L,≤,−⊥), for each p ∈ L, we can define an important pair of
operations called the Sasaki projection (onto p) and Sasaki hook (from p) [6]:

fp : L → L :: q �→ p ∧ (p⊥ ∨ q), f p : L → L :: q �→ p⊥ ∨ (p ∧ q).

A crucial fact about this pair of order-preserving maps is that L is orthomodular (5) if and
only if, for every p ∈ L, fp is left adjoint to f p [4]. Therefore, in an orthomodular lattice,
Sasaki projections preserve (arbitrary) joins.

Lemma 1 In a complete orthomodular lattice L = (L,≤,−⊥), for any p ∈ L and K ⊆ L,
fp(

∨
q∈K q) = ∨

q∈K fp(q).

Definition 2 An ortho-lattice isomorphism, or L-morphism, from an ortho-lattice L1 =
(L1,≤1,−⊥1) to L2 = (L2,≤2,−⊥2) is a function k : L1 → L2 such that, for any p1, q1 ∈
L1,

6. k is a bijection;
7. p1 ≤1 q1 ⇔ k(p1) ≤2 k(q1);
8. k(p

⊥1
1 ) = (k(p1))

⊥2 .

Theorem 1 Complete orthomodular lattices equipped with ortho-lattice isomorphisms
form a category L.

Proof This proof is routine, and hence we omit details.

2.2 The Category Q of Orthomodular Dynamic Algebras

In this section, we define the category of orthomodular dynamic algebras. Roughly speak-
ing, an orthomodular dynamic algebra is an enrichment of a quantale. We first recall the
definition of a quantale and introduce some other notions, and then we give the definition
of the quantum dynamic algebra.



Int J Theor Phys

Definition 3 A quantale is a tuple (Q,, ·), such that

1. (Q,) is a complete lattice, that is, a partially ordered set, where every (potentially
infinite) subset A has a least upper bound

⊔
A called the join of A;1

2. · is associative: for any x, y, z ∈ Q, (x · y) · z = x · (y · z);
3. · distributes over

⊔
: for any x ∈ Q and K ⊆ Q,

x ·
⊔

K =
⊔

{x · y | y ∈ K} and
(⊔

K
)

· x =
⊔

{y · x | y ∈ K};

Definition 4 A generalized dynamic algebra is a tuple Q = (Q,
⊔

, ·, ∼) such that Q is a
non-empty set, and all of

⊔ : ℘(Q) → Q, · : Q × Q → Q and ∼ : Q → Q are functions.

The following are some constructions on a generalized dynamic algebra.

 def= {
(x, y) ∈ Q × Q | ⊔{x, y} = y

}

PQ
def= {∼ x | x ∈ Q}

∨
X

def= ∼∼ ⊔
X, for any X ⊆ PQ

∧
X

def= ∼⊔{∼ x | x ∈ X}, for any X ⊆ PQ

� def= {
(p, q) ∈ PQ × PQ | ∨{p, q} = q

}

�x� def= λy. ∼∼(x · y)

≡ def= {(x, y) ∈ Q × Q | �x�(p) = �y�(p), for each p ∈ PQ}
TQ def= {x ∈ Q | x = p1 · · · · · pn, for some n ∈ N

+ and p1, . . . , pn ∈ PQ}
Note that TQ is the smallest subset of Q containingPQ which is closed under the operation ·.

In the following, for simplicity, we write x � y for
⊔{x, y}, x ∨ y for

∨{x, y} and x ∧ y

for
∧{x, y}; and we may omit the subscripts in PQ and TQ.

Definition 5 An orthomodular dynamic algebra is a generalized dynamic algebra Q =
(Q,

⊔
, ·,∼) such that

9. (Q, , ·) is a quantale, and
⊔

is the arbitrary join.2

10. (P,�, ∼) is a complete orthomodular lattice;
11. If X is such that

(a) P ⊆ X ⊆ Q,
(b) X is closed under the operation ·, and
(c) X is closed under

⊔
, by which we mean, for any X ∈ ℘(X),

⊔X ∈ X.

Then X = Q (minimality);
12. for any X, Y ⊆ T ,

⊔
X = ⊔

Y , if and only if X = Y (sets);
13. for any x, y ∈ T , x = y if and only if x ≡ y (completeness);
14. for any p, q ∈ P , �p�(q) = fp(q), i.e. ∼∼(p·q) = p∧(∼p∨q) (Sasaki projection);
15. �x�(y) = �x�(∼∼ y), for each x, y ∈ Q (composition).

1The existence of a join for every (potentially infinite) set guarantees the existence of a meet as well; the
meet (greatest lower bound) of A is the join of the set of lower bounds of A.
2The original function

⊔
is then the join operation on the lattice structure, from which the order relation can

be recovered by x  y iff x � y = y.
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We now prove two useful lemmas. The first one says that there is a normal form for each
element in an orthomodular dynamic algebra.

Lemma 2 For each x ∈ Q, there is a unique set {xi | i ∈ I } ⊆ T such that x = ⊔{xi |
i ∈ I }.

Proof Recall that by (9),
⊔

is the arbitrary join of the complete lattice (Q, ), and hence

(i)
⊔{x} = x, for each x ∈ Q;

(ii)
⊔{⊔{x(i,j) | j ∈ Ji} | i ∈ I } = ⊔{x(i,j) | (i, j) ∈ ⋃

i∈I ({i} × Ji)}, for any
{x(i,j) ∈ Q | (i, j) ∈ ⋃

i∈I ({i} × Ji)}.
To prove existence, let Z ⊆ Q consist of each x in Q for which there is a set {xi | i ∈

I } ⊆ T such that x = ⊔{xi | i ∈ I }. We will show that Z = Q by showing that Z satisfies
each of the three conditions in (11).

– Clearly P ⊆ T and T ⊆ Z, and hence P ⊆ Z.
– Suppose y, z ∈ Z, and let x = y · z. We wish to show that x ∈ Z. Now y = ⊔{yi |

i ∈ I } and z = ⊔{zj | j ∈ J }, for some {yi | i ∈ I } ⊆ T and {zj | j ∈ J } ⊆ T .
Thus

x = y · z =
⊔

{yi | i ∈ I } ·
⊔

{zj | j ∈ J }
=

⊔ {⊔
{yi | i ∈ I } · zj | j ∈ J

}
(by (3))

=
⊔ {⊔

{yi · zj | i ∈ I } | j ∈ J
}

(by (3))

=
⊔

{yi · zj | (i, j) ∈ I × J } (by (ii))

Note that {yi · zj | (i, j) ∈ I × J } ⊆ T .
– Suppose {x′

i | i ∈ I } ∈ ℘(Z), and let x = ⊔{x′
i | i ∈ I }. We wish to show that

x ∈ Z. Now, for each i ∈ I , x′
i = ⊔{y(i,j) | j ∈ Ji} for some {y(i,j) | j ∈ Ji} ⊆ T .

Thus

x =
⊔

{x′
i | i ∈I } =

⊔ {⊔
{y(i,j) |j ∈ Ji} | i ∈I

}
=

⊔
{

y(i,j) |(i, j)∈
⋃

i∈I

({i} × Ji)

}

where the third equality is by (ii). Note that
{
y(i,j) | (i, j) ∈ ⋃

i∈I ({i} × Ji)
} ⊆ T .

Thus by (11), Z = Q, i.e., the desired existence property holds for every x ∈ Q.
Uniqueness follows directly from (12).

Since
⊔

is the join in the complete lattice (Q,), this lemma means that the elements
of T are the atoms of this lattice and this lattice is atomistic.

The second lemma shows that (14) can be generalized.

Lemma 3 For any n ∈ N
+ and p1, . . . , pn ∈ P , �p1 · · · · · pn� = �p1� ◦ · · · ◦ �pn�. In

particular, �p1 · · · · · pn� = �p1� ◦ · · · ◦ �pn� = fp1 ◦ · · · ◦ fpn on P .

Proof We use induction on n to show that �p1 · · · · · pn� = �p1� ◦ · · · ◦ �pn�.

Base Step: n = 1. This case is trivial.
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Induction Step: n = k + 1. For each x ∈ Q,

�p1 · · · · · pk · pk+1�(x) = ∼ ∼(p1 · · · · · pk · pk+1 · x)

= �p1�(p2 · · · · · pk · pk+1 · x)

= �p1�(∼∼(p2 · · · · · pk · pk+1 · x)) (by (15))

= �p1�(�p2 · · · · · pk · pk+1�(x))

= �p1�((�p2� ◦ · · · ◦ �pk� ◦ �pk+1�)(x)) (IH)

= (�p1� ◦ · · · ◦ �pk� ◦ �pk+1�)(x)

This finishes the proof by induction.
Note that, for each p ∈ P , by (14) the restriction of �p� on P is the same function as

fp . Therefore, �p1 · · · · · pn� = �p1� ◦ · · · ◦ �pn� = fp1 ◦ · · · ◦ fpn on P .

Definition 6 A function θ : Q1 → Q2 is a Q-morphism from an orthomodular dynamic
algebra Q1 = (Q1,

⊔
1, ·1,∼1) to Q2 = (Q2,

⊔
2, ·2,∼2), if:

16. θ restricted to P1 = {∼ x | x ∈ Q1} is an ortho-lattice isomorphism from (P1,�1,∼1)

to (P2,�2, ∼2);
17. θ preserves

⊔
and ·, i.e. for any A1 ⊆ Q1 and x1, y1 ∈ Q1,
θ(

⊔
1 A1) = ⊔

2 θ [A1] θ(x1 ·1 y1) = θ(x1) ·2 θ(x2)

Theorem 2 Orthomodular dynamic algebras equipped withQ-morphisms form a category Q.

Proof Let the identity arrows be the identity maps, and arrow composition be function
compositions.

It is obvious that the identity maps are Q-morphisms, and function compositions of Q-
morphisms are still Q-morphisms and satisfy associativity.

3 The Functors

3.1 From Complete Orthomodular Lattices to Orthomodular Dynamic Algebras

In this subsection, we define a functor F : L → Q.

Mapping of Objects Fix a complete orthomodular lattice L = (L,≤,−⊥). Let

18. FT be the smallest set containing {fp | p ∈ L} and closed under function composition
◦; recall that fp is the Sasaki projection onto p;

19. Q def= ℘(FT );
20. · : Q × Q → Q :: A · B �→ {a ◦ b ∈ FT | a ∈ A and b ∈ B};
21. ∼ : Q → Q :: A �→ {f(

∨{a(I)|a∈A})⊥}.
It is easy to see that the tuple F(L) = (Q,

⋃
, ·,∼) is a generalized dynamic algebra.

We will show that it is an orthomodular dynamic algebra by verifying the conditions in the
definition one by one. (Notice that

⋃
plays the role of

⊔
.)

Before doing this, we prove a lemma containing a useful calculation.

Lemma 4 For any A ∈ Q, ∼∼ A = {f∨{a(I)|a∈A}}.
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Proof ∼∼A = ∼{f(
∨{a(I)|a∈A})⊥} = {f(f

(
∨{a(I )|a∈A})⊥ (I ))⊥} = {f(

∨{a(I)|a∈A})⊥⊥} =
{f∨{a(I)|a∈A}}

Proposition 1 F(L) satisfies (9), i.e. (Q,, ·) is a quantale.

Proof First, we show that (Q,) is a complete lattice. Note that

 def= {(A,B) ∈ Q × Q | A ∪ B = B} = {(A,B) ∈ Q × Q | A ⊆ B} = ⊆
Since (Q,) = (℘ (FT ),⊆) is the power set algebra of FT , it is a complete lattice. A
powerset algebra has the union as its arbitrary join, and hence our original

⋃
is the arbitrary

join of the lattice.
Second, since function composition ◦ is associative, it is easy to see that · is associative.

Moreover, the distributivity between
⋃

and · is also easy to show.

Proposition 2 The function χ : L → Q :: p → {fp} is an ortho-lattice isomorphism from
L to (P,�, ∼), so (P,�,∼) is a complete orthomodular lattice ((10) for F(L)).

Proof First we show injectivity. Assume that p, q ∈ L satisfy χ(p) = χ(q). Then fp = fq .
By definition p = fp(I ) = fq(I ) = q.

Second, we show surjectivity. Note that, for each A ∈ Q,

A ∈ P ⇔ A = ∼B, for some B ∈ Q
⇔ A = {f(

∨{b(I)|b∈B})⊥}, for some B ∈ Q
⇔ A = {fp}, for some p ∈ L (for ⇐, take B = {fp⊥})

Therefore, P = {{fp} | p ∈ L} and the surjectivity of χ follows.
Third, we show that χ preserves the partial order. Note that, for any P ⊆ L,
∨

{χ(p) | p ∈ P } = ∼∼
⋃

{χ(p) | p ∈ P } = ∼∼{fp | p ∈ P } = {f∨{fp(I)|p∈P }}
χ(

∨
P) = {f∨

P } = {f∨{p|p∈P }} = {f∨{fp(I)|p∈P }}
Hence

∨{χ(p) | p ∈ P } = χ(
∨

P). It follows that, for any p, q ∈ L,

p ≤ q ⇔ p ∨ q = q ⇔ χ(p ∨ q) = χ(q) ⇔ χ(p) ∨ χ(q) = χ(q) ⇔ χ(p) � χ(q)

Finally, we show that χ preserves orthocomplements. For each p ∈ L,

∼χ(p) = ∼{fp} = {f(fp(I))⊥} = {fp⊥} = χ(p⊥).

Proposition 3 F(L) satisfies (11), i.e. Q is the smallest set containing P that is closed
under · and

⋃
.

Proof This is immediate from the definition of Q.

Proposition 4 F(L) satisfies (12), i.e. for any X, Y ⊆ T ,
⋃

X = ⋃
Y , if and only if

X = Y . (Recall that T is the smallest subset of Q which contains P and is closed under the
operation ·.)

Proof Let X, Y ⊆ T be arbitrary. Note that by definition both X and Y are sets of singletons
in Q. Then the result follows easily from Axiom of Extensionality.
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Proposition 5 F(L) satisfies (13), i.e. for any A,B ∈ T , the following are equivalent:

(i) A = B;
(ii) A ≡ B, i.e. �A�(P ) = �B�(P ) for each P ∈ P .

Proof From (i) to (ii): This direction is obvious.
From (ii) to (i): Since A,B ∈ T , by definition there are m, n ∈ N

+ and
q1, . . . , qm, r1, . . . , rn ∈ L such that A = {fq1 ◦ · · · ◦ fqm} and B = {fr1 ◦ · · · ◦ frn}. By
Proposition 2, for each p ∈ L, {fp} ∈ P and

�A�({fp})=�B�({fp}) ⇔ ∼∼(A · {fp})= ∼ ∼(B ·{fp})
⇔ ∼∼({fq1 ◦· · ·◦ fqm} · {fp})= ∼ ∼({fr1 ◦ · · · ◦ frn} · {fp})
⇔ ∼∼({fq1 ◦ · · · ◦ fqm ◦ fp}) = ∼ ∼({fr1 ◦ · · · ◦ frn ◦ fp})
⇔ {f(fq1 ◦···◦fqm◦fp)(I )}={f(fr1 ◦···◦frn◦fp)(I )} (Lemma 4)

⇔ (fq1 ◦ · · · ◦ fqm)(p)=(fr1 ◦ · · · ◦ frn)(p)

Now for each p ∈ L, by (ii) and the above equivalence we have (fq1 ◦ · · · ◦ fqm)(p) =
(fr1 ◦ · · · ◦ frn)(p). Hence fq1 ◦ · · · ◦ fqm = fr1 ◦ · · · ◦ frn . Therefore, A = B.

Proposition 6 F(L) satisfies (14): for any A, B ∈ P , �A�(B) = fA(B).

Proof By Proposition 2 there are p, q ∈ L such that A = χ(p) = {fp} and B = χ(q) =
{fq}. Then by Lemma 4 and Proposition 2,

�A�(B) = ∼∼(A · B) = ∼ ∼({fp} · {fq}) = ∼∼{fp ◦ fq} = {ffp◦fq(I )} = {ffp(q)}
fA(B) = A ∧ (∼A ∨ B) = χ(p) ∧ (∼χ(p) ∨ χ(q)) = χ(p ∧ (p⊥ ∨ q)) = {ffp(q)}

Therefore, �A�(B) = {ffp(q)} = fA(B).

Proposition 7 F(L) satisfies (5), i.e. for any A,B ∈ Q, �A�(B) = �A�(∼∼B).

Proof Recall that by Lemma 1 Sasaki projections preserve arbitrary joins, and thus the same
holds for compositions of Sasaki projections. Then

�A�(∼∼B) = ∼ ∼(A · ∼∼B) = ∼∼(A · {f∨{b(I)|b∈B}}) = ∼∼{a ◦ f∨
b∈B b(I) |a ∈A}

= {f∨{a◦f∨
b∈B b(I)(I )|a∈A}} = {f∨{a(

∨
b∈B b(I))|a∈A}} = {f∨{a◦b(I)|a∈A,b∈B}}.

Since �A�(B) = ∼∼(A · B) = ∼∼{a ◦ b | a ∈ A, b ∈ B} = {f∨{a◦b(I)|a∈A,b∈B}},
�A�(∼∼ B) = {f∨{a◦b(I)|a∈A,b∈B}} = �A�(B).

Theorem 3 F(L) is an orthomodular dynamic algebra.

Proof It follows from the definition and the previous propositions.

Mapping of Arrows Fix an L-morphism k from L1 = (L1, ≤1,−⊥1) to L2 =
(L2,≤2,−⊥2). Define

F(k) : Q1 → Q2 :: A1 �→ {k ◦ a ◦ k−1 | a1 ∈ A1}
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Note that, for each p ∈ L1, fk(p) = k ◦ fp ◦ k−1, because for each q ∈ L1,

fk(p)(q) = k(p) ∧
(
k(p)⊥ ∨ q

)
= k

(
p ∧

(
p⊥ ∨ k−1(q)

))
= k

(
fp

(
k−1(q)

))

= (k ◦ fp ◦ k−1)(q)

Theorem 4 F(k) is a Q-morphism from F(L1) to F(L2).

Proof First, we observe that F(k) is an ortho-lattice isomorphism from (P1, �1,∼1) to
(P2, �2,∼2). By Proposition 2, P1 = {{fp} | p ∈ L1} and P2 = {{fp} | p ∈ L2}. Note
that F(k) = χ2 ◦ k ◦ χ−1

1 on P1; because, for each {fp} ∈ P1,

(χ2 ◦ k ◦ χ−1
1 )({fp}) = χ2(k(p)) = {fk(p)} = {k ◦ fp ◦ k−1} = F(k)({fp})

Since all of χ2, k and χ−1
1 are ortho-lattice isomorphisms, so is F(k) on P1.

Second, we show that F(k) preserves
⋃

. Let {Ai ∈ Q1 | i ∈ I } be arbitrary.

F(k)(
⋃

{Ai | i ∈ I }) = F(k)({a ∈ FT ,1 | a ∈ Ai , for some i ∈ I })
= {k ◦ a ◦ k−1 ∈ FT ,1 | a ∈ Ai , for some i ∈ I }
=

⋃ {
{k ◦ a ◦ k−1 ∈ FT ,1 | a ∈ Ai} | i ∈ I

}

=
⋃

{F(k)(Ai) | i ∈ I }
Third, we show that F(k) preserves ·. Let A, B ∈ Q1 be arbitrary.

F(k)(A · B) = F(k)({a ◦ b | a ∈ A, b ∈ B})
= {k ◦ a ◦ b ◦ k−1 | a ∈ A, b ∈ B}
= {k ◦ a ◦ k−1 ◦ k ◦ b ◦ k−1 | a ∈ A, b ∈ B}
= F(k)(A) · F(k)(B)

Theorem 5 F is a functor from L to Q.

Proof By Theorems 3 and 4, F maps objects in L to objects in Q, and maps arrows k :
L1 → L2 in L to arrows F(k) : F(L1) → F(L2) in Q.

It is easy to see from the definition that F preserves the identity arrows. For arrow com-
positions, let k : L1 → L2 and l : L2 → L3 be two arbitrary L-morphisms. Then
F(l) ◦ F(k) = F(l ◦ k) holds, because for any A1 ∈ Q1

(F(l) ◦ F(k))(A1) = F(l)
(
{k ◦ a1 ◦ k−1 | a1 ∈ A1}

)

= {l ◦ (k ◦ a1 ◦ k−1) ◦ l−1 | a1 ∈ A1}
= {(l ◦ k) ◦ a1 ◦ (l ◦ k)−1 | a1 ∈ A1}
= F(l ◦ k)(A1)

3.2 From Orthomodular Dynamic Algebras to Complete Orthomodular Lattices

In this subsection, we define a functor U : Q → L.
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Mapping of Objects Fix an orthomodular dynamic algebra Q = (Q,
⊔

, ·, ∼). Define
U(Q) = (P,�, ∼).

Theorem 6 U(Q) is a complete orthomodular lattice.

Proof It follows directly from the definition of orthomodular dynamic algebras.

Mapping of Arrows Fix a Q-morphism θ : Q1 → Q2. Let U(θ) be the restriction of θ to
P1.

Theorem 7 U(θ) is an L-morphism from U(Q1) to U(Q2).

Proof This follows directly from the definition of Q-morphisms.

Theorem 8 U is a functor from Q to L.

Proof By Theorems 6 and 7 U maps objects in Q to objects in L, and maps arrows θ :
Q1 → Q2 in Q to arrows U(θ) : U(Q1) → U(Q2) in L. It is obvious from the definition
that U preserves the identity arrows and arrow composition.

4 The Equivalence

4.1 The Natural Isomorphism τ : 1L → U ◦ F

For each complete orthomodular lattice L = (L,≤,−⊥), we let τL = χ which is defined
in Proposition 2.

Theorem 9 τ : 1L → U ◦ F is a natural isomorphism.

Proof For each object L in L, by Proposition 2, τL = χ is a bijective L-morphism, so it is
not hard to show that τL has an inverse in L and is an isomorphism in L.

For naturality, assume that k : L1 → L2 is an L-morphism. For each p ∈ L1,

((U ◦ F)(k) ◦ τL1)(p) = (U ◦ F)(k)({fp}) = U(F(k)({fp})) = U({k ◦ fp ◦ k−1}) =
U({fk(p)}) = {fk(p)} = (τL2 ◦ k)(p)

Therefore, (U ◦ F)(k) ◦ τL1 = τL2 ◦ k.

4.2 The Natural Isomorphism η : 1Q → F ◦ U

For each orthomodular dynamic algebra Q = (Q,
⊔

, ·,∼), we define a function ηQ :
1Q(Q) → (F ◦ U)(Q) as follows:

ηQ :: x =
⊔

{p(i,1) · · · · · p(i,ni ) | i ∈ I } �→ {fp(i,1)
◦ · · · ◦ fp(i,ni )

| i ∈ I }
where p(i,j) ∈ PQ, for each (i, j) ∈ ⋃

i∈I ({i} × {1, . . . , ni}). By Lemma 2, each element
in Q has a unique normal form, so the function ηQ is well defined.

Proposition 8 For each Q = (Q,
⊔

, ·,∼), ηQ is an isomorphism in Q.
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Proof First we show that ηQ is injective. Assume that in their normal form x = ⊔{p(i,1) ·
· · · · p(i,ni ) | i ∈ I } and y = ⊔{q(j,1) · · · · · q(j,nj ) | j ∈ J } are such that ηQ(x) = ηQ(y).
We will show that x = y. By Lemma 2 it suffices to show that {p(i,1) · · · · ·p(i,ni ) | i ∈ I } =
{q(j,1) · · · · · q(j,nj ) | j ∈ J }.

Assume that p1 · · · · · pm ∈ {p(i,1) · · · · · p(i,ni ) | i ∈ I }. Then fp1 ◦ · · · ◦ fpm ∈ ηQ(x) =
ηQ(y). Hence there is a q1 · · · · ·qn ∈ {q(j,1) · · · · ·q(j,nj ) | j ∈ J } such that fp1 ◦ · · ·◦fpm =
fq1 ◦ · · · ◦ fqn . Then, for each r ∈ PQ, (fp1 ◦ · · · ◦ fpm)(r) = (fq1 ◦ · · · ◦ fqn)(r), so by
Lemma 3 �p1 · · · · ·pm�(r) = (fp1 ◦ · · · ◦fpm)(r) = (fq1 ◦ · · · ◦fqn)(r) = �q1 · · · · ·qn�(r).
Hence by (5) p1 · · · · · pm = q1 · · · · · qn ∈ {q(j,1) · · · · · q(j,nj ) | j ∈ J }.

Symmetrically we can show that each q1 · · · · · qm ∈ {q(j,1) · · · · · q(j,nj ) | j ∈ J } is in
{p(i,1) · · · · · p(i,ni ) | i ∈ I }. Therefore, x = y, and thus ηQ is injective.

Second we show that ηQ is surjective. Let A be an arbitrary element of (F ◦ U)(Q).
Since (F ◦ U)(Q) is an orthomodular dynamic algebra, by Lemma 2, A = ⋃{{fp(i,1)

} · · · · ·
{fp(i,ni )

} | i ∈ I }, where each {fp(i,j)
} ∈ P(F◦U)(Q). It is obvious from the definition that

ηQ(
⊔{p(i,1) · · · · · p(i,ni ) | i ∈ I }) = {fp(i,1)

◦ · · · ◦ fp(i,ni )
| i ∈ I } = A.

Third we show that ηQ is a Q-morphism. It is obvious that ηQ restricted to PQ is the
same function as χ . Since χ is an ortho-lattice isomorphism, so is this restriction of ηQ.
Moreover, it is not hard to show that ηQ preserves

⊔
. Besides, ηL preserves ·, because for

any x = ⊔{xi | i ∈ I } and y = ⊔{yj | j ∈ J } in their normal forms in Q,

ηQ(
⊔

{xi | i ∈ I } ·
⊔

{yj | j ∈ J })
= ηQ(

⊔
{xi · yj | i ∈ I, j ∈ J }) (by (3))

=
⋃

{ηQ(xi · yj ) | i ∈ I, j ∈ J } (ηQ preserves
⊔

)

=
⋃

{ηQ(xi) · ηQ(yj ) | i ∈ I, j ∈ J } (by the definition of ηQ)

=
⋃

{
⋃

{ηQ(xi) | i ∈ I } · ηQ(yj ) | j ∈ J }
=

⋃
{ηQ(xi) | i ∈ I } ·

⋃
{ηQ(yj ) | j ∈ J }

Since ηQ is a bijective Q-morphism, it is not hard to show that it has an inverse in Q and
thus is an isomorphism in Q.

Proposition 9 η satisfies naturality.

Proof Let θ : Q1 → Q2 be a Q-morphism. For each x = ⊔{p(i,1) · · · · · p(i,ni ) | i ∈ I } in
its normal form in Q1,

(
(F ◦ U)(θ) ◦ ηQ1

)
(x) = (

(F ◦ U)(θ) ◦ ηQ1

) (⊔
{p(i,1) · · · · · p(i,ni ) | i ∈ I }

)

= (F ◦ U)(θ)({fp(i,1)
◦ · · · ◦ fp(i,ni )

| i ∈ I })
= {fU(θ)(p(i,1)) ◦ · · · ◦ fU(θ)(p(i,ni )

) | i ∈ I }
= {fθ(p(i,1)) ◦ · · · ◦ fθ(p(i,ni )

) | i ∈ I }
= ηQ2(

⊔
{θ(p(i,1)) · · · · · θ(p(i,ni )) | i ∈ I })

= (ηQ2 ◦ θ)(
⊔

{p(i,1) · · · · · p(i,ni ) | i ∈ I })
= (ηQ2 ◦ θ)(x)

Therefore, (F ◦ U)(θ) ◦ ηQ1 = ηQ2 ◦ θ .
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Theorem 10 η : 1Q → F ◦ U is a natural isomorphism.

Proof It follows from the previous two propositions.

Finally, we come to the conclusion of this paper.

Theorem 11 (F, U, τ, η) forms a categorical equivalence between L and Q.

Remark 1 Had we replaced complete orthomodular lattice in Definitions 5 and 10 with a
more restricted type of lattice such as a Hilbert lattice or Piron lattice, we could then show
these quantum dynamic algebras are categorically equivalent to the corresponding category
of latices (Hillbert lattice or Piron lattice with ortho-lattice isomorphisms) using the same
functors and natural isomorphisms as we use here. The proof remains exactly the same.
This thus establishes a link between quantum dynamic algebras and Hilbert spaces (or other
important quantum structures) via these stronger lattice structures, particularly the Hilbert
lattices.

5 Conclusion

It can be argued that this equivalence we establish in this paper is the simplest meaningful
connection between quantales and orthomodular lattices. As quantales are complete lattices,
it is natural that they correspond to orthomodular lattices that are complete. As orthomodu-
lar lattices have an orthocomplementation, it is natural to involve an orthocomplementation
in the quantale structure too, which is why the orthomodular dynamic algebra as well as
the quantum dynamic algebra includes a unary operator that resembles an orthocomple-
mentation. Although one could easily define a semi-group structure on-top of any lattice
to form a quantale, we employ the Sasaki projection to ensure that our semi-group struc-
ture has quantum significance and resembles to some extent the composition in an operator
algebra as intended. We realize the quantale join as sets of functions, in order to capture
non-determinism, which is also in line with the intended interpretation of quantales. Fur-
thermore, via Remark 1, our result establishes an equivalence between different types of
quantale structures and different types of quantum lattice structures that in turn relate to
Hilbert spaces and other important quantum structures.

There are other ways of realizing a lattice structure as a quantum dynamic algebra. One
is to realize the quantale join, not as sets of functions but as relations that are unions of
functions. This would be comparably effective in establishing non-determinism, but will
lack certain properties, such as atomicity, that may be useful. Another way is to extend the
types of elements that form the quantale from projectors to automorphisms, unitaries, or
linear maps. This would potentially strengthen the connection to operator algebras.

Quantales can be put into action by acting on a module as in [1]. A logic can further
be developed on the quantale or the quantale actions, and the categorical equivalence may
provide a setting in which we can compare logics natural to quantales with orthomodular
quantum logic that is axiomatized for orthomodular lattices.
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