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Abstract

We study probabilistic characterisation of a random model of a finite set
of first order axioms. Given a set of first order axioms T and a structureM
which we only know is a model of T , we are interested in the probability
thatM would satisfy a sentence ψ. Answering this question for all sentences
in the language will give a probability distribution over the set of sentences
which can be regarded as the probabilistic characterisation of the modelM.
We investigate defining these probabilistic characterisations as the limit of
probability functions imposed on the set of finite models of T . We show how
a symmetry axiom can uniquely specify the probability function over finite
models and will study the existence of the limit in terms of the quantifier
complexity of T .

keywords: probabilistic models, first order theories, renaming principle,
probabilistic logic

1 Introduction

Let L be a first order language, S L the set of sentences of L and T ⊂ S L a finite
consistent set of sentences. We are interested in the extent to which such a set of
sentences T can characterise a model over L. To be more precise the question is

Given a finite consistent set of sentences T of first order axioms, what should we
take as the default or most normal model of T ?

The first thing to clarify before one can answer this question is how to interpret the
normality requirement. There are indeed different ways that one can understand
this. In a model theoretic view, for example, one can expect the most normal model
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to be the smallest and canonical model, thus interpreting the most normal model
as a prime model (see for example [9], [17]). Or one might require some closure
conditions from such models and require them to be existentially closed. Another
approach is to understand the most normal as the ‘average’ model and investigate
this question by looking at the distribution of models (see for example [1], [2],
[12], [14] and [15]). Here we take a different approach and look at the question

Given a finite (consistent) set T of first order axioms, from a language L and a
structureM with domain {a1, a2, . . .} over L which we only know to be a model of
T , what probability should we assign to a sentence θ(a1, . . . , an) being true inM?

In other words we are interested in how a set of first order axioms can
probabilistically characterise a random model in the most normal or natural way.
In this sense, T imposes a probability assignment on the set of sentences, S L,
assigning probability 1 to each φ ∈ T . We will call such probability assignments
Probabilistic Models of T . The probability assigned to each sentence ψ is
understood as the probability that a random model of T will satisfy ψ. Notice
that the only constraint imposed here is that M is a model for T , which ensures
that the probability assignment should give probability 1 to all sentences in T .
This leaves a lot of freedom for choosing the assignment of probabilities to other
sentences, and different ways of making this choice will capture different structural
properties that one imposes on the way that T should characteriseM or, in other
words, how one interprets the normality requirement for M. For example one
such property that has attracted a lot of attention in the literature is to require
T to impose the least informative of such probability assignments, called the
Maximum Entropy model of T . This probability assignment is understood as a
probabilistic description of M to the extent that it is characterised by T while
remaining maximally unconstrained beyond that. In this case, the condition of
normality is interpreted as being minimally constrained. Other approaches to
make this assignment of probabilities will capture different notions of normality
such as averageness or typicality1, etc. The mapping that assigns to each finite
set of axioms (or more generally, to each set of consistent) one such probability
assignment over sentences of the language is called an Inference Process. Inference
processes are of interest in many areas and a wide range of them have been
proposed and studied in the literature. The most extensively studied amongst which
is arguably the Maximum Entropy inference process mentioned above, which is
of interest in several disciplines; from statistics [18, 19], physics [22], statistical
mechanics and thermo-dynamics [24] to economics and finance [20, 42], and
more recently from computer science [10, 11, 7] to formal epistemology, Bayesian

1Centre of Mass or Minimal Distance models for example which we shall refer to later on.
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inference [21, 16, 28] and belief formation [31, 32, 39, 41], see [23] for an extensive
list of examples of Maximum Entropy application in science and engineering.
This is, however, by no means the only one that is of interest in the literature.
Many other examples such as Centre of Mass, Minimum Distance [28] as well as
a spectrum of other such assignments given by generalised Renyi Entropies [36]
have been extensively studied and employed in different contexts, along with other
approaches for deriving probability distribution over the set of models, especially
in computer science and data base theory [8].
The main result in this paper is a unified analysis of these inference processes in
terms of a structural property, referred to as the Renaming Principle (RP). Thus, we
will not be dealing with any specific inference process. Instead, we will investigate
the generalisation of a class of inference processes, characterised by this property
to first order languages. Indeed, we show that RP, that is satisfied by a wide range
of inference processes including the ones just mentioned, uniquely characterises
the probability distribution in the context that we are interested in, i.e., when
investigating models of a set of axioms that hold categorically. So, our analysis
here will show that the only property of these widely different inference processes,
investigated and employed in rather different contexts, that is really relevant is the
Renaming Principle and the differences between them, that are numerous, are by
and large irrelevant in the context of characterising categorical constraints. This is
important because indeed the Renaming Principle seems a very natural condition
to impose on inference processes. Although we will not deal with justification of
this principle in this paper, it will become clear immediately that, at least in the
context of the question we asked above, violation of RP is much more in need of
justification than its satisfaction.
In what follows we shall investigate two things: first we will show that any
two inference processes that satisfy Renaming Principle will be equivalent in
characterising a set of first order axioms. That is, if one such inference process
is well-defined on a first order language, so are all, and moreover, when they are
well-defined, they agree. Next we will investigate when such an inference process
is guaranteed to be well-defined for a first order language in terms of the quantifier
complexity of the set of axioms we wish to consider. There have been relatively
recent studies in generalising specific inference processes, which have been studied
rather extensively for propositional languages, to first order case; in particular the
Maximum Entropy, see for example [6], [25], [26], [27], [30], [34], [40], [41]. For
the second part of our analysis, we give a survey of these results, some of which
we have previously only hinted at without proofs or full analysis. In this sense
our survey here will put previous results in a more general light and will show
the existence, or lack thereof, of a well-defined inference process satisfying the
Renaming Principle, for sets of axioms of specific complexities. We will also point
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out how in certain cases, namely for unary first order languages, the symmetry
requirement imposed by the RP will capture some model theoretic interpretation
of normality such as existentially closeness. The results which we will review, and
give full detail of, in this paper settle all but one case for the complexity of the set
of first order axioms T . One of the main goals of the second part of our analysis is
to put these results and the detail of their analysis together in the hope that it will
facilitate the search for an answer to this only case that still remains open.

2 Preliminaries and Notation

Throughout this paper, we will work with a first order language L with finitely
many relation symbols, no function symbols and countably many constant symbols
a1, a2, a3, ... which we assume to exhaust the universe. Let RL and S L denote the
sets of relation symbols and the set of sentences of L respectively, and let a term
model for L be a structure M for the language L with domain M = { ai | i = 1, 2, ...}
where every constant symbol is interpreted as itself.

Definition 1. A probability function2 on S L is a function w : S L → [0 , 1] such
that for every θ, φ,∃xψ(x) ∈ S L,

• P1. If |= θ then w(θ) = 1.

• P2. w(θ ∨ φ) = w(θ) + w(φ) − w(θ ∧ φ).

• P3. w(∃xψ(x)) = limn→∞ w(
∨n

i=1 ψ(ai)).

Let us first briefly consider a propositional language LProp in order to lay the
grounds for the first order case.

Definition 2. Let LProp be a propositional language with propositional variables
p1, p2, ..., pn. By atoms of LProp we mean the set of sentences {αi | i = 1, ...J},
J = 2n of the form

±p1 ∧ ±p2 ∧ ... ∧ ±pn.

For every sentence φ ∈ S LProp there is unique set Γφ ⊆ {αi| i = 1, ..., J } such that
|= φ ↔

∨
αi∈Γφ αi. Since the αi’s are mutually inconsistent, for every probability

2To see how this connects to the standard definition of probability measures in measure theory,
notice that we can identify sentences of L with complex events in the probability space (Ω,P(Ω),w)
where Ω is the set of all term models for L. The axioms P1-P2 will then correspond to standards
probability axioms for w.
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function w
w(φ) = w(

∨
αi�φ

αi) =
∑
αi�φ

w(αi).

On the other hand since |=
∨J

i=1 αi, we have
∑J

i=1 w(αi) = 1. So the probability
function w will be uniquely determined by its values on the atoms αi’s, that is by the
vector ~w = (w(α1), ...,w(αJ)) ∈ DLProp where DLProp = { ~x ∈ RJ | ~x ≥ 0,

∑J
i=1 xi =

1}. Conversely if ~a ∈ DLProp , we can define a probability function w : S LProp →

[0 , 1] such that (w(α1), ...,w(αJ)) = ~a by setting w(φ) =
∑
αi�φ ai. This gives a one

to one correspondence between the probability functions on S LProp and the points
in DLProp f .
Let T = {φ1, . . . , φn} ⊆ S LProp be a consistent set of sentences. We are interested
in the probabilistic assignments on the set of sentences of the language induced
by T , i.e. the probability functions on S LProp that assign probability 1 to each
sentence φ ∈ T . In this sense, each such T imposes a constraint set CT = {w(φ1) =

1, . . .w(φn) = 1} and we are interested in probability functions w on S LProp that
satisfy CT . We shall call these probability assignments probabilistic models of T .
We are, in particular, interested in investigating systematic ways of picking one
such assignment in a way that captures a (possibly context dependent) notion of
normality.
Replacing each w(φ j) in CT with

∑
αi�φ j w(αi) and adding the equation∑J

i=1 w(αi) = 1 we will get a system of linear equations (w(α1), ...,w(αJ))AT = ~1.
If the probability function w satisfies CT , the vector (w(α1), ...,w(αJ)) will be a
solution for the equation ~xAT = ~1. We will denote the set of non-negative solutions
to this equation by

VLProp(CT ) = { ~x ∈ RJ |~x ≥ 0, ~xAT = ~1 } ⊆ DLProp .

Thus the set of probabilistic models of T will be in a one to one correspondence
with the set VLProp(CT ).
We talked of a systematic way to pick for each T a probability function that
satisfies CT . This is made precise in the notion of an Inference Process. Let LProp

be a propositional language.

Definition 3. Let P be the set of probability functions on S LProp and CLProp be
the set of sets of linear constraints of the form {

∑m
j=1 ai jw(φ j) = bi}. An inference

process is a function N : CLProp → P that for every set of linear constraints
Ci ∈ CLProp picks a probability function wi ∈ P that satisfies Ci, or equivalently a
point in VLProp(Ci).

Put simply, an inference process is a mapping, N, that assigns to each set
of constraints C a model N(C), that is a probability function that satisfies the
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constraints given in C. Notice that constraints set imposed by a set of sentences T
is a set of linear constraints.

Example 1. Let w be a probability function on S LProp. The Shannon Entropy and
the Centre of Mass Infinity of w are defined as, see [28],

E(w) = −

J∑
i=1

w(αi) log(w(αi)) = −

J∑
i=1

wi log(wi), and

CM∞(w) =

J∑
i=1

log(w(αi)) =

J∑
i=1

log(wi).

Let T ⊂ S LProp be a finite set of sentences.

• The Maximum Entropy inference process, assigns to each set of sentences T
the Maximum Entropy model of T , ME(T ) that is the probability function
that satisfies CT and for which E(w) is maximal.

• The Centre of Mass Infinity inference process, assigns to each T ⊂ S LProp

(or more precisely to each CT ) the Centre of Mass model of T , CM∞(T )
that is the probability function that satisfies CT and for which CM∞(w) is
maximal.

Shannon’s entropy is the most commonly accepted measure for the informational
content of a probability function. To be precise the informational content of a
probability function is inversely proportional to its Shannon entropy. That is, the
higher the entropy of a probability function, the lower its informational content.
The probability function that assigns the full probability mass (of 1) to a single
atom, say α1 for example, is maximally informative and has the lowest entropy,
while the probability function that gives equal probability to all atoms is minimally
informative and has the highest entropy. So the Maximum Entropy model of T is
the most uninformative probability function that assigns probability 1 to sentences
in T .
Notice that a probability function over the set of sentences S LProp imposes a unique
probability function over the models of LProp. These are exactly the atoms of
LProp. In this sense the Maximum Entropy model of T can be regarded as the most
equivocal characterisation of a random model by T : it assigns probability 1 to the
set of models satisfying T and beyond that remains completely equivocal amongst
them. In a similar way the Centre of Mass Infinity captures the notion of typicality
thus the Centre of Mass model of T is the probabilistic characterisation of the
most typical (or average) model by T . There are many other inference processes
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that are proposed and studied in the literature for different purposes, each capturing
a different notion of normality.
Having set this up, we can now return our focus to first order languages. Although
one does not have the notion of atoms for a first order language L (as they would
require infinite conjunctions), the state descriptions for finite sub-languages will
play a similar role to that of atoms in the propositional case.

Definition 4. Let L be a first order language with the set of relation symbols RL and
let Lk be the sub-language of L with the domain restricted to constants a1, ..., ak.
The state descriptions of Lk are defined as the sentences Θk

1, ...,Θ
k
nk

of the form∧
i1 ,...,i j≤k
R j−ary

R∈RL, j∈N+

±R(ai1 , ..., ai j).

For a quantifier free sentence θ ∈ S L let k be an upper bound on the i such that ai

appears in θ. Then θ can be thought of as being from the propositional language
Lk

Prop with propositional variables R(ai1 , ..., ai j) for i1, ..., i j ≤ k, R ∈ RL and R j-
ary3. To be more precise for r ≥ k define (−)r : S Lr → S Lr

Prop as

(R j(ai1 , . . . , ain))r = R j(ai1 , . . . , ain)

(¬φ)r = ¬(φ)r

(φ ∨ ψ)r = (φ)r ∨ (ψ)r

(φ ∧ ψ)r = (φ)r ∧ (ψ)r

(∃xφ(x))r =

r∨
i=1

(φ(ai))r.

For a set of sentences T ⊂ S L, let T r = {φr | φ ∈ T } and Cr
T the set of constraints

imposed by T r. Then T r and Cr
T

give the restriction of T to the finite fragment
Lr of L, and the constraints imposed by T on this finite sublanguage (and the
corresponding propositional language Lr

Prop), respectively.
The sentences Θk

i will be the atoms of Lk
Prop and for the quantifier free sentence θ,

� θ ↔
∨

Θk
i �θ

Θk
i . Then since Θk

i ’s are mutually inconsistent, for every probability
function w on S L, w(θ) = w(

∨
Θk

i �θ
Θk

i ) =
∑

Θk
i �θ

w(Θk
i ). Thus to determine w on

quantifier free sentences we only need to determine the values w(Θk
i ) (for all k),

and to require
3Take for example the quantifier free sentence P(a1) ∧ ¬R(a1, a2). Here k = 2 and this sentence

can be thought of as a sentence from the propositional language L2
Prop with propositional variables

P(a1), P(a2),R(a1, a1),R(a1, a2),R(a2, a1) and R(a2, a2).
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w(Θk
i ) ≥ 0 and

nk∑
i=1

w(Θk
i ) = 1 (1)

w(Θk
i ) =

∑
Θk+1

j �Θ
k
i

w(Θk+1
j ) (2)

to ensure that w satisfies P1 and P2. To see this assume w is given on all Θk
i for all

k, satisfying Equations (1) and (2) and define w on all quantifier free sentences as
w(φ) =

∑
Θk

i �φ
w(Θk

i ) where k is the largest that ak appears in φ.
Notice that a sentence from the propositional language Lk

Prop is also a sentence in
Ln

Prop for all n ≥ k. Equation (2) ensures that w is consistent over increasing values
of k. This gaurantees that for a entence φ the probability w(φ) does not depend on
the choice of the language, Lk (i.e. on considering φ from language Lk or Ln for
some n ≥ k). To see this remember that k is the largest such that ak appears in φ
and notice that since φ is quantifier free, a state description Θk+1

j � φ if and only if
it extends a state description Θk

i that satisfies φ. Then∑
Θk+1

j �φ

w(Θk+1
j ) =

∑
Θk

i �φ

∑
Θk+1

j �Θ
k
i

w(Θk+1
j ) =

∑
Θk

i �φ

w(Θk
i ).

Now, let θ and ψ be quantifier free sentences and k be the largest such that ak

appears in either of θ or ψ. Since Θk
i � θ ∨ ψ if and only if Θk

i � θ or Θk
i � ψ, we

have w(θ ∨ ψ) =
∑

Θk
i �θ∨ψ

w(Θk
i ) =

∑
Θk

i �θ
w(Θk

i ) +
∑

Θk
i �ψ

w(Θk
i ) −

∑
Θk

i �θ∧ψ
w(Θk

i ) =

w(θ) + w(ψ) − w(θ ∧ ψ), which gives P2. And, if � θ then by Equation (1),
w(θ) =

∑
Θk

i �θ
w(Θk

i ) =
∑nk

i=1 w(Θk
i ) = 1 which gives P1.

Thus specifying the probabilities of all state descriptions and ensuring Equations
(1) and (2) will determine a probability function (i.e. satisfying P1 and P2) on all
qunstifier free sentences. The following theorem due to Gaifman [13] ensures that
this is indeed enough to determine w on all sentences. Let QFS L be the set of
quantifier free sentences of L.

Theorem 1. Let v : QFS L → [0 , 1] satisfy P1 and P2 for θ, φ ∈ QFS L. Then v
has a unique extension w : S L → [0 , 1] that satisfies P1, P2 and P3. In particular
if w : S L → [0 , 1] satisfies P1, P2 and P3, then w is uniquely determined by its
restriction to QFS L.

Just as a probability function on the set of sentences of a propositional language
is determined by its values on the atoms, a probability function on the set of
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sentences of a first order language is determined by its values on the state
descriptions. Although dealing with state descriptions is more complicated than
working with atoms (one has to consider state descriptions of Lk for all k), they
play a crucial and indispensable role in the analysis that will follow. Note that the
set of state descriptions of Lk is the same as the set of term models over Lk.

Definition 5. Let {b1, . . . , bn} ⊂ {a1, a2, . . .}. By state descriptions of L over
{b1, . . . , bn} ⊂ {a1, a2, . . .} we mean sentences Ψ(b1, . . . , bn) of the form∧

ai1
,...,ai j

⊂{b1 ,...,bn}

R∈RL, R j−ary

±R(ai1 , ..., ai j).

If Θr is a state description of Lr with r > n such that {b1, . . . , bn} ⊆ {a1, . . . , ar},
we say Ψ(b1, . . . , bn) is determined by Θr if and only if for all R ∈ RL and all
t1, . . . , t j ∈ {b1, . . . , bn}, Ψ(b1, . . . , bn) � R(t1, . . . , t j) ⇐⇒ Θr � R(t1, . . . , t j). That
is when Θr agrees with Ψ when restricted to {b1, . . . , bn}.

Notice however that our definition of an inference process as well as the examples
of inference processes given above are defined for propositional languages. Indeed
to calculate E(w) or CM∞(w) we make reference to atoms of the language, which
we cannot do if we move to first order languages because this would require the
use of infinite conjunctions.

2.1 Inference Processes on First Order Languages

There has been extensive work on extending inference processes to first order
languages, especially for the Maximum Entropy inference process, which is of
interest in many different areas. This literature, however, is mostly concerned
with some particular inference process and the generalisations to first order
language is usually specific to that inference process. See for example [40] for
Williamson’s generalisation of Maximum Entropy to first order languages and
[35] for a detailed analysis. Another proposal is given in [6] for an alternative
generalisation of Maximum Entropy to unary first order languages, and employed
in [29] to generalise Centre of Mass Infinity and Minimum Distance inference
process also to unary first order languages and, a modified version of it, in [34]
and [30] to investigate the extension of Maximum Entropy inference process to
polyadic languages. This second approach has a more general flavour that can
be adopted for any inference process defined on propositional languages. This
approach (in the modified version of [30]), which we shall discuss in detail, will be
the focus of this paper.
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Let N be an inference process defined for propositional languages. The idea here
follows from the observation that the finite sub-languages Lr can essentially be
treated as propositional languages for which N is assumed to be well-defined. The
proposal is then to define N for a set of first order sentences T , N(CT ), on some
state descriptions Θn of Ln by looking at the sublanguages Lr and N(Cr

T
) and taking

the limit as r grows. To be more precise let L be a first order language and T ⊂ S L,
the proposal is to define for each state description Θn of Ln

N(CT )(Θn) = lim
r→∞

N(Cr
T

)(Θn)

if the limit exists and undefined otherwise. When the limit exists for all n and
Θn, this will define N(CT ) on all state descriptions and thus on all quantifier free
sentences which then extends uniquely to all S L by Gaifman theorem. The main
question when working with this proposal is thus to investigate the conditions under
which the limit exists for all n and state descriptions Θn, and when it does, that
N(CT ) does indeed satisfy CT . We will investigate the existence of this limit in
terms of the quantifier complexity of the sentences in T .
For the Maximum Entropy inference process, in particular, the existence of this
limit for any set of sentences T from a unary first order languages as well as for
sets of Σ1 or Π1 sentences on arbitrary polyadic languages has been investigated by
Barnett and Paris [6] and Rafiee Rad [34] and Paris and Rafiee Rad [30]. In what
follows we will survey these results and put them in a more general light. Indeed,
the main property used in the above mentioned analysis for the Maximum Entropy
inference process is the symmetry condition of the Renaming Principle.

Definition 6. (Renaming Principle) An inference process N, defined on
propositional language LProp, satisfies Renaming Principle if for two sets of linear
constraints C1 and C2 of the from

C1 = {

J∑
j=1

a jiw(γ j) = bi | i = 1, . . .m}

C2 = {

J∑
j=1

a jiw(δ j) = bi | i = 1, . . .m}

where γ1, . . . γJ and δ1, . . . , δJ are permutations of atoms of LProp, α1, . . . αJ ,

N(C1)(γ j) = N(C2)(δ j),

for all j = 1, . . . , J.
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Fact 1. Let LProp be a propositional language with atoms α1, . . . , αJ and let N be
an inference process defined on LProp. Then N satisfies Renaming Principle if for
every set of linear constraint C ∈ CLProp and permutation σ of 1, . . . , J we have
σ(N(VLProp(C))) = N(σVLProp(C)).4

See [28, pages 97-98].
In Sections 4 and 5, we will look at unary first order languages and sets of Σ1
sentences from any polyadic language. In Section 6, we will focus on sets of Π1
sentences and will show the existence of the limit for any set T of Π1 sentences
from a unary language with equality as well as for any set T containing only what
we shall call slow Π1 sentences from arbitrary polyadic languages. Finally, in
Section 7 we will show that the limit does not necessarily exist in general.

3 Renaming Principle and the Equivalence of Inference
Processes on sets of First Order Axioms

The renaming Principle is satisfied, not only by the Maximum Entropy inference
process but also by a wide range of other inference processes proposed and studied
in the literature. The results in this paper thus cover not only the Maximum
Entropy inference process but also other well studied instances such as the Centre
of Mass Infinity, Minimum Distance, and more generally the spectrum of inference
processes based on generalised Renyi Entropies [36], as they all satisfy RP.

Proposition 1. i. Maximum Entropy and Centre of Mass Infinity and
Minimum Distance inference processes satisfy the Renaming Principle.

ii. More generally an inference process based on generalised Renyi entropies
satisfies the Renaming Principle.

Proof. For (i) see [28, page 98]. For (ii) For a probability function w generalised
Renyi entropeis are difined as

Hδ(w) =
1

1 − δ

J∑
i=1

w(αi)δ

for δ ≥ 0, δ , 1. Let Nδ be the inference process defined in terms of maximising
Hδ then it is easy to see that for any set of linear constraints C ∈ CLProp and
permutation σ of 1, . . . , J we have σNδ(VLProp(C)) = Nδ(σVLProp(C)). The result
now follows using Fact 1.

�
4Here the inference process N is considered as a choice function on the set VLProp (C) directly.
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Although there are inference processes that violate the Renaming Principle, it does
seem as a minimally demanding condition that is very natural to impose on an
inference process, at least in the context that is relevant to us.5 Remember the goal
here is to define the most normal models for a set of first order axioms, or to be
more precise, to give a probabilistic characterisation of models to the extent they
are specified by a set of axioms. As such, it is natural to expect that renaming
the structures that satisfy the axioms should have no bearing on this probabilistic
characterisation.

Proposition 2. Let N be an inference process defined on propositional languages
that satisfies Renaming Principle and let T = {φ1, . . . , φn}. If N(CT ) is defined,
then for a state description Θn of Ln

N(CT )(Θn) = lim
r→∞

|{Θr |
Θrextends Θn

Θrconsistent withT }|

|{Θr |Θrconsistent with T }|
(3)

Proof. Let k be the largest number such that ak appears in T and let r > k. As
was discussed above the finite sub-languages Lr can be treated as propositional
languages and so N is defined and satisfies Renaming Principle on these languages.
Notice that the constraint imposed by Cr

T
is of the form

w(Θr
i1) + . . . + w(Θr

in) = 1

where S = {Θr
i1
, . . . ,Θr

in
} is the set of all state descriptions of Lr that are consistent

with T . Let σ be any permutation of state descriptions of Lr such that σ(Θr) ∈ S
for all Θr ∈ S . Let Cr

T
= {w(Θr

i1
) + . . . + w(Θr

in
) = 1} and C′r

T
= {w(σ(Θr

i1
)) + . . . +

w(σ(Θr
in

)) = 1}. By Renaming Principle we have

N(Cr
T

)(Θr) = N(C′r
T

)(σ(Θr)).

But the sum in C′r
T

is just a rearranging of the sum in Cr
T

(by the way σ was
defined). Hence we have C′r

T
= Cr

T
and so N(Cr

T
)(φ) = N(C′r

T
)(φ) for all φ ∈ S Lr

and so for all Θr ∈ S

N(Cr
T

)(Θr) = N(C′r
T

)(σ(Θr)) = N(Cr
T

)(σ(Θr)).

Since σ is any permutation that respects the consistency with T , we have that
N(Cr

T
) assigns equal probability to all state descriptions of Lr that are consistent

5Notice that we defined RP for propositional languages and we take it as a natural constraints
for inference processes on propositional languages only. As it shall become clear, in extending an
inference process N that is defined on propositional languages to first order languages, we only
assume RP for the application of N on propositional languages. The corresponding notion to RP for
first order languages is Constant Exchangeability wich we will not deal with in this paper, please see
[28] for more detailed analysis of Constant Exchangeability.
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with T .6 By equation (2) and noticing that N(Cr
T

) assigns probability zero to those
state descriptions of Lr that are inconsistent with T ,

N(CT )(Θn) = lim
r→∞

N(Cr
T

)(Θn) = lim
r→∞

∑
Θr�Θn

N(Cr
T

)(Θr)

= lim
r→∞

∑
Θr�Θn

1
|{Θr |Θrconsistent with T }|

= lim
r→∞

|{Θr |
Θrextends Θn

Θrconsistent withT }|

|{Θr |Θrconsistent with T }|
.

�
The result above guarantees that for a set of axioms T , either N(CT ) exists for all
inference processes N that satisfy Renaming Principle, or does not for any. Next
result which follows from this shows that when they exist, they all agree.

Corollary 1. Let N be an inference process defined on propositional languages
that satisfies Renaming Principle and T a set of first order axioms, and assume
that N(CT ) = limr→∞ N(Cr

T
) exists. Then for every inference process M that also

satisfies the Renaming Principle,

N(CT ) = M(CT ).

4 Probabilistic Models of First Order Theories: unary
languages

We start by looking at the simplest case where the language contains only finitely
many unary predicates. We will show that in this simple case the proposal for
generalising an inference process N, that satisfies RP, as the limit of its application
on constraints restricted to finite sublanguages is well-defined.
Let L be a first order language with finitely many unary predicates P1, . . . , Pn and
domain {a1, a2, . . .}. For the rest of this section let T ⊆ S L be a finite satisfiable set
of sentences from L. Let Q1, . . . ,QJ enumerate all the formulas of the form

±P1(x) ∧ ±P2(x) ∧ . . . ∧ ±Pn(x).

We will call these types for L. Remember that Lk is the language L with domain
restricted to {a1, . . . , ak} and for k < r, let ()r : S Lk → S Lr

Prop be the translation

6Notice that our assumption thatT consists of sentences that hold categorically (hence probability
1) is essential. This ensures that fort each r, for any permutation σ that permutes state descriptions
of Lr with non-zero probability amongst themselves, the original set of constraints Cr and the set of
constraints generated by applying the permutation, C′r, are the same and thus N(Cr

T
)(φ) = N(C′r

T
)(φ)

for all φ ∈ S Lr. For an example of a non-categorical set of constraints where the ME,CM∞ and MD
give different answers see [33, page 43-46].
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from S Lk to the propositional language Lr
Prop from the previous section. Let Θi,

i = 1, . . . , Jk enumerate the state descriptions of Lk, that is, the exhaustive and
exclusive set of sentences of the form

k∧
i=1

Qmi(ai).

Lemma 2. [6] Any sentence θ ∈ S L, with k largest such that ak appears in θ, is
equivalent to a disjunction of consistent sentences φi,~ε of the form

Θi ∧

J∧
j=1

(
∃xQ j(x)

)ε j

where ε j ∈ {0, 1} and θ0 = ¬θ, θ1 = θ, ~ε = (ε1, . . . , εJ) is a sequence of 0’s and 1’s
and � ¬(φi,~ε ∧ φ j,~δ) when (i, ~ε) , ( j, ~δ).

Proof. The proof is a straightforward adoption of the proof of Theorem 3.5 in [12].
�
Let wr be probability functions defined on S Lr, and θ(a1, . . . , ak) ∈ S L. Then
for all r > k, wr(θr(a1, . . . , ak)) =

∑
Θr�θ(~a) wr(Θr) and is thus determined by the

probabilities, wr(Θr), of those state descriptions of Lr that are consistent with
θ(a1, . . . , ak). From Lemma 2 the same holds for the sentences φi,~ε . That is to
specify wr(θr(a1, . . . , ak)) one only needs to specify the probabilities wr(φr

i,~ε)
for those φi,~ε that entail θ(a1, . . . , ak). Notice, however, that the number of state
descriptions of Lr depends on r while, for large enough r, the number of sentences
φi,~ε is independent of r. As we move from Lr to Lr+1 what changes is the number
of state descriptions that satisfy each φr+1

i,~ε , but the number of these sentences
remain the same for all r eventually. Thus to specify wr(θ(a1, . . . , ak)) we need to
specify wr on the same set of sentences (namely those φi,~ε that satisfy θ(a1, . . . , ak))
for all r eventually. This is an advantage of working with unary languages which
will be lost when moving to more expressive languages.

We now define some short-hand notations for the ease of writing which we shall
use for the rest of this section. For each φi,~ε = Θi ∧

∧J
j=1

(
∃xQ j(x)

)ε j , let

Ai = {m j | j = 1, ..., k }, P~ε = { j | ε j = 1 }, Pi,~ε = { j | j ∈ P~ε and j < Ai }

then, Ai enumerates the types that are satisfied by some a j, j = 1, . . . , k, in Θi, P~ε
enumerates the types that φi,~ε requires to be satisfied and Pi,~ε enumerates those that

14



are required to be satisfied but are not satisfied in Θi.

φr
i,~ε = Θi ∧

J∧
j=1

(
r∨

i=1

Q j(ai))ε j ≡
∨

m j∈P~ε for j=k+1,...,r
Pi,~ε⊆{m j | k+1≤ j≤r}

(Θi ∧

r∧
j=k+1

Qm j(a j)) (4)

Set p~ε = |P~ε |, and pi,~ε = |Pi,~ε |, then the number of disjuncts in 4, i.e. the number of
state descriptions of Lr that logically imply φi,~ε will be

nr
i,~ε =

pi,~ε∑
j=0

(−1) j
(
pi,~ε

j

)
(p~ε − j)r−k.

To see this notice that we need to choose r − k elements from P~ε while covering
Pi,~ε . This is the total number of ways we can choose r − k elements from P~ε that
is (p~ε)r−k minus the number of ways we can make this choice and miss at least one
element in Pi,~ε , that is

∑pi,~ε
j=1(−1) j−1

(
pi,~ε

j

)
(p~ε − j)r−k, which gives (4).

Theorem 3. Let L be a unary first order language, T ⊂ S L a finite set of satisfiable
sentences and N an inference process defined on propositional languages that
satisfies the Renaming Principle. Let ~ε1, . . . , ~εs be all those vectors ~ε for which∧J

j=1

(
∃xQ j(x)

)ε j is consistent with T and for which p~ε takes its largest possible
value, and let θ ∈ S L such that k is the largest that ak appears in θ or T . Then

N(CT )(θ) = lim
r→∞

N(Cr
T

)(θr) = |H|/|K|, (5)

where K = {φi,~εt | φi,~εt is consistent with
∧
T , 1 ≤ i ≤ Jk, 1 ≤ t ≤ s} and

H = {φi,~εt | φi,~εt is consistent with θ ∧
∧
T , 1 ≤ i ≤ Jk, 1 ≤ t ≤ s}.

and, as above, φi,~ε = Θi∧
∧J

j=1

(
∃xQ j(x)

)ε j and Θi, i = 1, . . . , Jk enumerate the state
descriptions of Lk, i.e., sentences of the form

∧k
i=1 Qmi(ai). Furthermore, N(CT ) is

a probability function on S L and satisfies CT .

Proof.
It is clear that if N(CT ) exists, it is a probability function and that for all ψ ∈ T ,
N(CT )(ψ) = 1. To show (5), let

K′ = {φi,~ε | φi,~ε is consistent with
∧
T }, and

H′ = {φi,~ε | φi,~ε is consistent with θ ∧
∧
T }.
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Let Θr
i run through the state descriptions of Lr and let Γr

T
be the set of state

descriptions of Lr that are consistent with
∧
T . By Proposition 2, all the state

descriptions of in Γr
T

will get the same probability, namely 1
|Γr
T
|
, by N(Cr

T
). Let

nr
i,~ε =

∑pi,~ε
j=0(−1) j

(
pi,~ε

j

)
(p~ε − j)r−k be the number of state descriptions of Lr that

logically imply φi,~ε , as above, and notice that (1 − j
pε

)r−k → 0 as r → ∞ for

0 < j < p~ε , so limr→∞
∑pi,~ε

j=0(1 − j
p~ε

)r−k → 1, and thus we have

lim
r→∞

nr
i,~ε

(p~ε)r−k = 1. (6)

So
N(Cr

T
)(θr) =

∑
Θr

j�θ
r

N(Cr
T

)(Θr
j) =

∑
φi,~ε∈H′

∑
Θr

j�φi,~ε

N(Cr
T

)(Θr
j)

=
∑
φi,~ε∈H′

nr
φi,~ε

|Γr
T
|

=

∑
φi,~ε∈H′ nr

φi,~ε∑
φi,~ε∈K′ nr

φi,~ε

where the last equality uses the fact that |Γr
T
| =

∑
φi,~ε∈K′ nr

φi,~ε
which holds as both

sides count the number of state descriptions of Lr that are consistent with
∧
T .

Let c1 > c2 > . . . > ct be the distinct values for p~ε for the sentences in K′, so we
have p~ε = c1 for all φi,ε ∈ K (and thus for φi,ε ∈ H) and for all φi,ε < K , p~ε ≤ c2.
Then we will have

N(CT )(θ) = lim
r→∞

N(Cr
T

)(θr) =

lim
r→∞

∑
φi,~ε∈H′ nr

φi,~ε∑
φi,~ε∈K′ nr

φi,~ε

= lim
r→∞

∑
φi,~ε∈H nr

φi,~ε
+

∑
φi,~ε∈H′\H nr

φi,~ε∑
φi,~ε∈K nr

φi,~ε
+

∑
φi,~ε∈K′\K nr

φi,~ε

=

lim
r→∞

∑
φi,~ε∈H nr

φi,~ε∑
φi,~ε∈K nr

φi,~ε
+

∑
φi,~ε∈K′\K nr

φi,~ε

+ lim
r→∞

∑
φi,~ε∈H′\H nr

φi,~ε∑
φi,~ε∈K nr

φi,~ε
+

∑
φi,~ε∈K′\K nr

φi,~ε

.

Next notice that

lim
r→∞

∑
φi,~ε∈K nr

φi,~ε∑
φi,~ε∈K nr

φi,~ε
+

∑
φi,~ε∈K′\K nr

φi,~ε

≥ lim
r→∞

cr−k
1 |K|

cr−k
1 |K| + cr−k

2 |K
′ \ K|

= 1

To see this notice that by (6) limr→∞
nr
φi,~ε

(p~ε )r−k = 1 and that p~ε = c1 for all φi,~ε ∈ K,
p~ε < c2 for all φi,~ε ∈ K′ \ K and we have c2 < c1. Thus

lim
r→∞

∑
φi,~ε∈K nr

φi,~ε∑
φi,~ε∈K nr

φi,~ε
+

∑
φi,~ε∈K′\K nr

φi,~ε

= 1. (7)
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From (7) we have

lim
r→∞

∑
φi,~ε∈H′\H nr

φi,~ε∑
φi,~ε∈K nr

φi,~ε
+

∑
φi,~ε∈K′\K nr

φi,~ε

= lim
r→∞

∑
φi,~ε∈H′\H nr

φi,~ε∑
φi,~ε∈K nr

φi,~ε

≤ lim
r→∞

cr−k
2 |H

′ \ H|

cr−k
1 |K|

= 0,

since c2 < c1. In consequence we get

N(CT )(θ) = lim
r→∞

N(Cr
T

)(θr) = lim
r→∞

∑
φi,~ε∈H nr

φi,~ε∑
φi,~ε∈K nr

φi,~ε
+

∑
φi,~ε∈K′\K nr

φi,~ε

= lim
r→∞

∑
φi,~ε∈H nr

φi,~ε∑
φi,~ε∈K nr

φi,~ε

=
cr−k

1 |H|

cr−k
1 |K|

=
|H|
|K|

.

It is immediate to check that N(CT ) defined as above satisfies CT .
�

In particular then N(CT ) assigns probability 1 to
∨s

i=1
∧J

j=1

(
∃xQ j(x)

)εi
j (and 1/s

to each disjunct), thus exclusively favouring those structures M that model T
in which as many of the Q j as possible are satisfied, that is existentially closed
models of T . To see this remember that ~ε1, . . . , ~εs were taken to be those for which∧J

j=1

(
∃xQ j(x)

)ε j is consistent with T and pε is maximal, that is those ~ε which has
maximal number of j with ε j = 1.
This shows that an inference process N satisfying the RP can be correctly
generalised to a unary first order language as the limit of its application on finite
sublanguages. What is more, for this simple case of unary languages, the Renaming
Principle is enough to ensure N implies existential closedness . That is, N(CT )
only assigns positive probability to those structuresM that are a model of T and
are existentially closed.

5 Probabilistic Models of Σ1 sentences

The next case concerns a polyadic language L, and sets of axioms T that include
only Σ1 sentences. We will show that for all inference processes N and all such
set T , N(Cr

T
) converge and the limit in r satisfies CT . Indeed we show something

stronger: we will show that for such N and T , N(CT ) is always obtained by an
appropriate conditionalisation of the equivocator P=.

Definition 7. Define the equivocator, P=, as the probability function that for each
k, assigns equal probability to Θk

i ’s (the state descriptions of L(k)), i.e. the most
non-committal probability function.
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Notice that a set T of Σ1 sentences can be written as a single Σ1 sentence by taking
the conjunction of T . Thus without loose of generality we will focus on singleton
sets of Σ1 sentences of the form T = {∃x1, . . . , xtθ(~a, x1, . . . , xt)}.

Theorem 4. Let L be a first order language, N an inference process defined for
propositional languages that satisfies Renaming Principle. Let φ ∈ S L be the
satisfiable Σ1 sentence ∃x1, . . . , xtθ(~a, x1, . . . , xt), T = {φ} and C = {w(φ) = 1}7

the corresponding set of constraints. For each n and state description Θn of Ln

define.
N(C)(Θn) = lim

r→∞
N(Cr)(Θn)

Then N(C) is well-defined and is a probability function on S L that satisfies C.
Furthermore, or all ψ ∈ S L,

N(C)(ψ) = P=(ψ |Λ)

where k be the largest that ak appears in φ, Γk
φ is the set of state descriptions of Lk

that are consistent with φ and Λ =
∨

Γk
φ.

The proof follows exactly as for the proof for Maximum Entropy inference process
given in [34] as the only property of the Maximum Entropy used in that proof
was the Renaming Principle. We will summarize the proof here for the sake of
completeness. Let φ be as above and k be largest such that ak appears in φ. There
can be state descriptions of Lk that entail ¬φ. These state descriptions obviously
have no extensions to r > k that are consistent with φ. The main idea of the
proof is that for those state descriptions of Lk that do not entail ¬φ, almost all
their extensions are consistent with φ. The result will then follow by noticing
that first, each state description of Lk will have the same number of extensions to
Lr, r > k and second, by Renaming Principle all these extensions have the same
probability. Lemma 5 makes the main observation precise, but first we introduce
some short-hand notations following [34]:
Let Γr be the set of state descriptions of Lr and Γr

C be the subset of Γr that are
consistent with φr. For Θl

i ∈ Γl and r > l let Γr
l,i = {Ψr

j ∈ Γr |Ψr
j � Θl

i} be the set
of state description of Lr that extend the state description Θl

i of Ll and CΓr
l,i ⊆ Γr

l,i
those of which that satisfy Cr, that is CΓr

l,i = Γr
C ∩ Γr

l,i. State descriptions of Ll

will all have the same number of extensions to state descriptions of Ll+1 thus
|Γr

l,i| = |Γ
r
l, j| for Θl

i,Θ
l
j ∈ Γl. Take Γk

φ as the set of state descriptions of Lk that are
consistent with φ, and let Γk

¬φ = Γk − Γk
φ.

7we eliminated the subscript T from CT for ease of notation.
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Lemma 5. If Θl
i is a state description of Ll that extends some state description in

Γk
φ then

lim
r→∞

|CΓr
l,i|

|Γr
l,i|

= 1.

In other words, if Θl
i extends a state description of Lk that is consistent with φ then

almost all its extensions to a state description of Lr will also be consistent with φ.

Proof.
Notice that |

CΓr
l,i

Γr
l,i
| is the probability that a random extension of the state description

Θl
i ∈ Γl to Lr will satisfy Cr.8 Remember that Θl

i extends a state description in
Γk
φ, say Ψk. We can now calculate this probability. Take Θl

i ∈ Γl and let’s consider
its extensions to state descriptions of Ll+t, remembering that t is the number of
variables in φ. Let Lai1 ,...ain be language L with only constant symbols ai1 , ..., ain
and let ∆i, i = 1, ...,M enumerate the state descriptions of L{a1,...,ak}∪{al+1,...,al+t} that
extend Ψk (thus they agree with Θl

i when restricted to a1, . . . , ak) . Then state
descriptions of Ll+t that are extension of Θl

i can be written in the form Θl+t
i,m ≡

Θl
i ∧ ∆ j ∧ Vh(a1, ..., al+t), 9 with m = 1, ..., |Γl+t

l,i |, j = 1, ...,M, and h = 1, ...,
|Γl+t

l,i |

M .
At least one of the ∆ j’s satisfies θ(~a, al+1, ..., al+t) and will hence satisfies Cl+t. The
probability that an arbitrary Θl+t

i,m satisfies Cl+t will be the number of Θl+t
i,m’s that

satisfies Cl+t divided by the total number of Θl+t
i,m’s that is at least,

|Γl+t
l,i |

M . 1
|Γl+t

l,i |
= 1

M ,

and so the probability that a random Θl+t
i,m does not satisfy Cl+t will be at most 1− 1

M .
Now consider the extension of Θl

i to a state description of Ll+pt,

Θ
l+pt
i,m ≡ Θl

i ∧ ∆1
j1 ∧ ∆2

j2 ∧ ... ∧ ∆
p
jp
∧ V ′h(a1, ..., al+pt)

with m = 1, ..., |Γl+pt
k,i |, j1, ..., jp ∈ {1, ...,M}, h = 1, ...,

|Γ
l+pt
l,i |

Mp and where ∆s
j

enumerate the state description of L{a1,...,ak}∪{al+(s−1)t+1,...,al+st} that extend Ψk. The
probability that Θ

l+pt
i,m does not satisfy Cl+pt is at most as high as the probability

that ∆1
j 2 θ(~a, al+1, ..., al+t), ...,∆

p
j 2 θ(~a, al+(p−1)t+1, ..., al+pt) so 0 ≤ 1 −

|CΓ
l+pt
l,i |

|Γ
l+pt
l,i |
≤

(1 − 1
M )p. Let p → ∞, then 0 ≤ limr→∞ 1 −

|CΓr
l,i |

|Γr
l,i |
≤ limp→∞(1 − 1

M )p = 0. Hence,

we have limr→∞ 1 −
|CΓr

l,i |

|Γr
l,i |

= 0 and limr→∞
|CΓr

l,i |

|Γr
l,i |

= 1 as required. �

8The denominator is the total number of extensions of Θl
i ∈ Γl to Lr and the numerator is the

number of those extensions of Θl
i ∈ Γl to Lr that satisfy Cr.

9Vh(a1, ..., al+t) enumerate sentence of the form
∧

i1 ,...,i j≤l+t
R∈RL j−ary

Ri(ai1 , . . . , ai j )
εi1 ,...,i j where {ai1 , . . . , ai j }

intersects both {ak+1, . . . al} and {al+1, . . . , al+t}.
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The proof of Theorem 4 now follows using Lemma 5. To see this notice that since
N(Cr) satisfies φr it should assign all probability mass to those state descriptions
that extend state descriptions in Λ. Then by Lemma 5 if Θn is consistent with
φ then almost all its extensions to Lr, r > n will be consistent with φ. By
Renaming Principle all these extensions will have the same probability. So for
each n, N(C)(Θn) = P=(Θn|Λ). Then N(C) is clearly a probability function and
the fact that it satisfies C follows from the fact that P=(∃~xθ(~a, ~x) |Λ) = 1, see [34,
Lemma 2] for this and more detail on the proof.
In particular then, for a set of Σ1 sentences T , if k is the largest that ak appears in
T and all state descriptions of Lk are consistent with

∧
T , then N(CT ) = P= and

this is so for any such T . We will now move to the more problematic case of Π1
theories.

6 Probabilistic Models of Π1 sentences

The next case is for sets of sentences T consisting of Π1 sentences. Following
as in the previous sections we ask whether N(Cr

T
) converges as r → ∞ for a

set T consisting of Π1 sentences. We have already seen that this holds if L is
a unary language as our result for that case does not depend on the quantifier
complexity of sentences in T . We conjecture that this is the case for any finite
predicate language L, without function symbols and whose only constant symbols
are a1, a2, . . ., though our results to date fall short of proving that. This is the only
case of this analysis that still remains open. Nevertheless we will show this for two
special cases below: first we will show this for a unary languages with equality. It
should be noted that the approach of Section 4 can be directly adopted to this case
but we will give an alternative proof here which we shall also use for the second
special case we will consider. That is for a polyadic language L when T consists
only of what we shall call slow Π1 sentences. For this second case we will give the
full details of the analysis given briefly in [30] for the maximum entropy inference
process, which can be immediately adopted for any inference process satisfying
the Renaming Principle.
To make clear what ‘equality’ means in this context we require that our probability
functions give probability 1 to the axioms of equality and probability 0 to ai = a j

for i , j.

6.1 Π1 sentences from Unary Languages with Equality

Let T be a set of Π1 sentences and L from a unary first order language L with
equality and with predicate symbols P1, . . . , Pm. As before we notice that a set of
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Π1 sentences T can be written as a single Π1 sentence by taking the conjunction of
T . Thus without loose of generality we will focus on singleton sets of sentences
of the form T = {∀x1, . . . , xtθ(x1, . . . , xt)}.
Let Q1, . . . ,QJ enumerate formulas of the form

±P1(x) ∧ ±P2(x) ∧ . . . ∧ ±Pm(x)

which as before we shall call the types for L with equality removed. Let n �
k ≥ t. Given a state description Θn of Ln, let MΘ be the unique structure for L
with universe {a1, . . . , an} specified by Θn. Say that Θn is of sort κ, where κ :
{1, . . . , J} → {0, 1, . . . , t}, if for 1 ≤ i ≤ J,

κ(i) = min{|{ j |Θn |= Qi(a j) }|, t}.

The types Qi describe different ways that constants can behave, in other words
different kinds of constants that we can have. The sort κ for the state description Θ

then gives information about how many constants of each kind there are in Θ. To
be more precise, the sort of each state description Θ determines, for each kind Qi,
if there are at least t constants of type Qi in Θ and if not how many constants of
this type are in Θ exactly.

Lemma 6. Suppose that φ(x1, . . . , xk) is quantifier free and Θn
1,Θ

n
2 are state

descriptions with the same sort. Then

MΘ1 |= ∀x1, . . . , xk φ(x1, . . . , xk) ⇐⇒ MΘ2 |= ∀x1, . . . , xk φ(x1, . . . , xk).

Proof. Suppose MΘ1 |= ∀x1, . . . , xk φ(x1, . . . , xk) but MΘ2 2

∀x1, . . . , xk φ(x1, . . . , xk). This means that there are ai1 , . . . , aik such that
MΘ2 |= ¬φ(ai1 , . . . , aik ) and suppose that

MΘ2 |= Qi j(ai j).

Since Θ1(a1, . . . , an) and Θ2(a1, . . . , an) are state descriptions with the same sort
we should have at1 , . . . , atk such that

MΘ1 |= Qi j(at j)

and such that whenever ai j , aik , at j , atk .
Thus MΘ1 |= ¬φ(at1 , . . . , atk ) and so MΘ1 2 ∀x1, . . . , xk φ(x1, . . . , xk) that is a
contradiction. The other direction of the proof will be similar. �

21



Theorem 7. Let L be a unary first order language with equality, φ a Π1 sentences in
L of the form ∀x1, . . . , xtθ(x1, . . . , xt), C = {w(φ) = 1} and N an inference process
defined on propositional languages that satisfies the Renaming Principle. For every
n, and state description Θn of Ln let

N(C)(Θn) = lim
r→∞

N(C)(Θn)

then N(C) is well-defined. Furthermore N(C) is a probability function on S L and
satisfies C.

Proof.
If N(C) is well-defined then it satisfies (1) and (2), as it is a limit of probability
functions and thus by Theorem 1 uniquely extends to a probability function on S L.
To see that it satisfies C notice that

N(C)(φ) = lim
n→∞

N(C)(
∧

i1,...,it∈{1,...,n}

θ(ai1 , . . . , ait ))

= lim
n→∞

lim
r→∞

N(Cr)(
∧

i1,...,it∈{1,...,n}

θ(ai1 , . . . , ait )) = lim
n→∞

1 = 1

where the equality before last is given by the fact that N(Cr) satisfies∧
i=1,...,t∈{1,...,r} θ(ai1 , . . . , ait ) and hence for r > n N(Cr) satisfies∧
i=1,...,t∈{1,...,n} θ(ai1 , . . . , ait ).

To see that N(C) is well-defined, let Θn
1, . . . ,Θ

n
M be all the state descriptions of Ln

consistent with ∀~xθ(x1, . . . , xt). Let κ1, . . . , κR be the distinct sorts appearing where
the ordering has been chosen so that if κi(m) ≤ κ j(m) for all 1 ≤ m ≤ J, then
j ≤ i.10

Given a state description Θn consistent with ∀x1, . . . , xt θ(x1, . . . , xt) and of sort κg

let bgh be the number of state descriptions of Ln+1 of sort κh extending Θn and
consistent with ∀x1, . . . , xt Θ(x1, . . . , xt). 11 These 〈bgh〉 form a lower triangular
matrix B and if we start from a state description Θn of sort κi the number of state
descriptions of Ln+r of sort κ1, κ2, ..., κR is given by (Br)T ~ei where ~ei is the column
vector with 1 in i-th place and zero elsewhere and (Br)T is the transpose of the
matrix Br = Πr

j=1B.
For Θn a state description of sort κi consistent with ∀x1, . . . , xt θ(x1, . . . , xt)
the number of state descriptions of Ln+r extending it and still consistent with
∀~x θ(x1, . . . , xt) is

〈1, 1, . . . , 1〉(Br)T~ei.

10Notice the reversing of the inequalities here.
11Notice that provided n is large this number does not depend on n.
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Similarly the total number of state descriptions of Ln+r consistent with ∀x1, . . . , xt

θ(x1, . . . , xt) is
R∑

j=1

N j〈1, 1, . . . , 1〉(Br)T~e j

where N j is the number of state description of Ln of sort κ j.
By Renaming Principle N(C) will give each of these the same probability, namely R∑

j=1

N j〈1, 1, . . . , 1〉(Br)T~e j


−1

thus

N(Cn+r)(Θn) =
〈1, 1, . . . , 1〉(Br)T~ei∑R

j=1 N j〈1, 1, . . . , 1〉(B)r T~e j

and

N(C)(Θn) = lim
r→∞

N(Cr)(Θn) = lim
r→∞

〈1, 1, . . . , 1〉(Br)T~ei∑R
j=1 N j〈1, 1, . . . , 1〉(Br)T~e j

(8)

Thus to complete the proof it is enough to show that the limit in the RHS of (8)
exists. Notice that to show that the limit in (8) exists it would be enough to show
that for each h , i, limr→∞

〈1,1,...,1〉(Br)T~ei
〈1,1,...,1〉(Br)T (~ei+~eh) exists.

Claim 1.
lim
r→∞

〈1, 1, ..., 1〉(Br)T ~ei

〈1, 1, ..., 1〉(Br)T (~ei + ~eh)
, exists

Proof. See Appendix �
This shows that N(C) is well-defined on all state descriptions Θn for all n and
completes the proof.

�

6.2 Probabilistic models of slow Π1 sentences

We will now look at a general polyadic language L and will show the existence
of the limit limr→∞ N(Cr

T
) for T ⊆ S L consisting of only those Π1 sentences

that for each k, have exponentially bounded number of models of size k. As
before let T = {∀x1, ..., xt θ(x1, ..., xt)}, CT = {w(∀x1, ..., xt θ(x1, ..., xt)) = 1} the
corresponding constraints set and k be an upper bound on i such that ai appears in
T .
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Definition 8. For Θ(b1, . . . , br), a state description in L over b1, . . . , br
12, we say

bi, b j are indistinguishable mode Θ(~b), denoted bi ∼Θ(~b) b j, if

Θ(b1, . . . , br) ∧ bi = b j

is consistent with the axioms of equality for the language L plus =. The relation
∼

Θ(~b) is an equivalence relation. The spectrum of Θ(~b) is the multi-set of sizes of

the equivalence classes of ∼
Θ(~b) and the length of its spectrum, denoted ||Θ(~b)||, is

the number of equivalence classes.

Definition 9. [30] We say that a quantifier free formula θ(x1, x2, . . . , xn) is slow if
there are some constants c, d such that for all r the number of term models with
domain {a1, . . . , ar} that satisfy ∀~xθ(~x) is at most dcr.

Theorem 8. Let p be the largest arrity of any relation symbol in L. If
θ(x1, x2, . . . , xn) is slow with bound dkr, then there is a finite set S of state
descriptions Θk+p (of Lk+p), of spectrum length at most k such that

k+p∧
i1,...,in=1

θ(aii , . . . , ain) ≡
∨

Θk+p∈S

Θk+p. (9)

Proof. Since the LHS is a sentence of Lk+p, there is a finite set of state descriptions
of Lk+p that gives the above equivalence. We prove that any state description
consistent with

∧k+p
i1,...,in=1 θ(aii , . . . , ain) has spectrum length at most k. Suppose

that there is a state description Θk+p of Lk+p consistent with ∀~xθ(x1, . . . , xn) with

||Θk+p|| > k.

We can extend this state description to an state description on, a1, a2, . . . , aq, for
q > k + p by making the new elements clones of existing elements. In other words,
we just add the new elements to the equivalence classes of existing elements.
Furthermore, we can do this in ||Θk+p||q−k−p ways. Thus, we will have at least
||Θk+p||q−k−p many models of ∀~xθ(x1, . . . , xn) of size q. But this clearly exceeds
dkq for sufficiently large q, and this is a contradiction. Thus if θ(x1, . . . , xn) is slow
with bound dkr, then for large r each state descriptions Lr that is consistent with
∀x1, . . . xnθ(x1, . . . , xn) has at most k distinguishable elements. �

Theorem 9. Let L be a first order language and let T = {∀~xθ(~x)} where θ(~x) is
slow. For all n and state description Θn of Ln, let

N(CT )(Θn) = lim
r→∞

N(Cr
T

)(Θn).

12As given in Definition 5.
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Then N(CT ) is well-defined. Furthermore N(CT ) is a probability function on S L
that satisfies CT .

The idea of the proof is as follows. Remember from Proposition 2 that since N
satisfies Renaming,

N(CT )(Θn) = lim
r→∞

|{Θr |
Θrextends Θn

Θrconsistent withT }|

|{Θr |Θrconsistent with T }|
(10)

We will show that for a slow formula θ(~x) and large r, almost all models of ∀~xθ(x)
of size r will have as many mutually distinguishable constants as possible. By
Theorem 8 the maximum number of mutually distinguishable constants is bounded
by k where dkr is the bound for ∀~xθ(~x). So the asymptotic number of models
of size r is the same as models of size r with k equivalence classes of constants.
This will give an expression for the denominator of (10). Next, we shall use the
same intuitions to find an expression for the numerator of (10). To do this, we will
find the number of models of ∀~xθ(x) that extend some given state description by
looking at the number of possible extensions for each spectrum length, of which
there are at most k.

Proof. If N(CT ) is well-defined it will satisfy (1) and (2) by definition and thus, by
Theorem 1 uniquely extends to a probability function on S L and clearly satisfies
N(CT ). To see that it is well-defined, let ∀~xθ(~x) be slow with bound dkr. Using
Proposition 2, to show Theorem 9, it is enough to show that for any state description
Θn, the limit

lim
r→∞

N(CT )(Θn) = lim
r→∞

|{Θr |
Θrextends Θn

Θrconsistent withT }|

|{Θr |Θrconsistent with T }|
(11)

exists.

Let Θr be a state description of Lr consistent with T and with equivalence classes
S 1, S 2, ..., S q ordered such that if iu is minimal with aiu ∈ S u, then i1 < i2 < ... < iq.
This means that the equivalence classes are ordered by the minimum index of their
constants. Notice that by Theorem 8, q ≤ k. Take the constants ai1 . . . . , aiq from
S 1, . . . , S q respectively and let us consider the state description Ψ(ai1 , ..., aiq) on
ai1 , ..., aiq (see Definition 5) logically implied by Θr. So, Ψ(ai1 , ..., aiq) is a sentence
of the form

Ψ(ai1 , ..., aiq) =
∧

b1,...,bkR∈{ai1 ,...aiq }

±R(b1, . . . , bkR)

and Θr � Ψ(ai1 , ..., aiq). Then Ψ(ai1 , ..., aiq) has spectrum {1, ..., 1} with length
q ≤ k. This means Ψ(ai1 , ..., aiq) divides ai1 , . . . , aiq into q equivalence classes,
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i.e., ai1 , ..., aiq are mutually distinguishable mod Ψ(ai1 , ..., aiq). To see this, notice
that any two ais , ait among these are distinguishable mod Θr because they are
from different equivalence classes of ∼Θr . This means that there is some ~a, and R
such that Θr � R(ais , ~a) ∧ ¬R(ait , ~a) or Θr � ¬R(ais , ~a) ∧ R(ait , ~a), etc. But since
Θr divides {a1, . . . , ar} into equivalence classes S 1, . . . , S q, for each au appearing
in ~a, we should have au ∼Θr bu for some bu ∈ {ai1 , . . . , aiq}. Let ~b = (bu)au∈~a.
Then ais and ait can be distinguished by ~b and so they will be distinguishable
by Ψ(ai1 , ..., aiq). Then since every two ais , ait ∈ {ai1 , . . . , aiq} are distinguishable
for Ψ(ai1 , ..., aiq), it has spectrum {1, 1, . . . , 1} of size q. Next, we should note
that we can recover Θr from Ψ(a1, ..., aq) and S 1, ..., S q. So, the number of state
descriptions Θr is the number of choices of Ψ(ai1 , ..., aiq) and the choices of
S 1, ..., S q. Let dq be the number of state descriptions Ψq (state descriptions on q
constants) consistent with T that have spectrum length q.

The only condition on the equivalence classes is that they should be non-empty and
form a partition of {a1, . . . , ar}, so the number of choices of S 1, ..., S q will be the

Stirling number of second kind, S q
r =

{
r
q

}
. Hence, the number of choices for the

Θr above will be

dqS q
r =

dq

q!

q∑
j=0

(−1)q− j
(
q
j

)
jr.

This is the number of state descriptions Θr that are consistent with T and have
spectrum length q.

It now follows that the number of state descriptions of Lr consistent with T is

s∑
i=1

dqi

qi!

qi∑
j=0

(−1)qi− j
(
qi

j

)
jr

where qs < qs−1 < ... < q1 ≤ k are the distinct possible spectrum lengths of the
state descriptions on Lr consistent with T . The proportion of state descriptions
with spectrum length q1, as r → ∞, will be

lim
r→∞

 s∑
i=1

dqi

qi!

qi∑
j=0

(−1)qi− j
(
qi

j

)
jr

(
dq1

q1!

(
qr

1 − . . . + (−1)q1
))−1

=

lim
r→∞

(
dq1

q1!

(
qr

1 − . . . + (−1)q1
)

+ . . . +
dqs

qs!
(
qr

s − . . . + (−1)qs
)) (dq1

q1!
qr

1

)−1

= 1. (12)
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What equation (12) says is that for large enough r, the number of models of T
with domain {a1, . . . , ar} and maximum spectrum length (q1) is the same as the
number of all models with domain {a1, . . . , ar}. This means that for large r, almost
all models of ∀~xθ(~x) with domain {a1, . . . , ar} have as many mutually distinct
constants as possible. Thus, as r → ∞ the number of state descriptions of Lr

consistent with T will be asymptotically

dq1

q1!
qr

1. (13)

So (13) gives an expression for the denominator of (11). We will next try to find
an expression for the numerator.

Fix a state description Θn of Ln. We are interested in the number of models
of ∀~xθ(~x) that extend this state description. Let Θr be as such, that is, a state
description on Lr that extends Θn and is consistent with T . By Theorem 8, Θr

will have spectrum of length at most k, say with equivalence classes S 1, ..., S q′ ,
q′ ≤ k, again ordered as before, by the lowest indices appearing in them so that
if it is minimal such that ait ∈ S t, then i1 < i2 < . . . < iq. Let h be maximal
such that ih ≤ n. So, for l ≤ h, every S l includes some of {a1, . . . , an} and for
h < k, S k ∩ {a1, . . . , an} = ∅. We now take the constant with minimum index from
S h+1, . . . , S q′ , that is aih+1 , aih+2 , . . . , aiq′ respectively such that for all a j ∈ S t, it ≤ j
for t = h + 1, . . . , q′.

Let Ψ(a1, a2, . . . , an, aih+1 , aih+2 , . . . , aiq′ ) be the state description on a1, a2, . . . , an,

aih+1 , . . . , aiq′ determined by Θr (Definition 5). By the discussion above, and same
as before, Θr can be recovered from Ψ and the equivalence classes S 1, S 2, . . . , S q′ .
To see this, notice that the constants appearing in Ψ cover all equivalence classes
of ∼Θr , S 1, . . . , S q′ , because it explicitly includes elements from S h+1, . . . , S q′

and all S 1, . . . , S h include some of {a1, . . . , ar} by definition. So, every other
constant in a1, . . . , ar not appearing in Ψ is indistinguishable for Θr from one of
a1, . . . , an, aih+1 , . . . , aq′ . The difference now from our analysis for the denominator
is that there we looked at all state descriptions as opposed to those extending Θn.
So, we no longer have a free choice of partition S 1, S 2, . . . , S q′ because the non-
empty members of

S 1 ∩ {1, 2, . . . , n}, S 2 ∩ {1, 2, . . . , n}, . . . , S q′ ∩ {1, 2, . . . , n} (14)

should form a refinement of the partition of the equivalence classes T1,T2, . . . ,Tq

of Θn. These non-empty intersections will be a refinement of T1,T2, . . . ,Tq

because those constants from {a1, . . . , an} that were distinguishable by Θn will
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remain so by Θr and also by Ψ as they extend Θn, but some of the constants that
were indistinguishable by Θn (and therefore were in the same equivalence class Ti)
might now be distinguishable for Θr and Ψ by means of new constants an+1, . . . , ar.

Notice that there are finitely many of such possible Ψ’s for each possible spectrum
lengths. Let Ψ1, . . . ,Ψs enumerate them, then all the state descriptions in the
numerator of (11) will be recovered from one of these Ψ’s. Hence to show that
the limit in (11) exists, it will be enough to show that

lim
r→∞

|{Θr |
Θrextends Θn

Θrconsistent withT
Θrrecovered fromΨ j

}|

|{Θr |Θrconsistent with T }|
(15)

exists for j = 1, . . . , s because

lim
r→∞

|{Θr |
Θrextends Θn

Θrconsistent withT }|

|{Θr |Θrconsistent with T }|
= lim

r→∞

s∑
j=1

|{Θr |
Θrextends Θn

Θrconsistent withT
Θrrecovered fromΨ j

}|

|{Θr |Θrconsistent with T }|
.

For a fixed Ψ let q′ be the spectrum length and R1,R2, . . . ,Rp denote the refinement
as in (14). For this particular refinement the number of choices of S 1, S 2, . . . , S q′

for which the non-empty members of (14) are R1,R2, . . . ,Rp is∑
U⊆{n+1,...,r}
|U |≥q′−p

pr−n−|U |
{
|U |

q′ − p

}
. (16)

To see this, notice that the number of possible S 1, . . . , S q′ is the number of ways
one can distribute an+1, . . . , ar into q′ equivalence classes, p of them given by
R1, . . . ,Rp (which already include a1, . . . , an). That is the number of ways one
can take a subset U of an+1, . . . , ar and distribute it between q′ − p equivalence
classes with at least one for each class (to make sure we end up with right number
of equivalence classes) that is

{
|U |

q′−p

}
times the number of ways to distribute the

remaining r − n − |U | between R1, . . . ,Rp which are already non-empty and that is
pr−n−|U |.

Thus, the number of state descriptions corresponding to this Ψ that extend Θn, are
consistent with T , and have spectrum length q′, will be given by (16). If we expand
this, we get

r−n∑
z=q′−p

pr−n−z

(q′ − p)!

q′−p∑
j=0

(−1)q′−p− j
(
q′ − p

j

)
jz

(
r − n

z

)
and inserting this in (15) we get
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lim
r→∞

|{Θr |
Θrextends Θn

Θrconsistent withT
Θrrecovered fromΨ j

}|

|{Θr |Θrconsistent with T }|
=

lim
r→∞

1
(q′−p)!

∑r−n
z=q′−p pr−n−z

(∑q′−p
j=0 (−1)q′−p− j

(
q′−p

j

)
jz
) (

r−n
z

)
dq1
q1! qr

1

=

lim
r→∞

1
(q′−p)!

∑q′−p
j=0 (−1)q′−p− j

(
q′−p

j

)∑r−n
z=q′−p pr−n−z jz

(
r−n

z

)
dq1
q1! qr

1

. (17)

Again, notice that there are finitely many j in the numerator of (17). Thus to show
that the limit in (17) exists, it will be enough to show that it exists for each particular
j. Since

∑r−n
z=q′−p pr−n−z jz

(
r−n

z

)
is asymptotic with

∑r−n
z=0 pr−n−z jz

(
r−n

z

)
= (p + j)r−n, it

is enough to show that

lim
r→∞

(−1)q′−p− j
(
q′−p

j

)
(p + j)r−n

dq1
q1! qr

1

exists for j = 0, . . . , q′ − p. But since p + j ≤ q′ ≤ q1, this is clearly zero unless
p + j = q′ = q1, in which case it exists. Hence the limit in (15) exists for each j
and as a result, the the limit in (11) exists. This completes the proof.

�

7 Probabilistic Models of arbitrary sets of sentences

We will end with a negative result. Giving the full detail of the result mentioned
in [30] for Maximum Entropy inference process, we will show, by means of
an example, that extending an inference process N, defined over propositional
languages, to a first order language by taking the limit of its application on finite
sublanguages as defined above, is not always well-defined.
Example Assume a predicate language L with a ternary relation symbol G and a
binary relation symbol R and a unary predicate P and let E be the conjunction of:

∀x, y, z(x =G y→ (R(x, z)→ R(y, z)))

∀x, y(R(x, y)↔ R(y, x))

∀x, y, z((R(x, y) ∧ R(x, z))→ (x =G y ∨ x =G z ∨ y =G z))

∀x∃y(x ,G y ∧ R(x, y))
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∀x¬R(x, x)

and O be the conjunction of:

∀x, y, z(x =G y→ (R(x, z)→ R(y, z)))

∀x, y(R(x, y)↔ R(y, x))

∀x, y, z((R(x, y) ∧ R(x, z))→ (y =G z))

∀x, y, z, t((R(x, y) ∧ R(z, t) ∧ (x =G y) ∧ (z =G t))→ (x =G z))

∀x∃yR(x, y)

∃xR(x, x)

where
x =G y↔ ∀u, t(G(x, u, t)↔ G(y, u, t)).

LetMn
E

andMn
O

denote the models of E and O of size n respectively 13. The result
then follows from the following two claims which we prove in the appendix.

Claim 2. Let #Mn
E

be the number of models of E of size n.

• If n is an even number, n!
2

n
2 ( n

2 )!

(
2n2

n

)
≤ #Mn

E
≤ n!

2
n
2 ( n

2 )!

(
2n2

n

)
+ nn

(
2n2

n−2

)
.

• If n is an odd number, #Mn
E
≤ nn

(
2n2

n−1

)
.

Comparing the upper bound calculated for models of size n for large n when n is
odd with the lower bound of models of size n when n is even, we can see that E
has significantly more models of even size than models of odd size. We will now
follow the same way to find an estimation of the number of models of O.

Claim 3. Let #Mn
O

be the number of models of O of size n.

• If n is an even number, #Mn
O
≤ nn

(
2n2

n−1

)
.

• If n is an odd number, n!

2
n−1

2 ( n−1
2 )!

(
2n2

n

)
≤ #Mn

O
.

13Notice that E and O are Π2
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Thus for even n,

#Mn
O

#Mn
E

≤
nn

(
2n2

n−1

)
n!

2
n
2 ( n

2 )!

(
2n2

n

) ≤ nn+12
n
2 ( n

2 )!

n!(2n2
− n + 1)

≤
nn+12

n
2

2n2
− n + 1

but we have nn+12
n
2 = 2(n+1) log n+ n

2 and 2(n+1) log n+ n
2 << 2n2

since for large enough
n, log n + 1

2 << n. Thus lim n→∞
n even

#Mn
O

#Mn
E

= 0. Using the same pattern, for odd n,

#Mn
E

#Mn
O

≤
nn

(
2n2

n−2

)
n!

2
n−1

2 ( n−1
2 )!

(
2n2

n

) ≤ nn2
n−1

2

(2n2
− n + 2)(2n2

− n + 1)
≤

2n log n+ n−1
2

(2n2
− n + 2)(2n2

− n + 1)

and so lim n→∞
n odd

#Mn
E

#Mn
O

= 0. Now let T = {(E ∧ ∀xP(x)) ∨ (O ∧ ∀x¬P(x))}. Then for
a sentence like P(a1)

lim
n→∞

N(Cn
T

)(P(a1))

does not exist. To see this notice that for very large n, if n is even almost all models
of T of size n should satisfy E ∧ ∀xP(x) and thus N(Cn

T
)(P(a1)) = 1 while for odd

n, almost all models of T will satisfy (O ∧ ∀x¬P(x)) and thus N(Cn
T

)(P(a1)) = 0.
This example shows that even in the case of a Π2 sets of sentences, we cannot
in general define N(CT ), the extension of the probability function defined by
taking the limit of N(Cr

T
) of quantifier free sentences (or state descriptions) over

finite sub languages Lr, simply because the relevant asymptotic limit does not
necessarily exist even when we drop the equality from language.14

8 Conclusion

We studied most normal probabilistic characterisation of under-determined models
specified by some finite consistent set of axioms. Specific instances of this
problem is of interest in many areas and there is extensive literature studying
them for propositional languages and different approaches have been proposed and
studied, each promoting some notion of normality for the way such probabilistic
characterisation is carried out. The situation for first order languages, however,
seem significantly different. One approach to answer this for the first order case is
to attempt to define this probabilistic characterisation directly on the first order

14The idea of using a relation symbol, here G, to ’approximate’ the equality via =G is due to Grove,
Halpern and Koller [15] to my knowledge.
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language. This, however, seems to depend strongly on the specific conditions
that one assumes for the way that the characterisation has to be carried out. In
our terminology, on how exactly the notion of normality for the probabilistic
characterisation is formalised. However, even for specific cases, and indeed even
for the most extensively studied notion of normality, i.e. the Maximum Entropy
models, there is no proposal on how to define these probabilistic models directly on
the first order language in general, see [35]. A second approach is to try to define
the probabilistic models on first order languages as the limit of such models on
finite sublanguages. These sublanguages can be essentially treated as propositional
languages where the situation is much better understood. There are, however, at
least two issues with this approach. The first comes from dealing with sets of first
order axioms that have no finite models where this approach fails immediately.
But even assuming that the set of axioms will have finite models of sufficiently
large size, still this limit does not necessarily exist in general as we showed in
the previous section. Nevertheless as we showed for simple sets of axioms, i.e
those with quantifier complexity of at most Π1 the approach looks promising. We
showed this for any set of axioms from a unary first order language and for sets of
axioms with quantifier complexity of Σ1 as well as for special cases of Π1 sets of
axioms. We conjecture that this is also the case for all Π1 sets of axioms.
Finally it is worth emphasising that we did not deal with the computational
complexity of the problem of calculating probability distributions given by our
extension of inference processes to first order languages. This analysis falls outside
the scope of this paper but it is important to mention that for connecting these
results to applications a proper understanding of the computational complexities
involved would be important and necessary.
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9 Appendix

Proof of Claim 1 We will show that for every two element, b(n)
i j , b(n)

st in the matrix

Bn either the limit of the ratio of these elements, limn→∞
b(n)

i j

b(n)
st

, is finite or one of

them grow much faster than the other, i.e., the limit is infinite. Thus if we consider

lim
k→∞

< 1, 1, ..., 1 > Bk T ~ei

< 1, 1, ..., 1 > Bk T (~ei + ~eh)

the limit will be finite if the ratio of every two elements has a finite limit and if
not all of them have a finite limit then the one that grows fastest will appear in the
denominator and this makes the overall limit zero or 1 and this completes the proof
of Claim 1.
Proof. Let B = (bi j) be an R×R lower triangular matrix with positive entries. Then
the i j entry of Bn, for i ≥ j is given by

∑
i=t0>t1>...>tm= j

∑
r0+...+rm=n−m

m−1∏
s=0

btsts+1

m∏
s=0

brs
tsts
.

There are only a finite fixed number of possible t0, ..., tm so it would be enough to
show that for two particular choices (possibly at different i, j) the limit

lim
n→∞

∑
r0+...+rm=n

∏m
s=0 brs

tsts∑
u0+...+uq=n

∏q
s=0 bus

gsgs

(18)

either exists or is∞. To show this we will first find a better expression for, say, the
numerator. We will consider this in two cases.
Before proceeding with the proof we will try to find simpler expression for the
terms in nominator and denominator of (18).

Claim 4. ∑
r0+...+rm=n

m∏
s=0

brs
tsts

=

m∑
s=0

bn+m
tsts

∏
y,s

(btsts − btyty)
−1.

We first show the following two technical lemmas that will be usefult for proving
Claim 4.

Lemma 10.
m∑

i=0

1
(bm+1 − bi)

∏m
j=0
j,i

(bi − b j)
=

1∏m
k=0(bm+1 − bk)
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Proof. we will show that :

m∑
i=0

1
(bm+1 − bi)

∏m
j=0
j,i

(bi − b j)
−

1∏m
k=0(bm+1 − bk)

= 0

To see this multiply both sides by
∏m

k=0(bm+1 − bk) and we will have :

m∑
i=0

∏m
k=0
k,i

(bm+1 − bk)∏m
j=0
j,i

(bi − b j)
− 1 = 0

The left hand side is polynomial in bm+1 with degree m and m + 1 distinct zeros,
namely {b0, b1, ..., bm}, so it should be identical with zero. �

Lemma 11.
m∑

j=1

 m∑
i=0

bn+ j
m+1bm− j

i∏m
k=0
k,i

(bi − bk)

 = 0

Proof.

m∑
j=1

 m∑
i=0

bn+ j
m+1bm− j

i∏m
k=0
k,i

(bi − bk)

 = bn+1
m+1

 m∑
i=0

∑m−1
j=0 b j

m+1bm−1− j
i∏m

k=0
k,i

(bi − bk)

 = bn+1
m+1

 m∑
i=0

bm
m+1 − bm

i

(bm+1 − bi)
∏m

k=0
k,i

(bi − bk)


= bn+1

m+1


m∑

i=0

bm
m+1

(bm+1 − bi)
∏m

k=0
k,i

(bi − bk)
+

m∑
i=0

bm
i∏m+1

k=0
k,i

(bi − bk)


= bn+1

m+1

 bm
m+1∏m

k=0(bm+1 − bk)
+

m∑
i=0

bm
i∏m+1

k=0
k,i

(bi − bk)


where the last equality is given by Lemma 10. Thus it would be enough to show
that  bm

m+1∏m
k=0(bm+1 − bk)

+

m∑
i=0

bm
i∏m+1

k=0
k,i

(bi − bk)

 = 0

To see this multiply both sides by
∏m

k=0(bm+1 − bk) and we will have

bm
m+1 −

(bm
0 (bm+1 − b1)...(bm+1 − bm)

(b0 − b1)...(b0 − bm)
+ ... +

bm
m(bm+1 − b0)...(bm+1 − bm−1)

(bm − b0)...(bm − bm−1)

)
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the above expression is a polynomial of degree m with respect to bm+1 which has
m + 1 roots, namely {b0, ...bm} so it should be identical with zero. �
Proof. of Claim 4
Proof by induction on m; For the base case, where m = 0 we have

bn
t0t0 = bn

t0t0

which is clearly true. Suppose the result is true for m and we will prove it for m+1.
To simplify the notation we will write bs for btsts , etc.

∑
r0+...+rm+rm+1=n

m+1∏
s=0

brs
s =

n∑
rm+1=0

 ∑
r0+...+rm=n−rm+1

brm+1
m+1

m∏
s=0

brs
s


=

n∑
rm+1=0

brm+1
m+1

m∑
s=0

bn+m−rm+1
s

∏
y,s

(bs − by)−1

 =

n∑
j=0

 m∑
s=0

b j
m+1bn+m− j

s∏m
k=0
k,s

(bs − bk)


The equality before last is given by the induction hypothesis. We add to this the
expression in Lemma 11(which is equal to zero),
So we will have

∑
r0+...+rm+rm+1=n

m+1∏
s=0

brs
s =

n∑
j=0

 m∑
s=0

b j
m+1bn+m− j

s∏m
k=0
k,s

(bs − bk)

 +

m∑
j=1

 m∑
s=0

bn+ j
m+1bm− j

s∏m
k=0
k,s

(bs − bk)

 =

m∑
s=0

n+m∑
j=0

b j
m+1bn+m− j

s∏m
k=0
k,s

(bs − bk)

 =

m∑
s=0

bn+m+1
s − bn+m+1

m+1∏m+1
k=0
k,s

(bs − bk)


=

m∑
s=0

 bn+m+1
s∏m+1

k=0
k,s

(bs − bk)

 −
m∑

s=0

 bn+m+1
m+1∏m+1

k=0
k,s

(bs − bk)


and using Lemma 10, we have

∑
r0+...+rm+rm+1=n

m+1∏
s=0

brs
s =

m∑
s=0

 bn+m+1
s∏m+1

k=0
k,s

(bs − bk)

+ bn+m+1
m+1∏m

k=0(bm+1 − bk)
=

m+1∑
s=0

bn+m+1
s

∏
y,s

(bs−by)−1

and this completes the proof of Claim 4. �
We now return to the proof of Claim 1.
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Case1 Assume that all the btsts are different. Using Claim 4 for the case
when all btsts are distinct, we can see that the limit in (18) clearly exists, if
max{btsts} ≤ max{bgsgs} and is∞ otherwise.

Case 2 If not all the btsts are distinct, suppose that the distinct values are
a0, ..., ap and let A j = {t | btt = a j}, d j = |A j| and r′j =

∑
btiti =a j ri then

∑
r0+...+rm=n

m∏
s=0

brs
tsts

= lim
Ap→ap

... lim
A0→a0

∑
r0+...+rm=n

m∏
s=0

zrs
tsts

= lim
Ap→ap

... lim
A0→a0

m∑
s=0

zn+m
tsts

∏
y,s

(ztsts − ztyty)
−1 =

lim
Ap→ap

... lim
A0→a0

∑
ts∈A0

zn+m
tsts

∏
y,s

(ztsts−ztyty)
−1+...+ lim

Ap→ap
... lim

A0→a0

∑
ts∈Ap

zn+m
tsts

∏
y,s

(ztsts−ztyty)
−1

= lim
A0→a0

∑
ts∈A0

zn+m
tsts∏p

j=1(ztsts − a j)d j

∏
y,s

ty∈A0

(ztsts−ztyty)
−1+...+ lim

Ap→ap

∑
ts∈Ap

zn+m
tsts∏p−1

j=0 (ztsts − a j)d j

∏
y,s

ty∈Ap

(ztsts−ztyty)
−1

where for Ai = {t1, ..., tk}, Ai → ai is intended as short for
limztk tk→ai ... limzt1t1→ai and the second equality is given by Claim 4. The following
two lemmas allow us to simplify this even further.

Lemma 12. For an infinitely differentiable function f ,

lim
z→x

(k!)−1 ∂
k

∂xk

(
f (x)
x − z

−
f (z)

x − z

)
=

1
(k + 1)!

∂k+1

∂xk+1 f (x)

Proof.
Using the infinite Taylor expansion

f (z) = f (x) + (z − x)
∂

∂x
f (x) +

(z − x)2

2!
∂2

∂x2 f (x) + ...

since f (x) is infinitely differentiable we have

f (x)
x − z

−
f (z)

x − z
=

∞∑
n=1

(z − x)n−1

n!
∂n

∂xn f (x)

and thus

1
k!

lim
z→x

(
∂k

∂xk

(
f (x)
x − z

−
f (z)

x − z

))
=

1
k!

lim
z→x

 ∂k

∂xk

 ∞∑
n=1

(z − x)n−1

n!
∂n

∂xn f (x)

 (19)
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any term in the right hand side with n > k+1 will include a positive power of (z− x)
after k derivative and so will approach zero as z→ x. So from (19)

1
k!

lim
z→x

(
∂k

∂xk

(
f (x)
x − z

−
f (z)

x − z

))
=

1
k!

lim
z→x

 ∂k

∂xk

k+1∑
n=1

(z − x)n−1

n!
∂n

∂xn f (x)




=
1
k!

lim
z→x

k+1∑
n=1

 k∑
i=0

(
k
i

)
∂i

∂xi

(
(z − x)n−1

n!

)
∂n+k−i

∂xn+k−i f (x)


 . (20)

Any terms in the inner sum of the rightmost expression with i ≥ n is zero because
∂i

∂xi

(
(z−x)n−1

n!

)
= 0 for i ≥ n. Moreover, for i < n − 1, ∂i

∂xi

(
(z−x)n−1

n!

)
will include a

positive power of (z − x). So for every term , say T , in the above expression with
i , n − 1 we have

lim
z→x

T = 0

so from 20 we have

1
k!

lim
z→x

(
∂k

∂xk

(
f (x)
x − z

−
f (z)

x − z

))
=

1
k!

lim
z→x

k+1∑
n=1

(
k

n − 1

)
∂n−1

∂xn−1

(
(z − x)n−1

n!

)
∂k+1

∂xk+1 f (x)


=

1
k!

k+1∑
n=1

(−1)n−1

n

(
k

n − 1

)
∂k+1

∂xk+1 f (x) =
1
k!

k+1∑
n=1

(−1)n−1

n
k!

(n − 1)!(k + 1 − n)!
∂k+1

∂xk+1 f (x)

=
1

(k + 1)!

k+1∑
n=1

(−1)n−1 (k + 1)!
n!(k + 1 − n)!

∂k+1

∂xk+1 f (x) =
1

(k + 1)!

k+1∑
n=1

(−1)n−1
(
k + 1

n

)
∂k+1

∂xk+1 f (x)

=
1

(k + 1)!
∂k+1

∂xk+1 f (x)

�

Lemma 13. For an infinitely differentiable function g(x):

lim
xk→x1

lim
xk−1→x1

... lim
x2→x1

k∑
i=1

g(xi)
∏
i, j

(xi − x j)−1 =

(
(k − 1)!−1 ∂

k−1

∂xk−1 g(x)
)

x1

Proof. By induction on k. The result is obvious for k = 2. Suppose the lemma is
true for k and we will show it for k + 1.

lim
xk+1→x1

lim
xk→x1

. . . lim
x2→x1

k+1∑
i=1

g(xi)
∏
i, j

(xi−x j)−1 = lim
xk+1→x1

 lim
xk→x1

. . . lim
x2→x1

k∑
i=1

g(xi)
k+1∏

j=1, j,i

(xi − x j)−1+
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lim
xk→x1

. . . lim
x2→x1

g(xk+1)
k∏

i=1

(xk+1 − xi)−1

 .
Notice that for an infinitely differentiable g we have(

(k!)−1 ∂
k−1

∂xk−1 g(x)
)

x1

= lim
x→x1

(k!)−1 ∂
k−1

∂xk−1 g(x).

Now using the induction hypothesis for g(x)
x−xk+1

we will have

lim
xk+1→x1

lim
xk→x1

. . . lim
x2→x1

k+1∑
i=1

g(xi)
∏
j,i

(xi − x j)−1

= lim
xk+1→x1

((k!)−1 ∂
k−1

∂xk−1

g(x)
(x − xk+1)

)
x1

− (−1)k g(xk+1)
(x1 − xk+1)k


= lim

xk+1→x1

(
lim
x→x1

(
(k!)−1 ∂

k−1

∂xk−1

g(x)
(x − xk+1)

)
− lim

x→x1

(
(−1)k g(xk+1)

(x − xk+1)k

))
= lim

xk+1→x1
lim
x→x1

(
(k!)−1 ∂

k−1

∂xk−1

g(x)
(x − xk+1)

− (k!)−1 ∂
k−1

∂xk−1

g(xk+1)
(x − xk+1)

)
= lim

x→x1
lim

xk+1→x
(k!)−1 ∂

k−1

∂xk−1

(
g(x)

x − xk+1
−

g(xk+1)
x − xk+1

)
(21)

(since all the functions involved are infinitely differentiable). Using Lemma 12
from (21) we have:

lim
xk+1→x1

lim
xk→x1

... lim
x2→x1

k+1∑
i=1

g(xi)
∏
i, j

(xi−x j)−1 = lim
x→x1

lim
xk+1→x

(k!)−1 ∂
k−1

∂xk−1

(
g(x)

x − xk+1
−

g(xk+1)
x − xk+1

)

= lim
x→x1

1
k!

(
∂k

∂xk g(x)
)

=
1
k!

(
∂k

∂xk g(x)
)

x1

as required and this completes the proof of Lemma 13. �
Using Lemma 1315 the expressions in the numerator and denominator of (18) will
be in the form∑

r0+...+rm=n

m∏
s=0

brs
tsts

=

p∑
i=0

lim
Ai→ai

∑
ztsts∈Ai

zn+m
tsts∏

j,i(ztsts − a j)d j

∏
y,s

ty∈Ai

(ztsts − ztyty)
−1 =

15To see how Lemma 13 applies notice that here the limit limAi→ai = limztk tk→ai ... limzt1 t1→ai can be
equivalently written as limzt1 t1→ai limztk tk→zt1 t1

... limzt2 t2→zt1 t1
.
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1
(d0 − 1)!

 ∂(d0−1)

∂z(d0−1)
tsts

 zn+m
tsts∏p

j=1(ztsts − a j)d j




a0

+ . . . +
1

(dp − 1)!

 ∂(dp−1)

∂z(dp−1)
tsts

 zn+m
tsts∏p−1

j=0 (ztsts − a j)d j




ap

Again in this case we can see that limit in 18 exists if max{btsts} ≤ max{bgsgs} and
is∞ otherwise.

�

Proof.[of Claim 2] Let n be an even number. Then there will be n!
2

n
2 ( n

2 )!

(
2n2

n

)
many

models for which we have M � ai ,G a j 1 ≤ i, j ≤ n. That is the number of
models of E where the a1, ..., an are different with respect to =G and there will

be at most nn
(

2n2

n−2

)
many models where not all of a1, ..., an are different. To see

this notice that
(
2n2

n

)
is the number of ways we can interpret G so that a1, ..., an

are all different according to =G. Let P1(x), ..., P2n2 (x) denote the sentences of the
form

∧n
i=1

∧n
j=1 ±G(x, ai, a j). When G is interpreted on Ln each ai 1 ≤ i ≤ n

will satisfy one of the Pk(x) 1 ≤ k ≤ 2n2
. The fact that a1, ..., an are different

according to G means that each Pk(x) is satisfied by at most one ai. So the number
of ways we can interpret G such that a1, ..., an are all different with respect to =G,
will be the number of ways we can choose Pi1(x), ..., Pin(x) all different among

P1(x), ..., P2n2 (x) (each being intended for a different ai) and that will be
(
2n2

n

)
.

After G is interpreted and a1, ..., an are all chosen to be different according to =G, R
will put a1, ..., an into groups of 2. To see this notice that in E, we have ∀x∃y(x ,G

y ∧ R(x, y). So each element is paired with at least one element and it cannot be
paired with more than one because if we have R(x, y)∧R(x, z) then we should have
x =G y or x =G z or y =G z but a1, ..., an are chosen to be different according to =G.
So the number of different possibilities for R will be the number of ways we can
put a1, ..., an, into groups of 2, that is n!

2
n
2

and this should be divided by ( n
2 )! because

the order in which these groups of 2 are chosen is not important and so the number
of possibilities for R will be n!

2
n
2 ( n

2 )!
. Thus the number of models of size n for even

n (where the ai’s are mutually different with respect to =G) will be n!
2

n
2 ( n

2 )!

(
2n2

n

)
. For

models where not all of ai’s are different according to =G, assume that n − 2k of
them are different and then we will take the sum over k = 1, ..., n

2 . Notice that it
is not possible to have an odd number of ai’s mutually different with respect to
=G because R is dividing those elements of the model that are mutually different
with respect to =G into groups of 2 and this will not be possible if the number of
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these elements is odd. To see this notice that R will be grouping the elements of
the model such that each group contains at least 2 different elements with respect
to =G (because of the conjunct ∀x∃y(x ,G y ∧ R(x, y))). On the other hand if a
group contains more than 2 elements, say 3, E will force the third element to be
equal (according to =G) with one of the other two. So when all the elements of
the model are different according to =G, there cannot be any group with more than
2 elements hence R will be dividing the elements of the model into disjoint pairs.
Then, the number of ways we can define G such that n−2k of ai’s are different will

be
(

2n2

n−2k

)
and the number of ways we can put these n − 2k many ai’s into groups of

2 will be (n−2k)!

2
n−2k

2 ( n−2k
2 )!

, whilst each of the remaining 2k elements, say an−2k+1, ..., an,

can be equal (with respect to =G) to any of the n − 2k elements, a1, ..., an−2k, and
so will belong to corresponding group of 2. Hence each of these 2k elements can
belong to any of n−2k

2 groups and there will be ( n−2k
2 )2k possibilities. Thus, for an

even number n, the number of models of size n where n− 2k elements are different
according to =G will be

(
n − 2k

2
)2k (n − 2k)!

2
n−2k

2 ( n−2k
2 )!

(
2n2

n − 2k

)
≤ nn−1

(
2n2

n − 2

)
(22)

and using (22) the total number of models of E of size n where not all the ai’s are

different with respect to =G will be
∑ n

2
k=1( n−2k

2 )2k (n−2k)!

2
n−2k

2 ( n−2k
2 )!

(
2n2

n−2k

)
≤ n

2 nn−1
(

2n2

n−2

)
≤

nn
(

2n2

n−2

)
. And this gives us an upper bound on the number of models in this case.

Hence for an even number n, we have n!
2

n
2 ( n

2 )!

(
2n2

n

)
≤ #Mn

E
≤ n!

2
n
2 ( n

2 )!

(
2n2

n

)
+ nn

(
2n2

n−2

)
.

If n = 2k + 1 is an odd number, notice that there will be no model of E where
a1, ..., an are mutually different with respect to =G. To see this remember that R will
be grouping the elements of the model into disjoint pairs and this is not possible
when the number of elements is odd. Thus the only models of E of size odd will
be those in which some of the ai’s are equal according to =G. In exactly the same
way as above we can show that the number of models of size n for odd n, will be
at most

nn
(

2n2

n − 1

)
and this will be an upper bound on the number of models of E of size n where n is
odd.

�
Proof.[of Claim 3]
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Let n be even. According to O there should exists at least one element ai with
R(ai, ai). This means thatO cannot have models of size even where all the elements
are different with respect to =G. To see this assume that all the elements are
different according to =G and let ai be such that R(ai, ai) holds. Then ¬R(ai, a j)
for i , j because otherwise we will have R(ai, ai)∧R(ai, a j) and so ai =G a j which
is a contradiction. On the other hand ai will be the only element with R(ai, ai)
because if for k , i, R(ak, ak) then ai =G ak which again is a contradiction. So
R will connect ai only to itself and then will divide the rest of the elements into
groups of two which is impossible as there will be an odd number of elements left.
So for an even number n, there will are no model of size n where the elements are
all different with respect to =G.
For the number of models of size n where not all the elements are different with
respect to =G, suppose first that there are n − 2k distinguishable elements. There
will be an element connected to itself through R which should be one of these n−2k
elements but as above this cannot be the case because there can be at most one of
them with this property and if there exists one such element in the domain there
will be an odd number left and it will not be possible to interpret R in a way to
put them into groups of two. Hence there will be no model where n − 2k elements
are different with respect to =G. It remain the case where the models are of size n
for an even number n and n − 2k + 1 elements are different with respect to =G. In
this case exactly one of these n − 2k + 1 elements will be connected to itself and
to no other of the remaining n − 2k and the other n − 2k will again be divided into
groups of two. The rest of the domain (2k − 1 elements) each can be connected
through R to one element in one of these groups of two or can be connected to the
one element that is connected to itself. Hence the number of possibilities will be

n
2−1∑
k=1

(n − 2k)!

2
n−2k

2 ( n−2k
2 )!

(
n − 2k + 1

1

)(
2n2

n − 2k + 1

)
(
n − 2k + 2

2
)2k−1 ≤

n
2−1∑
k=1

nn−2k−1

2
n−2k

2 ( n−2k
2 )!

(
n2k−1

22k−1 )(n − 2k + 1)
(

2n2

n − 2k + 1

)
≤

n
2−1∑
k=1

nn−1
(

2n2

n − 1

)
≤ nn

(
2n2

n − 1

)
.

Thus for an even number n, the number of models of size n is at most nn
(

2n2

n−1

)
.

This gives an upper bound on the number of models of O of even size. For an odd

number n, O has n!

2
n−1

2 ( n−1
2 )!

(
2n2

n

)
many models where all the elements are different
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with respect to =G. This is because we can choose n different elements with respect

to =G in
(
2n2

n

)
many ways and among them exactly one should be connected only

to itself for which there are n possibilities and then the remaining n − 1 should be
divided into groups of two for which there are (n−1)!

2
n−1

2
possibilities. And there are

at most nn
(

2n2

n−1

)
many models where not all the elements are different according to

=G in the same way that it is calculated above. Hence n!

2
n−1

2 ( n−1
2 )!

(
2n2

n

)
gives a lower

bound on the number of models of O of odd size.
�
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