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ABSTRACT.

In this thesis we will investigate inference processes for predicate languages. The
main question we are concerned with in this thesis is how to choose a probability
function amongst those that satisfy a certain knowledge base. This question has been
extensively studied for propositional logic and we shall investigate it for �rst order
languages. We will �rst study the generalisation of Minimum Distance, MD, and Cen-
tre of Mass, CM∞, inference processes to unary predicate languages and then we will
investigate the generalisations of the Maximum Entropy inference process to general
polyadic languages.

For the case of the Maximum Entropy inference process we will study and compare
two generalisations, the BP-method and the W-method. We will show that the two
methods agree for the unary and Σ1 knowledge bases and we conjecture that the result
holds for the Π1 knowledge bases too.

We shall show that neither of these generalisations for the Maximum Entropy infer-
ence process is universally well de�ned for a �rst order language and we shall study
some of the problems associated with generalising this inference process to polyadic
languages.
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Chapter 1

Introduction

In this thesis we are concerned with the general question of deriving information from
uncertain and probabilistic knowledge bases. The problem is that given a knowledge
base K consisting of linear information about the degree of belief of an agent in cer-
tain sentences in the language what assertions are 'rational' to make about the agent's
degree of belief in other sentences in the language.

Such knowledge bases appear constantly in everyday situations. The uncertainty of
the information in our knowledge base can be the result of many different factors such
as insufficient information, margins of error in measurements or reliability of sources,
etc; but it is hardly the case that we can come up with a knowledge base consisting of
only certain truth values (0 or 1) or we will be left with very restricted knowledge bases
and will lose the advantages we can have in using the partial information available.

A fundamental underlying assumption for all the material covered in this thesis is the
assumption that a `rational` agent's degree of belief (in sentences of a language) shall
be represented with a probability function. An extensive amount of work has been
done on this subject and many justi�cations have been presented for this assumption,
for example the Dutch Book argument, to name one, which we believe to have pro-
vided a �nal answer to this debate and we shall not pursue this matter any further here
[see [24]-Chapter 3 for more discussion].

Being convinced by these justi�cations we will work in the framework of inductive
logic with the agent's knowledge being given by a set of linear constraints on the prob-
abilities given to certain sentences of the language.

8



CHAPTER 1. INTRODUCTION 9

In this setting, the question of what degree of belief should the agent assign to a sen-
tence φ on the basis of a knowledge base K, will be answered by taking a probability
function representing the agent's knowledge base, wK , and then calculating the proba-
bility of the sentence φ, wK(φ), accordingly. However this assumption alone will leave
us with a (usually in�nite) set of probability functions consistent with the knowledge
base and thus the justi�cation for the agent's answer for wK(φ) will depend on the jus-
ti�ability of the choice of probability function wK from this set.1

We will thus need to impose further conditions in order to narrow down this choice
and ideally be left with a unique probability function where possible. These conditions
will be the main tool for comparing different choices of probability functions and one
such choice shall be preferred to another when a larger number of these conditions are
satis�ed. Therefore the justi�ability of our choice shall be assessed via these condi-
tions. This means that the further restrictions we wish to impose should enforce only
the properties that are a priori accepted as justi�ed or desirable by common sense and
hence comes the name Common Sense Principles.

On this basis we shall investigate different methods of choosing a probability func-
tion satisfying a certain knowledge base, to represent an agent's belief function based
on common sense principles.

A lot of effort has been put into this problem for the case of propositional languages
and widely accepted and justi�ed answers have been given to the question of how to
choose this probability function, see for example [1], [2], [6], [13], [24], [26], [29].
The same question for �rst order languages, however, is far from being settled.

In this thesis we will study some of the proposals given for the propositional case
for �rst order languages to �nd out the extent to which they can be generalized both to
unary �rst order languages where the generalization seems to go through without any
difficulties and the more problematic polyadic cases.

We shall �rst introduce some notations and de�nitions that we will be using throughout
1In what follows we will drop this subscript K since the knowledge base is always �xed in the

context.



CHAPTER 1. INTRODUCTION 10

this thesis and introduce the conditions and criteria we consider for the choice of the
probability function. The important role of these conditions is to ensure rationality or
more precisely justi�ability of the choice of a certain probability function.

1.1 Framework and Notation
Throughout this thesis we will work with a �rst order language L with �nitely many re-
lation symbols, no function symbols and countably many constant symbols a1, a2, a3, . . ..
Furthermore we assume that these individuals exhaust the universe. Equality shall only
be assumed to exist in the language when it is explicitly stated.

Let RL, FL, S L and T L denote the set of relation symbols, the set of formulae, the
set of sentences and the set of term models for L respectively, where a term model is
a structure M for the language L with domain |M| = { ai | i = 1, 2, . . .} where every
constant symbol is interpreted as itself.

We shall call w : S L→ [0 , 1] a probability function if for every θ, φ,∃xψ(x) ∈ S L,

• P1. If |= θ then w(θ) = 1.

• P2. w(θ ∨ φ) = w(θ) + w(φ) − w(θ ∧ φ).

• P3. w(∃xψ(x)) = limn→∞ w(∨n
i=1 ψ(ai)).

A knowledge base K is taken to be a satis�able set of linear constraints of the form

n∑

j=1
ai jw(θ j) = bi, i = 1, 2, . . . ,m

where θ j ∈ S L, ai j, b j ∈ R and w is a probability function. In this setting then, the main
question we are interested in is: Given a set K as above, what value should be given to
w(φ) for an arbitrary φ ∈ S L on the basis of K.

In the case when the knowledge base K determines the probability function w uniquely
the answer to the above question will of course be clear. However this is hardly ever
the case and when it is not, deciding the values w(φ) for all φ ∈ S L on the basis of K
will be equivalent to choosing a probability function amongst all probability functions
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that satisfy K. We shall expand our notation further before returning to this question.

LetL be a propositional language with propositional variables p1, p2, . . . , pn. By atoms
of L we mean the set of sentences {αi | i = 1, . . . , J}, J = 2n of the form

±p1 ∧ ±p2 ∧ . . . ∧ ±pn.

For every sentence φ ∈ SL there is unique set Γφ ⊆ {αi| i = 1, . . . , J } such that

|= φ↔
∨

αi∈Γφ
αi.

It can be easily checked that Γφ = {α j |α j � φ }.

Thus if w : SL → [0 , 1] is a probability function then

w(φ) = w(
∨

αi�φ

αi) =
∑

αi�φ

w(αi)

as the αi's are mutually inconsistent. On the other hand since |= ∨J
i=1 αi we have∑J

i=1 w(αi) = 1. So the probability function w will be uniquely determined by its
values on the αi's, that is by the vector

< w(α1), . . . ,w(αJ) >∈ DL where DL = { ~x ∈ RJ | ~x ≥ 0,
J∑

i=1
xi = 1}.

Conversely if ~a ∈ DL we can de�ne a probability function w′ : SL → [0 , 1] such that
< w′(α1), . . . ,w′(αJ) >= ~a by setting

w′(φ) =
∑

αi�φ

ai.

This gives a one to one correspondence between the probability functions onL and the
points in DL.

Let K be a knowledge base as above, this time for the propositional language L. So K
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will be a consistent set of linear constraints
n∑

j=1
ai jw(θ j) = bi i = 1, . . . ,m,

where each θ j is a sentence of L. Replacing each w(θ j) in K with ∑
αi�θ j w(αi) and

adding the equation ∑J
i=1 w(αi) = 1 we will get a system of linear equations

< w(α1), . . . ,w(αJ) > AK = ~bK .

Thus if the probability function w satis�es K the vector < w(α1), . . . ,w(αJ)) > will be
a solution for the equation

~xAK = ~bK .

We will denote the set of non-negative solutions to this equation by VL(K), that is

VL(K) = { ~x ∈ RJ |~x ≥ 0, ~xAK = ~bK } ⊆ DL.

Thus the question of choosing a probability function satisfying K will be equivalent to
the question of choosing a point in VL(K). We shall use this equivalence frequently in
what follows.

The following theorem, due to Gaifman, provides a similar result for the case of a
�rst order language L. Let QFS L be the set of quanti�er free sentences of the L

Theorem 1 Let v : QFS L → [0 , 1] satisfy P1 and P2 for θ, φ ∈ QFS L. Then v
has a unique extension w : S L → [0 , 1] that satis�es P1, P2 and P3. In particular
if w : S L → [0 , 1] satis�es P1, P2 and P3 then w is uniquely determined by its
restriction to QFS L.

See [24] for a proof.

Let L be a �rst order language with relation symbols R1,R2, . . . ,Rt, let L(k) be a sub-
language of L with only constant symbols a1, . . . , ak and let Θ

(k)
1 , . . . ,Θ

(k)
nk enumerate

all the sentences of the form
∧

i1 ,...,i j≤k
R j−ary

R∈RL, j∈N+

±R(ai1 , . . . , ai j).
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We shall call these Θ
(k)
i 's the state descriptions of L(k). For θ ∈ QFS L let k be an upper

bound on the i such that ai appears in θ. Then θ can be thought of as being from the
propositional languageL(k) with propositional variables R(ai1 , . . . , ai j) for i1, . . . , i j ≤ k,
R ∈ RL and R j − ary. Then the sentences Θ

(k)
i will be the atoms of L(k) and

θ ↔
∨

Θ
(k)
i �θ

Θ
(k)
i

so
w(θ) =

∑

Θ
(k)
i �θ

w(Θ(k)
i ).

Thus to determine the value w(θ) we only need to determine the values w(Θ(k)
i ) and to

require

• w(Θ(k)
i ) ≥ 0 and ∑nk

i=1 w(Θ(k)
i ) = 1.

• w(Θ(k)
i ) =

∑
Θ

(k+1)
j �Θ(k)

i
w(Θ(k+1)

j ).

to ensure that w satis�es P1 and P2.

Having set our framework we will return to the main question, that is, how to choose a
probability function satisfying a given set K of linear constraints. To be able to answer
this question we will �rst need to de�ne and formalize criteria that allow us to compare
these choice processes or inference processes as we shall call them. These criteria are
intended to re�ect the 'rational' and 'common-sensical' behavior we shall expect the
chosen probability function and the choice process to demonstrate.

1.2 Principles Of Uncertain Reasoning
Principles of Uncertain Reasoning [see [24]], are conditions and restrictions on the
way a probability function is chosen from a set of probability functions. These prin-
ciples we shall now state are considered desirable or 'rational' for inference processes
to satisfy and they shall remain our main criteria to favor one such process to another.
These principles are all well formulated and studied for propositional languages and
while generalizing an inference precess to �rst order languages we shall seek a gen-
eralization that preserves the principles that were satis�ed by the inference process in
the propositional case where possible.
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Let N(K) be a choice function that chooses a probability function satisfying K. The
following is a list of common sense conditions desirable for N.

Equivalence Principle

If K1 and K2 are equivalent in the sense that VL(K1) = VL(K2) then N(K1) = N(K2).

Principle of Irrelevant Information

Let K1, K2 as above and θ ∈ S L but no propositional variable appearing in θ or any
sentence in K1 also appears in K2. Then

N(K1 + K2)(θ) = N(K1)(θ).

Continuity

For θ ∈ S L a microscopic change in the knowledge base K should not result in macro-
scopic changes in the value N(K)(θ).

Open-Mindedness Principle

For K as above and θ ∈ S L, if K + w(θ) , 0 is consistent then N(K)(θ) , 0.

Renaming Principle

Suppose

K1 = {
J∑

j=1
a jiw(γ j) = bi | i = 1, 2, . . . ,m },

K2 = {
J∑

j=1
a jiw(δ j) = bi | i = 1, 2, . . . ,m },

where γ1, . . . , γJ, δ1, . . . , δJ are permutations of α1, . . . , αJ. Then

N(K1)(γ j) = N(K2)(δ j).
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Obstinacy Principle

Let K1 and K2 as above be such that N(K1) satis�es K2. Then N(K1 + K2) = N(K1).

Language Invariance

Suppose we have a family of inference processes NL, one for each �nite language L.
Then this family is said to be language invariant if whenever L1 ⊆ L2 (so S L1 ⊆ S L2

and CL1 ⊆ CL2) and K ∈ CL1 then NL2(K) agrees with NL1(K) on S L1.

Relativisation Principle

Suppose K1,K2 ∈ CL, 0 < c < 1 and

K1 = {w(φ) = c } +


r∑

j=1
a jiw(θ j | φ) = bi | i = 1, . . . ,m

 ,

K2 = K1 +


q∑

j=1
e jiw(ψ j | ¬φ) = fi | i = 1, . . . , s

 .

Then for θ ∈ S L, N(K1)(θ | φ) = N(K2)(θ | φ).

See [24] for a more comprehensive list of principles and more discussions and justi�-
cations.

The main reason that these principles are important to our purpose is the crucial role
they play in justifying the Maximum Entropy inference process (to which most of this
thesis is dedicated) as the most 'rational' choice for the probability function.

In the next chapter we will study two well known inference processes, Limiting Centre
of Mass CM∞ and Minimum Distance MD (both de�ned for propositional logic) for
�rst order languages. In chapters 3 and 4 we will study two methods for generalizing
the Maximum Entropy inference process to the �rst order languages and we shall pro-
vide a comparison between the two.



Chapter 2

Inference Processes for quanti�ed
knowledge

In the view of the main question introduced in the previous chapter we are interested to
�nd out what probability is 'rational' to assign to an arbitrary sentence of the language
on the basis of a knowledge base consisting of a set of probabilistic constraints on the
intelligent agent's belief function.

Answering this question will amount to choosing a probability function amongst all
probability functions that satisfy the required constraints and take the value for our ar-
bitrary sentence accordingly. Hence the above question will be equivalent to the ques-
tion that given a set of linear probabilistic constraints what will be the most 'rational'
probability function satisfying this set. A number of possible answers to this question
have been proposed both for propositional and predicate languages, for example [1],
[2], [6], [13], [14], [15], [24], [26], [27], [28], [29], based on various underlying as-
sumptions about the form and origin of the knowledge and the probability function w,
see [6] for a discussion.

An inference process is a process of choosing one such probability function in the
set of all probability functions satisfying the constraints in the knowledge base.

De�nition 1 An inference process on L is a function that on each K ∈ CL gives a
probability function on S L that satis�es K.

16



CHAPTER 2. INFERENCE PROCESSES FOR QUANTIFIED KNOWLEDGE 17

The result of applying an inference process to a knowledge base will then be a prob-
ability function on S L and this probability function is taken to represents the agent's
degree of belief in any sentence of the language. The inference process itself can be
regarded as a model for the agent's deduction system.

The possibility of being used as a tool to model the deduction system of intelligent
agents is one of the main reasons that make inference processes an interesting topic of
investigation. In this context intelligent agents can be regarded as inference processes
being applied to a knowledge base, assuming of course that, enough time being spent,
we can �nd such a set K containing all knowledge accessible to the agent. This ap-
proach provides us with a powerful mathematical machinery to formulate and study
the consistency and common sense criteria we expect from intelligent agents in terms
of mathematical constraints on these inference processes [see [24]-chapter 6].

The main criterion to prefer one such inference process over another will thus be the
extent to which that inference process, or more precisely the probability function cho-
sen by that inference process, satis�es consistency and common sense principles. It is
important to note that 'rational' in the above context is indeed an attempt to emphasis
the importance of the justi�ability of our answer for our intended purpose rather than
an invitation to follow a certain theory of rationality. Thus the notion of rationality
for our answer will not necessarily have so much of a universal interpretation. Rather
one might believe that it does actually depend on the purpose or the context. However
there is an inference process, namely Maximum Entropy, that is widely accepted to be
the most rational or more precisely the most satisfactory according to the number of
common sense principles it satis�es. Investigation of this inference process will form
the major part of this thesis [see chapter 3 and 4].

The justi�cations for different inference processes can generally be classi�ed into two
categories; in the �rst the inference process is justi�ed by typicality of its output. That
is, the inference process will choose the probability function that is as representative or
as average as possible among all the probability functions that satisfy the knowledge
base. Another group of inference processes are justi�ed by the amount of information
contained in the probability function chosen by that inference process where it is in-
tended to choose the probability function that contains the least amount of information
beyond a knowledge base among all the probability functions satisfying it. In what
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follows we shall study three examples of inference processes; The Centre of Mass in-
ference process of the former group and Minimum Distance and Maximum Entropy
inference processes of the latter.

As mentioned above these inference processes differ in the set of common sense prin-
ciples they satisfy and thus will be found suitable for different purposes and contexts.
However the Maximum Entropy is most widely agreed upon and accepted as the most
commonsensical inference process not only because it satis�es the largest number of
principles but also because it is the only inference process satisfying them all [see [24]].

In the rest of his chapter we will present a generalisation of Minimum Distance, hence-
forth referred to as MD, and limiting Centre of Mass, henceforth referred to as CM∞
(both de�ned for propositional logic) to unary predicate languages by using the method
introduced by Paris and Barnett [6] for generalising the Maximum Entropy inference
process, which we will refer to as the BP-method.

The BP-method

What we refer to here as the BP-method is the general approach of de�ning the ap-
plication of an inference process N for a �rst order language L to a knowledge base
K as the limiting case of its application on the propositional �nite sublanguages of L,
should this limit exist. We will study the application of this method to different infer-
ence processes and we will refer to all cases as the BP-method. The reason for this
convention is that, except for when it is explicitly pointed out that we are working with
general inference processes, the speci�c inference process we are working with is clear
from context and this will help avoiding unnecessary complexity in the notation.

In the next two chapters we will introduce an alternative method for generalising Max-
imum Entropy to unary languages now augmented with equality and present a more
detailed study of this inference process for special cases of polyadic languages. We
will also study an alternative generalization of Maximum entropy introduced by Jon
Williamson which we shall refer to as the W-method.
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2.1 The Minimum Distance Inference Process
The Minimum Distance inference process is based on minimising the amount of in-
formation beyond the knowledge base which is included in the probability function.
Thus it falls into the second category mentioned above. Here we try to minimise this
information by minimising the Euclidean distance between the candidate probability
function and the probability function representing total ignorance, that is the probabil-
ity function with minimum information.

To be more precise if a �nite propositional language L has propositional variables
p1, p2, . . . , pn, a probability function Bel on S L is determined by its values on 2n sen-
tences α1, α2, . . . , α2n of the form

±p1 ∧ ±p2 ∧ . . . ∧ ±pn

We refer to these as the atoms of the language.

This, as mentioned in Chapter 1, gives a one to one correspondence between the proba-
bility functions and the points in VL(K). Then the minimum distance inference process
applied to K, MD(K), is de�ned to be the probability function satisfying K, for which

D(~x) =

n∑

i=1
x2

i

is minimal. Equivalently, such that the distance between the associated ~x in VL(K)
and the point < 1

2n , . . . ,
1
2n > representing the least informative probability function is

minimal.

As a justi�cation for MD one can argue that since the point < 1
2n , . . . ,

1
2n > represents

the probability function with least information to pick the least informative solution for
K we should choose the point that is as close as possible to < 1

2n , . . . ,
1
2n >. However

the usual Euclidean metric will prove not to be the best measure for information at least
from the point of view of common sense principles since replacing this with Shannon's
measure of uncertainty will introduce the Maximum Entropy solution which provides
a more satisfactory answer in the sense that the resulting probability function satis�es
more of the principles of uncertain reasoning. The question might still be valid whether
all these principles are desirable requirements for every purpose or whether in different
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situations some might carry a stronger weight or even lose their validity.

Theorem 2 The Minimum Distance Inference Process satis�es the principles of equiv-
alence, continuity and renaming and obstinacy but not the principles of irrelevant in-
formation, open-mindedness or relativisation.

see [6].

Here we generalise this inference process to unary predicate languages. The main
idea is to de�ne the MD(K) over a language with countable universe M as the limiting
case of the MD solutions over �nite sublanguages of M. These �nite sublanguages
can then be treated as propositional languages where the inference process is already
de�ned.

Let L be a language with just constants a1, a2, . . . and �nitely many unary predicates
P1, P2, . . . , Pn and with no function symbols, nor identity, and de�ne a linear knowl-
edge base on a �rst order language as a consistent set of linear constraints of the form

K =


r∑

j=1
a jiw(θ j) = bi | i = 1, . . . ,m



where θ j ∈ S L for j = 1, . . . , r1.

Now let L(k) be the language L with only constant symbols a1, . . . , ak and let Q1, . . . ,QJ,
J = 2n enumerate all formulas of the form

±P1(x) ∧ . . . ∧ ±Pn(x),

referred to as the atoms of L.

Let Lr be the propositional language with the propositional variables P j(ai), i = 1, . . . , r j =

1, . . . , n. For k < r de�ne ()(r) : S Lk → SLr inductively as follows:

(P j(ai))(r) = P j(ai)
1This is the same as the de�nition of a knowledge base for a propositional language except that the

sentences θ j here, are from a �rst order language.
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(¬φ)(r) = ¬φ(r)

(φ ∨ θ)(r) = φ(r) ∨ θ(r)

(φ ∧ θ)(r) = φ(r) ∧ θ(r)

(∃xψ(x))(r) =

r∨

i=1
ψ(ai)(r)

Barnett and Paris proved the following Lemmas 3, 4 and Theorem 5 in [6] which
we shall use in the later sections:

Lemma 3 If θ, φ ∈ S L(k) and k ≤ r and θ ≡ φ then θ(r) ≡ φ(r).

Let αi for i = 1, . . . , Jk enumerate the exhaustive and exclusive set of sentences of the
form

k∧

i=1
Qmi(ai).

Lemma 4 Any sentence θ ∈ S Lk is equivalent to a disjunction of consistent sentences
φi,~ε of the form

αi ∧
J∧

j=1
(∃xQ j(x))ε j

where ε j ∈ {0, 1} and θ0 = ¬θ and θ1 = θ, ~ε = (ε1, . . . , εJ) is a sequence of 0s and 1s
and |= ¬(φi,~ε ∧ φ j,~δ) when (i, ~ε) , ( j, ~δ).

Theorem 5 If K is �nite, satis�able set of linear constraints over L then K(r) is also
satis�able over Lr for large enough r, where K(r) is the set K in which every sentence
θ ∈ S L is replaced with θ(r) ∈ S L(r), i.e. where if

K =


r∑

j=1
a jiw(θ j) = bi | i = 1, . . . ,m



then

K(r) =


r∑

j=1
a jiw(θ(r)

j ) = bi | i = 1, . . . ,m
 .

Theorem 6 For θ ∈ S L:

Bel(θ) = lim
r→∞

MD(K(r))(θ(r))
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exists and is a probability function on L that satis�es K.

Proof. By Lemma 4 every consistent sentence θ(a1, . . . , ak) ∈ S L is equivalent to a
disjunction of consistent sentences of the form

φi,~ε = αi ∧
J∧

j=1
(∃xQ j(x))ε j .

If αi =
∧k

j=1 Qm j(a j) then let

Ai = {m j | j = 1, . . . , k }, Pφi,~ε
~ε

= { j | ε j = 1 }, Pφi,~ε
i,~ε = { j | j ∈ Pφi,~ε

~ε
and j < Ai }

so

φ(r)
i,~ε = αi ∧

J∧

j=1
(

r∨

t=1
Q j(at))ε j

will be equivalent to

∨

m j∈P
φi,~ε
~ε

for j=k+1,...,r

P
φi,~ε
i,~ε ⊆{m j | k+1≤ j≤r}

(αi ∧
r∧

j=k+1
Qm j(a j)) (2.1)

If we set
pφi,~ε
~ε

= |Pφi,~ε
~ε
|, and pφi,~ε

i,~ε = |Pφi,~ε
i,~ε |

the number of disjuncts in 2.1 will be

p
φi,~ε
i,~ε∑

j=0
(−1) j

(pφi,~ε
i,~ε
j

)
(pφi,~ε

~ε
− j)r−k

so if we set

xi,~ε = Bel(φ(r)
i,~ε )
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where Bel(θ) = MD(K(r))(θ(r)), then since MD satis�es renaming, for every atom ζ 2

of Lr such that ζ � φ(r)
i,~ε

Bel(ζ) = MD(K(r))(ζ) =
Bel(φ(r)

i,~ε )
∑p

φi,~ε
i,~ε

j=0 (−1) j
(p

φi,~ε
i,~ε
j

)
(pφi,~ε

~ε
− j)r−k

Notice that each atom ζ implies precisely one of the sentences φ(r)
i,~ε , and so for each

(i, ~ε) there are precisely ∑p
φi,~ε
i,~ε

j=0 (−1) j
(p

φi,~ε
i,~ε
j

)
(pφi,~ε

~ε
− j)r−k many atoms ζ.

For ~x = 〈Bel(ζ1), Bel(ζ2), . . . , Bel(ζJr )〉

Dr(~x) =

Jr∑

i=1
x2

i =

Jr∑

i=1
(Bel(ζi))2 =

Jr∑

i=1


Bel(φ(r)

i,~ε )
∑p

φi,~ε
i,~ε

j=0 (−1) j
(p

φi,~ε
i,~ε
j

)
(pφi,~ε

~ε
− j)r−k



2

=
∑

i,~ε
(

p
φi,~ε
i,~ε∑

j=0
(−1) j

(pφi,~ε
i,~ε
j

)
(pφi,~ε

~ε
− j)r−k)


Bel(φ(r)

i,~ε )
∑p

φi,~ε
i,~ε

j=0 (−1) j
(p

φi,~ε
i,~ε
j

)
(pφi,~ε

~ε
− j)r−k



2

=
∑

i,~ε

x2
i,~ε

∑p
φi,~ε
i,~ε

j=0 (−1) j
(p

φi,~ε
i,~ε
j

)
(pφi,~ε

~ε
− j)r−k

.

2It is important to notice the difference between the notion of atom in propositional and �rst order
languages. For a propositional language L = { p1, . . . , pn } atoms are the set of sentences αi of the form

n∧

i=1
pεi

i

while for a �rst order language with only unary predicates P1, . . . , Pn, atoms are referred to formulas
Qi(x), of the form

n∧

i=1
P(x)εi .

For a �rst order language L(k) that is the same as L with only constant symbols a1, . . . , ak the set of
sentences ζi of the form ∧k

i=1 Qmi (ai) are called state descriptions of L(k). As discussed, language L(k)

can be considered as a propositional language for which these ζi's will be atoms. Thus it is important
to notice that when L(k) is considered as a �rst order language these will be called state descriptions and
when it is considered as a propositional language they will be called atoms.
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As pointed out in Chapter 1, page 11, a probability function Bel on L(r) can be identi�ed
with the vector

~x = 〈Bel(ζ1), Bel(ζ2), . . . , Bel(ζJr )〉

where ζi's are the state descriptions of L(r).3 The justi�cation for this identi�cation is
that any sentence of the language can be written as a disjunction of a subset of these
state descriptions and the state descriptions are mutually inconsistent. By Lemma 4
and the discussion above the same holds for the sentences φi,~ε . Thus the same argument
allows us to identify a probability function Bel on L(r) with the vector

~x = 〈Bel(φi,~ε)〉.

The advantage of identifying Bel with the vector ~x = 〈Bel(φi,~ε)〉 rather than the vec-
tor ~x = 〈Bel(ζ1), Bel(ζ2), . . . , Bel(ζJr )〉 is that the number of state descriptions of L(r)

depends on r and as we move from L(r) to L(r+1) the number of state descriptions will
change from Jr to Jr+1 and thus the vectors identifying Bel on L(r) and L(r+1) will be
of different dimensions. However the number of sentences φ(r)

i,~ε is independent of r.
Notice that as we move from L(r) to L(r+1), what changes is the number of state descrip-
tions that satisfy each φ(r)

i,~ε but the number of these sentences remains the same for all
r eventually, and thus the probability function Bel on L(r) and L(r+1) can be identi�ed
with vectors of the same size. This is the main motivation for de�ning and using these
φi,~ε's rather than the actual state descriptions. Thus for the rest of this chapter the vec-
tors ~x identifying probability functions are constructed on the basis of the sentences
φi,~ε rather than the actual state descriptions.

For this θ(a1, . . . , ak) let c1 < c2 < . . . < cs be the values for pφi,~ε
~ε

which occur.
Without loss of generality we can assume that φ(r)

i,~ε are such that the �rst n1 coordi-
nates of ~x(r) have pφi,~ε

ε = c1 and the next n2 coordinates have pφi,~ε
ε = c2 and so on for

~x(r) =< Bel(φi,~ε) >. This is true because the order in which we consider the sentences
φi,~ε is not important. Using the same pattern as on page 11 let K be of the form

n∑

j=1
ai jw(θ j) = bi i = 1, . . . ,m,

3or atoms of L(r) if we consider L(r) as a propositional language.
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where each θ j is a sentence of L(k). Replacing each w(θ j) in K with ∑
φi,~ε�θ j w(φi,~ε)

(possible by Lemma 4) and adding the equation ∑
φi,~ε w(φi,~ε) = 1 we will get a system

of linear equations
< w(φi,~ε) > AK = ~bK .

Thus if the probability function w satis�es K the vector < w(φi,~ε) > will be a solution
for the equation

~xAK = ~bK .

Let
S = { ~x | ~xAK = ~bK }

be the set of solutions for this equation i.e. S is the set of probability functions that
satisfy K, and de�ne inductively,

T1 = { ~x ∈ S |
∑

p
φi,~ε
~ε

=c1

x2
i,~ε is minimal }

and
T j = { ~x ∈ T j−1 |

∑

p
φi,~ε
~ε

=c j

x2
i,~ε is minimal }.

If f i are projection functions onto the �rst n1 + . . . + ni coordinates, then the sets S i =

{ f i(~x) | ~x ∈ S } are convex and closed so for every two points ~u,~v ∈ Ti, f i(~u) = f i(~v).
This means that all the points in Ti have the same �rst n1 + n2 + . . .+ ni coordinates and
thus the Ts will contain a single point, ~X. Now let

x(r)
i,~ε = MD(K(r))(φ(r)

i,~ε )

So ~x(r) is a point in S such that Dr(~x) is minimal and so;

Dr(~x(r)) ≤ Dr(~X). (2.2)

We will show that limr→∞ ~x(r) = ~X.

First we will show that
lim
r→∞

f 1(~x(r)) = f 1(~X).
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Then we will show the same thing for the f 2( ~x(r)) and so on.

~x(r) is a bounded sequence and so has a convergent subsequence (for the simplicity
of notation we will assume that it is actually the whole sequence), say convergent to ~Y .
We should show that

f 1(~Y) = f 1(~X)

To see this notice that by (2.2) we have

cr−k
1 Dr( ~x(r)) ≤ cr−k

1 Dr(X)

so
∑

i,~ε

x(r)2
i,~ε cr−k

1

∑p
φi,~ε
i,~ε

j=0 (−1) j
(p

φi,~ε
i,~ε
j

)
(pφi,~ε

~ε
− j)r−k

≤
∑

i,~ε

X2
i,~εc

r−k
1

∑p
φi,~ε
i,~ε

j=0 (−1) j
(p

φi,~ε
i,~ε
j

)
(pφi,~ε

~ε
− j)r−k

If we set γ(r)
i =

∑p
φi,~ε
i,~ε

j=0 (−1) j
(p

φi,~ε
i,~ε
j

)
(pφi,~ε

~ε
− j)r−k we can rewrite this as:

∑

i,~ε,p
φi,~ε
~ε

=c1

x(r)2
i,~ε cr−k

1

γ(r)
i

+
∑

i,~ε,c1<p
φi,~ε
~ε

x(r)2
i,~ε cr−k

1

γ(r)
i

≤
∑

i,~ε,p
φi,~ε
~ε

=c1

X2
i,~εc

(r−k)
1

γ(r)
i

+
∑

i,~ε,c1<p
φi,~ε
~ε

X2
i,~εc

r−k
1

γ(r)
i

. (2.3)

Since
(1 − j

pφi,~ε
ε

)(r−k) → 0 as r → ∞

for 0 < j < pφi,~ε
ε , so

p
φi,~ε
i,~ε∑

j=0
(−1) j

(pφi,~ε
i,~ε
j

)
(1 − j

pφi,~ε
~ε

)r−k → 1

and we have,
γ(r)

i

pφi,~ε r−k
ε

→ 1

using this for c1 < pφi,~ε
~ε

we have:

∑

i,~ε,c1<p
φi,~ε
ε

x(r)2
i,~ε cr−k

1

γ(r)
i

→ 0
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and ∑

i,~ε,c1<p
φi,~ε
ε

X2
i,~εc

r−k
1

γ(r)
i
→ 0

From (2.3) we have:

∑

p
φi,~ε
ε =c1

Y2
i,~ε ≤

∑

p
φi,~ε
ε =c1

X2
i,~ε (2.4)

Notice that ~Y = limr→∞ ~x(r) and so ~Y ∈ S and as ~X ∈ T1 by 2.4 we should have ~Y ∈ T1,
then by what was explained above, f 1(~X) = f 1(~Y) as required.

We will need the following lemma for the rest of the proof:

Lemma 7 Let B ⊆ Rm be a convex polyhedron with corners ~a1, ~a2, . . . , ~aq. Let ~c ∈ B
and let f : Rm → Rn be the projection function given by

f 〈x1, x2, . . . , xm〉 = 〈x1, x2, . . . , xn〉

Now suppose that ~y j ∈ Rn for j ∈ N are such that f −1(~y j) ∩ B , ∅ for all j and

lim j→∞~y j = f (~c).

Then there is a sequence ~z j ∈ B converging to ~c such that f (~z j) form a subsequence of
the ~y j.

Proof. Any point in B can be written as a linear combination

~c +

q∑

i=1
λi~ei

where ~ei = ~ai − ~c and the λi ≥ 0 with sum ≤ 1 and so any ~x ∈ f (B) can be written as

f (~c) +

q∑

i=1
λi f (~ei)

with λi > 0 with sum at most 1 where we drop any f (~ei) which are ~0.
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Now for each ~y j pick one such presentation:

~y j = f (~c) +

q∑

i=1
λi j f (~ei)

with:
~z j = ~c +

q∑

i=1
λi j~ei ∈ B

Notice that this is possible since f −1(~y j) ∩ B , ∅.
It is obvious that f (~z j) is a subsequence of ~y j. To show

lim
j→∞

~z j = ~c

it is enough to show that

lim
j→∞

q∑

i=1
λi j~ei = ~0

To show this we will show that lim j→∞ λi j = 0.
We know that lim j→∞~y j = f (c) and so we have lim j→∞

∑q
i=1 λi j f (~ei) = ~0

Let
~t j =

q∑

i=1
λi j f (~ei)

We have
lim
j→∞

~t j = ~0

and ~t j is in the convex polyhedron with corners f (~ei). For each ~t j pick a smallest set
f ( ~ei1), . . . , f ( ~eih) such that:

~t j =

h∑

k=1
λik j f ( ~eik) (2.5)

with λik j > 0 and ∑
ik λik j ≤ 1. By taking a subsequence if necessary we can assume

that ~z j all have the same smallest set and that λik j → λik as j → ∞. For simplicity of
notation we can assume that these smallest sets are all the ~ei, so (2.5) will become:

~t j =

q∑

i=1
λi j f (~ei) (2.6)
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and

~0 =

q∑

i=1
λi f (~ei). (2.7)

Now if all the λi = 0 we have the required result, otherwise suppose some of the λi > 0.
Then from (2.6) and (2.7) we will have:

~t j =

q∑

i=1
(λi j − νλi) f (~ei) (2.8)

Now if we increase ν from 0, one of the coefficients will become zero while others are
still positive and this contradicts the choice of smallest set. Hence we should have all
λi = 0 as required. �

To continue the proof, consider f 2, the projection function onto the �rst n1 + n2 co-
ordinates. We will show that

f 2(~Y) = f 2(~X)

Remember that ~x(r) is a bounded sequence and so has a convergent subsequence, con-
verging to ~Y . Suppose that f 2(~Y) , f 2(~X). By above discussion we have that

lim
r→∞

f 1(~x(r))→ f 1(~Y) = f 1(~X)

So by Lemma 7 there is a sequence, say ~z(r) ∈ S such that

lim
r→∞

~z(r) = ~X

and f 1(~z(r)) is a subsequence of f 1(~x(r)), for simplicity of notation we will assume that
this subsequence is the whole sequence f 1(~x(r)).

We will show that for large enough r, we have Dr(~z(r)) < Dr(~x(r)) which is a con-
tradiction because as ~x(r) is de�ned to be MD(φ(r)

i,~ε ), we should have Dr(~x(r)) ≤ Dr(~z(r)).

To show that Dr(~z(r)) < Dr(~x(r)) we will show that cr−k
2 Dr(~z(r)) < cr−k

2 Dr(~x(r))
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We can rewrite this as

∑

p
φi,~ε
~ε

=c1

cr−k
2

z(r)2
i,~ε

γ(r)
i

+
∑

p
φi,~ε
~ε

=c2

cr−k
2

z(r)2
i,~ε

γ(r)
i

+
∑

p
φi,~ε
~ε

>c2

cr−k
2

z(r)2
i,~ε

γ(r)
i

<

∑

p
φi,~ε
~ε

=c1

cr−k
2

x(r)2
i,~ε

γ(r)
i

+
∑

p
φi,~ε
~ε

=c2

cr−k
2

x(r)2
i,~ε

γ(r)
i

+
∑

p
φi,~ε
~ε

>c2

cr−k
2

x(r)2
i,~ε

γ(r)
i

By what is said above we have that:

cr−k
2

∑

p
φi,~ε
~ε

=c1

z(r)2
i,~ε

γ(r)
i

= cr−k
2

∑

p
φi,~ε
~ε

=c1

x(r)2
i,~ε

γ(r)
i

(2.9)

and as r → ∞

∑

p
φi,~ε
~ε

>c2

cr−k
2

z2
i,~ε

γ(r)
i
→ 0 (2.10)

∑

p
φi,~ε
~ε

>c2

cr−k
2

x2
i,~ε

γ(r)
i
→ 0 (2.11)

and so it is enough to show that r can be large enough that,

∑

p
φi,~ε
~ε

=c2

z(r)2
i,~ε <

∑

p
φi,~ε
~ε

=c2

x(r)2
i,~ε − δ′ (2.12)

for some �xed δ′ > 0.

As r → ∞ we have:
~z(r) → ~X

so
~z(r)

i,~ε → ~Xi,~ε

so



CHAPTER 2. INFERENCE PROCESSES FOR QUANTIFIED KNOWLEDGE 31

∑

p
φi,~ε
~ε

=c2

~z(r)2
i,~ε →

∑

p
φi,~ε
~ε

=c2

~X2
i,~ε (2.13)

the same way we have

∑

p
φi,~ε
~ε

=c2

~x(r)2
i,~ε →

∑

p
φi,~ε
~ε

=c2

~Y2
i,~ε (2.14)

by de�nition of ~X and our assumption that f 2(~X) , f 2(~Y),
∑

p
φi,~ε
~ε

=c2

~X2
i,~ε <

∑

p
φi,~ε
~ε

=c2

~Y2
i,~ε

Let ∑

p
φi,~ε
~ε

=c2

~Y2
i,~ε −

∑

p
φi,~ε
~ε

=c2

~X2
i,~ε = δ

Using (2.13) and (2.14) we can choose r large enough so that

|
∑

p
φi,~ε
~ε

=c2

~X2
i,~ε −

∑

p
φi,~ε
~ε

=c2

~z(r)2
i,~ε | ≤ δ/3

and
|

∑

p
φi,~ε
~ε

=c2

~Y2
i,~ε −

∑

p
φi,~ε
~ε

=c2

~x(r)2
i,~ε | ≤ δ/3

so we have ∑

p
φi,~ε
~ε

=c2

~x(r)2
i,~ε −

∑

p
φi,~ε
~ε

=c2

~z(r)2
i,~ε ≥ δ/3

and so ∑

p
φi,~ε
~ε

=c2

~z(r)2
i,~ε <

∑

p
φi,~ε
~ε

=c2

~x(r)2
i,~ε − δ/6
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So by (2.9) we have:

cr−k
2

∑

p
φi,~ε
~ε

=c1

z(r)2
i,~ε

γ(r)
i

+ cr−k
2

∑

p
φi,~ε
~ε

=c2

z(r)2
i,~ε

γ(r)
i

< cr−k
2

∑

p
φi,~ε
~ε

=c1

x(r)2
i,~ε

γ(r)
i

+ cr−k
2

∑

p
φi,~ε
~ε

=c2

x(r)2
i,~ε

γ(r)
i
− δ/6

by (2.10) and (2.11) we can choose r large enough such that,

∑

p
φi,~ε
~ε

=c1

cr−k
2

z(r)2
i,~ε

γ(r)
i

+
∑

p
φi,~ε
~ε

=c2

cr−k
2

z(r)2
i,~ε

γ(r)
i

+
∑

p
φi,~ε
~ε

>c2

cr−k
2

z(r)2
i,~ε

γ(r)
i

<

∑

p
φi,~ε
~ε

=c1

cr−k
2

x(r)2
i,~ε

γ(r)
i

+
∑

p
φi,~ε
~ε

=c2

cr−k
2

x(r)2
i,~ε

γ(r)
i

+
∑

p
φi,~ε
~ε

>c2

cr−k
2

x(r)2
i,~ε

γ(r)
i

This gives us the required contradiction and so we must have

f 2(~Y) = f 2(~X).

For the next step we repeat the same process with f 3, the projection function onto the
�rst n1 + n2 + n3 coordinates, repeating this process s − 1 times (s is the number of
different pφi,~ε

~ε
s) we will have

lim
r→∞

~x(r) = ~Y = ~X.

Notice that ~x(r) are all in S and S is closed so we have

~X = lim
r→∞

~x(r) ∈ S

and thus ~X is a probability function and satis�es K as required.
�
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2.2 The Centre of Mass Inference Process
The Centre of Mass inference process on a propositional language L, CML, is de�ned
so as to choose the most typical (for a certain notion of typicality) probability func-
tion. Here for a knowledge base K the probability function is chosen to be as average
and representative as possible among all the probability functions satisfying K. More
precisely the centre of mass inference process is de�ned to choose the centre of mass
of VL(K), the set of solutions for K. Notice that since VL(K) is a convex set its centre
of mass will be in VL(K), which will not necessarily be the case if we generalise K to
contain non linear constraints.

The justi�cations for CML fall into the �rst category mentioned before. This inference
process can to some extent be justi�ed by the principle of indifference (or Laplace's
principle). The main idea is that when dealing with a set of facts all the possible words
that are consistent with these facts should be regarded as equally likely. In our termi-
nology then, all the probability functions satisfying K or, equivalently, all the points in
VL(K) should be regarded as equally likely. Thus choosing the centre of mass of VL(K)
will correspond to choosing the average or the most representative point in VL(K) and
there appear to be situations where choosing the probability function through this ap-
proach provides a more plausible and better justi�ed answer when compared to infer-
ence processes based on minimising information [see [23]].

Although CML seems very intuitive, it suffers from some important shortcomings one
of which is the failure of language invariance. Extending the language by adding new
propositional variables may change the probability given to a sentence θ on the basis
of K, even if the new propositional variables do not explicitly appear in θ or K. To
correct this shortcoming we will de�ne the limiting centre of mass inference process,
CM∞.

The following three theorems are stated and proved in [24].

Theorem 8 lim L⊂L′
|L′ |→∞

CML′(K)(θ) exists and is equal to CM∞(K)(θ) where CM∞(K)(θ)
is an inference process that choose the probability function or equivalently the point in
VL(K) where ∑

i<IL(K) log xi is maximal, where

IL(K) = { i | ∀~y ∈ VL(K), yi = 0 }.
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Theorem 9 CM∞ is language invariant.

Theorem 10 The limiting Centre of Mass inference process, CM∞ satis�es the princi-
ples of equivalence, continuity, open-mindedness, renaming and obstinacy but not the
principles of irrelevant information nor the principle of relativisation.

By the above discussion, the limiting centre of mass inference process CM∞ will be
de�ned to be the unique point in VL(K) where ∑

i<IL(K) log xi is maximal. Here we will
use the same pattern as the previous section to generalize this inference process to the
case of unary predicate languages.

Theorem 11 For θ ∈ S L:

Bel(θ) = lim
r→∞

CM∞(K(r))(θ(r))

exists and is a probability function on L that satis�es K.

Proof. Using the same construction as for Theorem 6, if we set

xi,~ε = Bel(φ(r)
i,~ε )

the function CM∞(~x) for ~x =< Bel(ζ1), . . . , Bel(ζJr ) > will be given by4:

CM∞(~x) =

Jr∑

i=1
log xi =

Jr∑

i=1
log Bel(ζi)

=

Jr∑

i=1
log


Bel(φ(r)

i,~ε )
∑p

φi,~ε
i,~ε

j=0 (−1) j
(p

φi,~ε
i,~ε
j

)
(pφi,~ε

~ε
− j)r−k



as CM∞ satis�es renaming,

=
∑

i,~ε

p
φi,~ε
i,~ε∑

j=0
(−1) j

(pφi,~ε
i,~ε
j

)
(pφi,~ε

~ε
− j)r−k log


xi,~ε

∑p
φi,~ε
i,~ε

j=0 (−1) j
(p

φi,~ε
i,~ε
j

)
(pφi,~ε

~ε
− j)r−k


=

∑

i,~ε

p
φi,~ε
i,~ε∑

j=0
(−1) j

(pφi,~ε
i,~ε
j

)
(pφi,~ε

~ε
− j)r−k log xi,~ε −

4For simplicity of notation we will assume that IL(K) = ∅.
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∑

i,~ε

p
φi,~ε
i,~ε∑

j=0
(−1) j

(pφi,~ε
i,~ε
j

)
(pφi,~ε

~ε
− j)r−k log

pφi,~ε r−k
~ε

p
φi,~ε
i,~ε∑

j=0
(−1) j

(pφi,~ε
i,~ε
j

)
(1 − j

pφi,~ε
~ε

)r−k

 .

Now let

γ(r)
i,~ε =

p
φi,~ε
i,~ε∑

j=0
(−1) j

(pφi,~ε
i,~ε
j

)
(pφi,~ε

~ε
− j)r−k

and

δr =
∑

i,~ε
γ(r)

i,~ε log
p
φi,~ε
i,~ε∑

j=0
(−1) j

(pφi,~ε
i,~ε
j

)
(1 − j

pφi,~ε
~ε

)r−k.

So we will have :

CM∞(~x) =
∑

i,~ε
γ(r)

i,~ε log xi,~ε − (r − k)
∑

i,~ε
γ(r)

i,~ε log pφi,~ε
~ε
− δr

We know that as r → ∞, γ(r)
i,~ε

p
φi,~ε r−k
~ε

→ 1 and δr → 0. Set

S = { ~x | ~xAK = ~bK }

T1 = { ~x ∈ S |
∑

i,~ε,p
φi,~ε
~ε

=b1

log xi,~ε is maximal }

T j = { ~x ∈ T j−1 |
∑

i,~ε,p
φi,~ε
~ε

=b j

log xi,~ε is maximal }

where b1 > b2 > . . . > bs is the set of pφi,~ε
~ε

arranged in a decreasing order. With the
same argument as for the Theorem 6, for two points ~u,~v ∈ Ti, f i(~u) = f i(~v) and Ts will
be a single point, ~X. Let x(r)

i,~ε = CM∞(φ(r)
i,~ε ). We want to prove that

lim
r→∞

~x(r) = ~X.

Equivalently we want to show that

limr→∞ f i(~x(r)) = f i(~X)

for i = 1, . . . , s.
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We can assume that the �rst n1 coordinates of ~x(r) have pφi,~ε
~ε

= b1, the next n2 coor-
dinates have pφi,~ε

~ε
= b2 and so on. By de�nition of ~x(r) we will have :

CM∞(~x(r)) ≥ CM∞(~X)
∑

i,~ε
γ(r)

i,~ε log x(r)
i,~ε −(r−k)

∑

i,~ε
γ(r)

i,~ε log pφi,~ε
~ε
−δr ≥

∑

i,~ε
γ(r)

i,~ε log Xi,~ε−(r−k)
∑

i,~ε
γ(r)

i,~ε log pφi,~ε
~ε
−δr.

(2.15)
First we will show that

lim
r→∞

f 1(~x(r)) = f 1(~X)

To see this, suppose this is not the case. ~x(r) is a bounded sequence and so has a con-
vergent subsequence, say converging to ~Y , where f 1(~Y) , f 1(~X).

Using (2.15) we have:

∑

i,~ε

γ(r)
i,~ε log x(r)

i,~ε

br−k
1

≥
∑

i,~ε

γ(r)
i,~ε log ~Xi,~ε

br−k
1

which we can rewrite as:

∑

i,~ε,p
φi,~ε
~ε
≥b1

γ(r)
i,~ε log ~x(r)

i,~ε

br−k
1

+
∑

i,~ε,p
φi,~ε
~ε

<b1

γ(r)
i,~ε log ~x(r)

i,~ε

br−k
1

≥
∑

i,~ε,p
φi,~ε
~ε
≥b1

γ(r)
i,~ε log ~Xi,~ε

br−k
1

+
∑

i,~ε,p
φi,~ε
~ε

<b1

γ(r)
i,~ε log ~Xi,~ε

br−k
1

(2.16)
As r → ∞ we will have

∑

i,~ε,p
φi,~ε
~ε

<b1

γ(r)
i,~ε log ~Yi,~ε

br−k
1

→ 0

∑

i,~ε,p
φi,~ε
~ε

<b1

γ(r)
i,~ε log ~Xi,~ε

br−k
1

→ 0

and using this and (2.16) we have:

∑

i,~ε,p
φi,~ε
~ε
≥b1

log ~Yi,~ε ≥
∑

i,~ε,p
φi,~ε
~ε
≥b1

log ~Xi,~ε (2.17)
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which is a contradiction as ~X ∈ T1. Notice that by (2.17) and the fact that ~Y =

limr→∞ ~x(r) and so ~Y ∈ S , we should have that ~Y ∈ T1, then as noted above we should
have

f 1(~X) = f 1(~Y).

And this gives the required contradiction so

lim
r→∞

f 1(~x(r)) = f 1(~X). (2.18)

Next step is to show that
lim
r→∞

f 2(~x(r)) = f 2(~X)

Again suppose that this is not the case, that is f 2(~Y) , f 2(~X). By Lemma 7 we know
that there is a sequence z(r) ∈ S converging to ~X and f 1(~z(r)) is a subsequence of f 1(~x(r))
(for simplicity of notation we will assume that this subsequence is the whole sequence
f 1(~x(r))). To get the required contradiction we will show that for large enough r

CM∞(~x(r)) < CM∞(~z(r))

which is a contradiction with the choice of ~x(r).

To show this we will show that for large r

1
br−k

2
CM∞(~x(r)) < 1

br−k
2

CM∞(~z(r)).

We can rewrite this as:

∑

i,~ε,p
φi,~ε
~ε
≥b2

γ(r)
i,~ε log ~x(r)

i,~ε

br−k
2

+
∑

i,~ε,p
φi,~ε
~ε

<b2

γ(r)
i,~ε log ~x(r)

i,~ε

br−k
2

<
∑

i,~ε,p
φi,~ε
~ε
≥b2

γ(r)
i,~ε log~z(r)

i,~ε

br−k
2

+
∑

i,~ε,p
φi,~ε
~ε

<b2

γ(r)
i,~ε log~z(r)

i,~ε

br−k
2

(2.19)
As r → ∞ we have:

∑

i,~ε,p
φi,~ε
~ε

<b2

γ(r)
i,~ε log ~x(r)

i,~ε

br−k
2

→ 0

∑

i,~ε,p
φi,~ε
~ε

<b2

γ(r)
i,~ε log~z(r)

i,~ε

br−k
2

→ 0
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so it is enough to show that:

∑

i,~ε,p
φi,~ε
~ε
≥b2

pφi,~ε r−k
~ε

log ~x(r)
i,~ε

br−k
2

<
∑

i,~ε,p
φi,~ε
~ε
≥b2

pφi,~ε r−k
~ε

log~z(r)
i,~ε

br−k
2

− δ′ (2.20)

for some �xed δ′ > 0.

Which is:

∑

i,~ε,p
φi,~ε
~ε

=b1

br−k
1 log ~x(r)

i,~ε

br−k
2

+
∑

i,~ε,p
φi,~ε
~ε

=b2

log ~x(r)
i,~ε <

∑

i,~ε,p
φi,~ε
~ε

=b1

br−k
1 log~z(r)

i,~ε

br−k
2

+
∑

i,~ε,p
φi,~ε
~ε

=b2

log~z(r)
i,~ε − δ′.

(2.21)
We know that f 1(~z(r)) = f 1(~x(r)), so we have:

∑

i,~ε,p
φi,~ε
~ε

=b1

br−k
1 log ~x(r)

i,~ε

br−k
2

=
∑

i,~ε,p
φi,~ε
~ε

=b1

br−k
1 log~z(r)

i,~ε

br−k
2

and so it is enough to show that

∑

i,~ε,p
φi,~ε
~ε

=b2

log ~x(r)
i,~ε <

∑

i,~ε,p
φi,~ε
~ε

=b2

log~z(r)
i,~ε − δ′ (2.22)

but we have
~x(r) → ~Y

and
~z(r) → ~X

so ∑

i,~ε,p
φi,~ε
~ε

=b2

log ~x(r)
i,~ε →

∑

i,~ε,p
φi,~ε
~ε

=b2

log ~Yi,~ε

and ∑

i,~ε,p
φi,~ε
~ε

=b2

log~z(r)
i,~ε →

∑

i,~ε,p
φi,~ε
~ε

=b2

log ~Xi,~ε
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and by de�nition of ~X we have
∑

i,~ε,p
φi,~ε
~ε

=b2

log ~Xi,~ε −
∑

i,~ε,p
φi,~ε
~ε

=b2

log ~Yi,~ε > 0

notice that inequality is strict because f 2(~Y) , f 2(~X).

Now if we set

∑

i,~ε,p
φi,~ε
~ε

=b2

log ~Xi,~ε −
∑

i,~ε,p
φi,~ε
~ε

=b2

log ~Yi,~ε = δ (2.23)

and we take r large enough so that:

|
∑

i,~ε,p
φi,~ε
~ε

=b2

log ~x(r)
i,~ε −

∑

i,~ε,p
φi,~ε
~ε

=b2

log ~Yi,~ε | < δ

3 (2.24)

and

|
∑

i,~ε,p
φi,~ε
~ε

=b2

log~z(r)
i,~ε −

∑

i,~ε,p
φi,~ε
~ε

=b2

log ~Xi,~ε | < δ

3 (2.25)

we will have

∑

i,~ε,p
φi,~ε
~ε

=b2

log~z(r)
i,~ε −

∑

i,~ε,p
φi,~ε
~ε

=b2

log ~x(r)
i,~ε >

δ

3

and so ∑

i,~ε,p
φi,~ε
~ε

=b2

log~z(r)
i,~ε − δ/6 >

∑

i,~ε,p
φi,~ε
~ε

=b2

log ~x(r)
i,~ε

which is (2.22), as required. Repeating the same process we can show that f 3(limr→∞ ~x(r)) =

f 3(~X) and so on to have the required result.
Notice that ~x(r) are all in S and S is closed so we have

~X = lim
r→∞

~x(r) ∈ S

and thus ~X is a probability function that satis�es K as required. �
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Here we have proved the required result for the generalization of two speci�c inference
processes, Minimum Distance and Centre of Mass, but in fact analogous proofs would
also give the result for the Maximum Entropy Inference Process (already proved in [6])
and the spectrum of other inference processes based on generalized Renyi Entropies.

In our original question we imagined an agent wishing to assign probabilities to all
sentences on the basis of quanti�ed knowledge K. A special case of this is when K
simply amounts to the assertion that some consistent, �nite, set of axioms T hold
categorically, i.e.

K = {w(φ) = 1 | φ ∈ T }.

In this case our question might be reformulated as

Given a �nite (consistent) set T of �rst order axioms what should we take
as the default or most normal model of T ? More precisely, if we know
only that the structure M with universe { ai | i ∈ N } is a model of T what
probability should we give to a sentence θ(a1, a2, . . . , an) being true in M?

There are various approaches one might take to this question depending on the inter-
pretation of `most normal'. For example within a model theory context one might
consider a prime model, where such exists, to be the `most normal' in the sense of
being the smallest and the canonical example (see for example [8, p96], [12, p336]).
On the other hand one might feel that if possible the default model should be existen-
tially closed in the sense that any quanti�er free formula which could be satis�ed in a
superstructure model of T was already satis�ed in the default model. Alternatively we
might consider arguing via the distribution of models, see for example [1], [2], [13],
[14], [15], in order to make the default the `average' model.

Furthermore, at �rst sight it would appear that there was already a rather well stud-
ied approach to this problem via Inductive Logic. In that subject, see for example
[7], [11], [19], [22], this same problem with T = ∅ is quite central. So it might
seem that a solution to our problem here could be had by simply taking a rationally
justi�ed probability function w championed within Inductive Logic for the case of a
completely empty knowledge base and then conditioning w on ∧T . The �rst problem
with that approach however is that there is currently no clearly favored rational solu-
tion to the Inductive Logic problem. But more seriously, those solutions w which have
been proposed generally give non-tautologous universal sentences probability 0, see
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for example [16], [20], [21], [22, p22-23], [24, p196-197], and once w(∧T ) = 0 such
conditioning will not be possible.5 , 6

However if we assume that the sentences of T come from the purely unary language of
the preceding sections then the method described, based on any of the above inference
processes (in fact in this simple case on any inference process satisfying the Renaming
Principle) with K = {w(φ) = 1 | φ ∈ T }, can be applied, and in fact always yield the
same answer.

Theorem 12 Let K = {w(φ) = 1 | φ ∈ T }, and let N be an inference process satisfying
the Renaming Principle. If ~ε1, . . . , ~ε s are all those vectors ~ε for which ∧J

j=1(∃xQ j(x))ε j

is consistent with T and for which pφi,~ε
~ε

takes its largest possible value, then

N(K)(θ(a1, . . . , ak)) = |H|/|L|

where
L = { φi,~εr | φi,~εr is consistent with

∧
T , 1 ≤ i ≤ Jk, 1 ≤ r ≤ s },

H = { φi,~εr | φi,~εr is consistent with θ(a1, . . . , ak) ∧
∧
T , 1 ≤ i ≤ Jk, 1 ≤ r ≤ s }.

Proof. Let
L′ = { φi,~ε | φi,~ε is consistent with

∧
T }

H′ = { φi,~ε | φi,~ε is consistent with θ(a1, . . . , an) ∧
∧
T },

and let si's run through the state descriptions of L(r). Let S (r) be the set of those state
descriptions of L(r) that are consistent with K. By the Renaming Principle all the
state descriptions in S (r) will get the same probability, namely 1

|S (r) | and let γ(r)
φi,~ε

be the
number of state descriptions of L(r) that logically imply φi,~ε . By previous discussions

5It is true that proposals have been made for solutions to the Inductive Logic problem which give
some non-tautologous universal sentences non-zero probability, see for example [9], [16], [20], [21],
[25]. However they seem (to us) too ad hoc to be seriously considered `logical'.

6This apparent discontinuity between the cases when T =/, ∅ is intriguing � the method we shall
apply here still works when T = ∅ but gives an unsatisfactory solution to the inductive logic problem,
unsatisfactory in that it corresponds to the so called completely independent solution which entertains
no induction i.e. learning by example, see for example [24, p172].
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in the proof of Theorem 6, we know that

lim
r→∞

γ(r)
φi,~ε

(pφi,~ε
~ε

)r−k
= 1.

So
N(K(r))(θ((r))(a1, . . . , ak)) =

∑

si�θ

N(K(r))(si) =

∑

φi,~ε∈H′

∑

si�φi,~ε

N(K)(si) =

∑

φi,~ε∈H′

γ(r)
φi,~ε

|S (r)| =

∑
φi,~ε∈H′ γ

(r)
φi,~ε∑

φi,~ε∈L′ γ
(r)
φi,~ε

.

To see this notice that
|S (r)| =

∑

φi,~ε∈L′
γ(r)
φi,~ε

as both are the number of state descriptions of L(r) consistent with K.

Let c1 > c2 > . . . > ct be the distinct values for pφi,~ε
~ε

for the sentences in L′ so we
have pφi,~ε

~ε
= c1 for φi,~ε ∈ L (and thus for φi,~ε ∈ H) and for every φi,~δ < L we have

pφi,~δ
~δ
≤ c2. Thus we will have

N(K)(θ) = lim
r→∞

N(K(r))(θ(r)) =

lim
r→∞

∑
φi,~ε∈H′ γ

(r)
φi,~ε∑

φi,~ε∈L′ γ
(r)
φi,~ε

= lim
r→∞

∑
φi,~ε∈H γ

(r)
φi,~ε

+
∑
φi,~ε∈H′−H γ

(r)
φi,~ε∑

φi,~ε∈L γ
(r)
φi,~ε

+
∑
φi,~ε∈L′−L γ

(r)
φi,~ε

=

lim
r→∞

∑
φi,~ε∈H γ

(r)
φi,~ε∑

φi,~ε∈L γ
(r)
φi,~ε

+
∑
φi,~ε∈L′−L γ

(r)
φi,~ε

+ lim
r→∞

∑
φi,~ε∈H′−H γ

(r)
φi,~ε∑

φi,~ε∈L γ
(r)
φi,~ε

+
∑
φi,~ε∈L′−L γ

(r)
φi,~ε

First notice that

lim
r→∞

∑
φi,~ε∈L γ

(r)
φi,~ε∑

φi,~ε∈L γ
(r)
φi,~ε

+
∑
φi,~ε∈L′−L γ

(r)
φi,~ε

≥ lim
r→∞

cr−k
1 |L|

cr−k
1 |L| + cr−k

2 |L′ − L| = 1
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so

lim
r→∞

∑
φi,~ε∈L γ

(r)
φi,~ε∑

φi,~ε∈L γ
(r)
φi,~ε

+
∑
φi,~ε∈L′−L γ

(r)
φi,~ε

= 1.

Thus

lim
r→∞

∑
φi,~ε∈H′−H γ

(r)
φi,~ε∑

φi,~ε∈L γ
(r)
φi,~ε

+
∑
φi,~ε∈L′−L γ

(r)
φi,~ε

= lim
r→∞

∑
φi,~ε∈H′−H γ

(r)
φi,~ε∑

φi,~ε∈L γ
(r)
φi,~ε

≤

lim
r→∞

cr−k
2 |H′ − H|

cr−k
1 |L|

= 0,

since c2 < c1. In consequence we will have

N(K)(θ) = lim
r→∞

N(K(r))(θ(r)) =

lim
r→∞

∑
φi,~ε∈H γ

(r)
φi,~ε∑

φi,~ε∈L γ
(r)
φi,~ε

+
∑
φi,~ε∈L′−L γ

(r)
φi,~ε

= lim
r→∞

∑
φi,~ε∈H γ

(r)
φi,~ε∑

φi,~ε∈L γ
(r)
φi,~ε

=

cr−k
1 |H|

cr−k
1 |L|

=
|H|
|L| .

�

In particular then w gives probability 1 to

s∨

i=1

J∧

j=1
(∃xQ j(x))εi

j ,

(and probability 1/s to each of the disjuncts), thus exclusively favoring those models
M of T in which as that as many of the Q j are satis�ed as possible, that is the existen-
tially closed models of T .

We will conclude this chapter with an example where the inference processes CM∞,
MD and ME will provide different answers.

Example. Let L be a language with only unary predicates P and Q. Let K = {w(∀xP(x)) =

1/3,w(∀xQ(x)) = 1/3} and θ = ∀x(P(x) ∧ Q(x)). We will be interested in the value
w(θ).

Atoms of this language will be formulas,
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Q1 : P(x) ∧ Q(x)

Q2 : P(x) ∧ ¬Q(x)

Q3 : ¬P(x) ∧ Q(x)

Q4 : ¬P(x) ∧ ¬Q(x)

and the state descriptions of L(r) are sentences, S = {α1, . . . , α4r }, of the form

αm =

r∧

j=1
Qm j(a j)

.
De�ne

A = {αm |αm �
r∧

j=1
P(a j)},

and
B = {αm |αm �

r∧

j=1
Q(a j)},

so for each αm ∈ A, we have

αm |= (Q1(ai) ∨ Q2(ai)) i = 1, . . . , r.

similarly for each αm ∈ B, we have

αm |= (Q1(ai) ∨ Q3(ai)) i = 1, . . . , r.

Notice the |A| = |B| = 2r. Let α1 ∈ A, be the state description that logically implies∧r
i=1 Q1(ai). Notice that A ∩ B = {α1 } and set

A′ = A − {α1 }. and B′ = B − {α1 },

so A′ ∩ B′ = ∅. From constraints in K we have
∑

αi∈A
w(αi) =

∑

α j∈B
w(α j) =

1
3 .
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By renaming all the state descriptions in A′ should get the same probability, say u,
and similarly all the state descriptions in B′ will get value v and those in S − (A ∪ B),
probability t. In this setting and using the vector notation for probability functions
(based on state descriptions rather than φi,~ε), the knowledge base K will be equivalent
to the system of equations,

x1 +
∑

αi∈A′
xi = x1 + (2r − 1)u =

1
3 ,

x1 +
∑

αi∈B′
xi = x1 + (2r − 1)v =

1
3 ,

x1 +
∑

αi∈A′
xi +

∑

αi∈B′
xi +

∑

αi∈S−(A∪B)
xi = x1 + (2r − 1)u + (2r − 1)v + (22r − 2r+1 + 1)t = 1.

We can simplify this by setting y1 = x1, y2 = (2r−1)u, y3 = (2r−1)v, y4 = (22r−2r+1+1)t
as

y1 + y2 =
1
3 , y1 + y3 =

1
3 ,

y1 + y2 + y3 + y4 = 1.

Thus the set of solutions for K is in a one to one correspondence withe set

{< x1, . . . , x4 >∈ R4 |0 ≤ xi ≤ 1,
4∑

j=1
x j = 1, x1 + x2 = x1 + x3 = 1/3 }.

The inference process MD will choose the point y =< y1, . . . , y4 > in this set for which∑4
i=1 y2

i is minimal. Putting this equations into Lagrange multiplier method we will get,

y1 =
1

12 , y2 =
3

12 , y3 =
3

12 , y4 =
5

12 .

and we have

MD(K(r))(α1) = y1 =
1

12 , MD(K(r))(αm) =
y2

2r − 1 =
3

12(2r − 1) f or αm ∈ A′ ∪ B′,

MD(K(r))(αm) =
y4

(22r − 2r+1 + 1) =
5

12(22r − 2r+1 + 1) f or αm ∈ S − (A ∪ B).

Thus we have
MD(K)(θ) = lim

r→∞
MD(K(r))(θ(r)) =
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MD(K(r))(α1) =
1

12 .

The inference process CM∞ will choose the point < t1, . . . , t4 > for which ∑4
j=1 log(t j)

is maximal. Again using Lagrange multipliers method we will get

t1 = 0.1301294011, t2 = t3 = 0.2032039322, t4 = 0.463462735.

So
CM∞(K(r))(α1) = t1 = 0.1301294011,

CM∞(K(r))(αm) =
t2

2r − 1 =
0.2032039322

2r − 1 f or αm ∈ A′ ∪ B′,

MD(K(r))(αm) =
t4

(22r − 2r+1 + 1) =
0.463462735
22r − 2r+1 + 1 f or αm ∈ S − (A ∪ B).

Thus we have
CM∞(K)(θ) = lim

r→∞
CM∞(K(r))(θ(r)) =

CM∞(K(r))(α1) = 0.1301294011.

The maximum entropy inference process will choose the point < z1, . . . , z4 > for which∑4
j=1 z j log(z j) is minimal. Using Lagrange multiplier methods as before we will get

z1 =
1
9 , z2 = z3 =

2
9 , z4 =

4
9 .

ME(K(r))(α1) = z1 =
1
9 , ME(K(r))(αm) =

z2

2r − 1 =
2

9(2r − 1) f or αm ∈ A′ ∪ B′,

MD(K(r))(αm) =
y4

(22r − 2r+1 + 1) =
4

9(22r − 2r+1 + 1) f or αm ∈ S − (A ∪ B).

Thus we have
ME(K)(θ) = lim

r→∞
ME(K(r))(θ(r)) =

ME(K(r))(α1) =
1
9

and as we can see the three inference processes provide different answers.



Chapter 3

Maximum Entropy Inference Process
On Quanti�ed Knowledge

Maximum Entropy (henceforth referred to as ME) is the most well studied and com-
monly accepted inference process to work with probability logic. Here again, like
the case of MD, the choice of probability function emphasises on increasing the un-
certainty to its maximum possible level by minimizing the amount of information in-
cluded in the candidate probability function beyond the knowledge base. However the
choice of measure used here for comparing two probability functions will prove to be
much better justi�ed than the choice of Euclidean measure in the case of MD. Here
the uncertainty or entropy is maximised through maximising the Shannon measure of
uncertainty

−
∑

xi log(xi).

This choice, unlike the choice of Euclidean measure for MD, bene�ts from a very
strong mathematical justi�cation. To see this let H(~x) be a measure for uncertainty on
the set ⋃k≥1 Dk where

Dk = {< x1, . . . , xk >∈ Rk | ~x ≥ 0 and
∑

xi = 1 },

then the following properties will be expected from H as a measure for uncertainty:

1) For each k > 0, H � Dk should be continuous.
2) For 0 < n < m, H( 1

n , . . . ,
1
n ) < H( 1

m , . . . ,
1
m).

47
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3) If ∑mi
j=1 yi j = 1 and yi j ≥ 0 for i = 1, . . . , k and ~x ∈ Dk then

H(x1y11, x1y12, . . . , x1y1m1 , x2y21, . . . , xiyi j, . . .)

= H(~x) +

k∑

i=1
xiH(yi1, . . . , yimi).

If we take xi i = 1 . . . k to be probabilities assigned to some disjoint events E1 . . . Ek

then the above requirements can be justi�ed as follow: The �rst requirement is justi�ed
by saying that small changes in ~x ∈ Dk are expected to result only in small changes in
H(~x).

Considering uncertainty as the amount of information we will gain by observing which
of the exclusive and exhaustive events E1, . . . Ek actually holds, the second requirement
will be justi�ed by saying that where n < m, the amount of information we gain by
learning which of n equally probable events holds is less than that gained by learning
which of m equally probable events holds. The third requirement is justi�ed by saying
that the information gained by learning the event corresponding to xiyi j is the same
as the information gained by �rst learning the event corresponding to xi and then the
event corresponding to yi j.

Expecting these requirements will then (see for example [24] for the proof), force
the function H(~x) to be of the form

H(x1, . . . , xm) = −
m∑

i=1
cxi log(xi) for some c > 0.

Thus using the Shannon's measure seems to be the best mathematically justi�ed choice
for a measure of uncertainty. This remains true from the point of view of principles of
uncertain reasoning.

Theorem 13 ME satis�es continuity and the principles of equivalence, irrelevant in-
formation, open-mindedness, renaming, obstinacy and relativisation. Furthermore
ME is the only inference process that satis�es all these principles at the same time.

Proof. See for example [24]. �
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ME has become a well accepted inference process partly because it ensures that the
process through which the probability function is being chosen affects as little as pos-
sible the �nal result through extra restrictions and assumptions beyond those already
enforced by the knowledge base, and thus can be argued to provide a probability dis-
tribution which is based as much as possible on the evidence and the evidence alone
rather than the reasoner or the process of analysing the evidence.

A lot of investigations and studies have been made regarding the justi�cations and
properties of ME, especially for the case of propositional logic. This has given this
inference process a great strength and has made it into a topic of great interest both for
mathematicians, see for example [15], [24], [26], [27], [28], and philosophers some
of whom have identi�ed it as the fundamental thesis for Objective Baysianism, see
Jaynes, [17], [18], Rosenkrantz, [31] and Williamson, [33].

In this and the next chapter we will present a study of Maximum Entropy for pred-
icate languages. In the rest of this chapter we investigate a generalisation of ME to a
predicate language L as the limiting case of ME de�ned on �nite sublanguages of L.
Here we introduce an alternative machinery to the one presented for the BP-method in
[6] as used in previous chapter. This machinery is developed with the hope of facili-
tating the generalisation from unary to more general polyadic languages. As we shall
see however the BP-method will unfortunately prove not to be applicable to the most
general case. In the rest of the chapter we investigate this method for two special cases
and in Chapter 4 we will study an alternative generalisation suggested by Williamson
in [34], W-method, and will provide a comparison between the two methods.
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3.1 The BP-Method For Π1 Knowledge Bases From A
Unary Language With Identity

In this section we will investigate whether the BP-method on inference processes sat-
isfying Renaming Principle will converge for knowledge bases of the form

K = {w(∀x1, . . . , xq Θ(x1, . . . , xq)) = 1 }

where Θ(x1, . . . , xq) is quanti�er free and is coming from a �nite unary �rst order lan-
guage without function symbols and augmented with equality. We conjecture that this
is the case for any �nite predicate language L, without function symbols and whose
only constant symbols are a1, a2, . . ., though our results to date fall short of proving
that. Indeed we would add to this the conjecture that the same is also true of the W-
method and that they both give the same answer.

In the case when the language L is purely unary and without equality we have seen that
convergence does hold for Maximum entropy, MD and CM∞, and indeed this holds, if
we take general linear knowledge bases without any restriction on the quanti�er com-
plexity of the sentences involved. We now consider the next simplest case, where L is
a �nite unary language augmented with equality, =, and show that the BP-method does
converge for any inference process that satis�es the Renaming Principle1. To make
clear what `equality' means in this context we require that our probability functions
give probability 1 to the axioms of equality and probability 0 to ai = a j for i , j.

Fix L to be this language (�nite unary �rst order language with equality and without
function symbols) until otherwise indicated and let α1(x), . . . , αJ(x) be the atoms of L
with equality removed. Let n � q. Given a state description η(a1, . . . , an) of L(n) (with
equality), that is consistent with the axioms of equality, let Mη be the unique structure
for L with universe {a1, . . . , an} in which η(a1, . . . , an) is true. Say that η(a1, . . . , an) is
of type κ, where κ : {1, . . . , J} → {0, 1, . . . , q}, if for 1 ≤ i ≤ J,

κ(i) = min{ | { j | η(a1, . . . , an) |= αi(a j) } | , q}.

1Actually the machinery of the previous chapter can be directly adapted to this case but we will give
an alternative proof here in the hope that this approach may eventually allow of wider generalizations.
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Lemma 14 Suppose that Θ(x1, . . . , xq) is quanti�er free and η1(a1, . . . , an), η2(a1, . . . , an)
are state descriptions with the same type. Then

Mη1 |= ∀x1, . . . , xq Θ(x1, . . . , xq) ⇐⇒ Mη2 |= ∀x1, . . . , xq Θ(x1, . . . , xq).

Proof. Suppose Mη1 |= ∀x1, . . . , xq Θ(x1, . . . , xq) but Mη2 2 ∀x1, . . . , xq Θ(x1, . . . , xq).
This means that there are ai1 , . . . , aiq such that Mη2 |= ¬Θ(ai1 , . . . , aiq) and suppose that

Mη2 |= αi j(ai j).

Since η1(a1, . . . , an) and η2(a1, . . . , an) are state descriptions with the same type we
should have at1 , . . . , atq such that

Mη1 |= αi j(at j).

Thus Mη1 |= ¬Θ(at1 , . . . , atq) and so Mη1 2 ∀x1, . . . , xq Θ(x1, . . . , xq) that is a contradic-
tion. The other direction of the proof will be similar. �

Theorem 15 Let L be a unary �rst order language with �nitely many predicate sym-
bols and equality whose only constant symbols are a1, a2, . . . and has no function sym-
bols and let K be a knowledge base as above. If N is an inference process de�ned on
�nite propositional languages that satis�es the Renaming Principle then

N(K)(θ) = lim
r→∞

N(K(r))(θ(r))

exists and is a probability function on L that satis�es K.

Proof. To show Theorem 15 it is enough to show that for a state description ∆(n) of L(n)

lim
r→∞

N(K(r))(∆(n))

exists and that it is a probability function that satis�es K. Notice that if the limit does
exist it is obviously a probability function that satis�es K just as in Theorem 6, because
the set of solutions for K is closed and thus the limit of elements of this set will still be
in the set.

Notice that N(K(r)) is a probability function on L(r) so if η(r) run through the state
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descriptions of L(r),
N(K(r))(∆(n)) =

∑

η(r)�∆(n)

N(K(r))(η(r)).

Since N satis�es Renaming all the state descriptions of L(r) that are consistent with K
(in other words are models of K(r)) will get the same probability, namely 1

|{η(r) | η(r)is consistent with K(r)}| .

Thus
N(K(r))(∆(n)) =

∑

η(r)�∆(n)

N(K(r))(η(r)) =

|{η(r) | η(r)extends∆(n)

η(r)is consistent with K(r) }|
|{η(r) | η(r)is consistent with K(r)}|

and it will be enough to show that

lim
r→∞

|{η(r) | η(r)extends∆(n)

η(r)is consistent with K(r) }|
|{η(r) | η(r)is consistent with K(r)}|

exists. Let η1(a1, . . . , an), . . . , η′R(a1, . . . , an) be those state descriptions consistent with

∀x1, . . . , xq Θ(x1, . . . , xq). Let κ1, . . . , κR be the distinct types appearing where the or-
dering has been chosen so that if κi(m) ≤ κ j(m) for all 1 ≤ m ≤ J then j ≤ i.2

Given a state description η(a1, . . . , an) consistent with ∀x1, . . . , xq Θ(x1, . . . , xq) and of
type κg let bgh be the number of state descriptions η′(a1, . . . , an, an+1) of type κh extend-
ing η(a1, . . . , an) and consistent with ∀x1, . . . , xq Θ(x1, . . . , xq). Notice that provided n
is large this number does not depend on n.

These < bgh > form a lower triangular matrix B and if we start from a state descrip-
tion η(a1, . . . , an) of type κi the number of state descriptions η′(a1, . . . , an+k) of type
κ1, κ2, . . . , κR that extend η(a1, . . . , an) is given as a vector by (Bk)T ~ei where ~ei is the
column vector with 1 in i-th place and zero elsewhere.

Now for ∆(a1, . . . , an) a state description of type κi consistent ∀x1, . . . , xq Θ(x1, . . . , xq)
the number of state descriptions η′(a1, . . . , an+k) extending it and still consistent with
∀x1, . . . , xq Θ(x1, . . . , xq) is

〈1, 1, . . . , 1〉(Bk)T~ei.

2Notice the reverse of the inequalities here.
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Similarly the total number of state descriptions η′(a1, . . . , an+k) consistent with ∀x1, . . . , xq

Θ(x1, . . . , xq) is
R∑

j=1
N j〈1, 1, . . . , 1〉(Bk)T~e j

where N j is the number of state description of type κ j.

By renaming N(K(n+k)) will give each of these the same probability, namely


R∑

j=1
N j〈1, 1, . . . , 1〉(Bk)T~e j


−1

so that ∆(a1, . . . , an) gets value

〈1, 1, . . . , 1〉(Bk)T~ei∑R
j=1 N j〈1, 1, . . . , 1〉(Bk)T~e j

and it will be enough to show that

lim
k→∞

〈1, 1, . . . , 1〉(Bk)T~ei∑R
j=1 N j〈1, 1, . . . , 1〉(Bk)T~e j

exists. since there are �nitely many j it will be enough to show that

lim
k→∞

< 1, 1, . . . , 1 > (Bk)T ~ei

< 1, 1, . . . , 1 > (Bk)T (~ei + ~eh)

exists.

Claim 1
lim
k→∞

< 1, 1, . . . , 1 > (Bk)T ~ei

< 1, 1, . . . , 1 > (Bk)T (~ei + ~eh) , exists

Proof. Let B = (bi j) be an R × R lower triangular matrix with positive entries. Then
the i j entry of Bn, for i ≥ j is given by

∑

i=t0>t1>...>tm= j

∑

r0+...+rm=n−m

m−1∏

s=0
btsts+1

m∏

s=0
brs

tsts .
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There are only a �nite �xed number of possible t0, . . . , tm so it would be enough to
show that for two particular choices (possibly at different i, j) the limit

lim
n→∞

∑
r0+...+rm=n

∏m
s=0 brs

tsts∑
u0+...+uq=n

∏q
s=0 bus

gsgs

(3.1)

either exists or is∞.

To show this we will �rst �nd a better expression for, say, the numerator. We will
consider this in two cases. First assume for simplicity that all the btsts are different.

Lemma 16

1
(bm+1 − b0)(b0 − b1) . . . (b0 − bm) +

1
(bm+1 − b1)(b1 − b0) . . . (b1 − bm) + . . .

+
1

(bm+1 − bm)(bm − b0) . . . (bm − bm−1)

=
1

(bm+1 − b0)(bm+1 − b1) . . . (bm+1 − bm)

Proof. we will show that :

1
(bm+1 − b0)(b0 − b1) . . . (b0 − bm) +

1
(bm+1 − b1)(b1 − b0) . . . (b1 − bm) + . . .

+
1

(bm+1 − bm)(bm − b0) . . . (bm − bm−1)

− 1
(bm+1 − b0)(bm+1 − b1) . . . (bm+1 − bm) = 0

First multiply both sides by (bm+1 − b0) . . . (bm+1 − bm) and we will have :

(bm+1 − b1) . . . (bm+1 − bm)
(b0 − b1) . . . (b0 − bm) +

(bm+1 − b0)(bm+1 − b2) . . . (bm+1 − bm)
(b1 − b0) . . . (b1 − bm) + . . .

+
(bm+1 − b0) . . . (bm+1 − bm−1)

(bm − b0) . . . (bm − bm−1) − 1 = 0
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We consider this as a polynomial in bm+1. It has degree m but m + 1 distinct zeros,
namely {b0, b1, . . . , bm}, so it should be identical with zero. �

Lemma 17 Let A be the following expression

bn+1
m+1bm−1

0
(b0 − b1) . . . (b0 − bm) +

bn+1
m+1bm−1

1
(b1 − b0) . . . (b1 − bm) + . . . +

bn+1
m+1bm−1

m

(bm − b0) . . . (bm − bm−1)+

bn+2
m+1bm−2

0
(b0 − b1) . . . (b0 − bm) +

bn+2
m+1bm−2

1
(b1 − b0) . . . (b1 − bm) + . . . +

bn+2
m+1bm−2

m

(bm − b0) . . . (bm − bm−1)+

.

.

.

bn+m
m+1b0

0
(b0 − b1) . . . (b0 − bm) +

bn+m
m+1b0

1
(b1 − b0) . . . (b1 − bm) + . . . +

bn+m
m+1b0

m

(bm − b0) . . . (bm − bm−1) .

Then A = 0.

Proof.

A = bn+1
m+1

[b0
m+1bm−1

0 + . . . + bm−1
m+1b0

0
(b0 − b1) . . . (b0 − bm) + . . . +

b0
m+1bm−1

m + . . . + bm−1
m+1b0

m

(bm − b0) . . . (bm − bm−1)

]
=

bn+1
m+1

[ bm
m+1 − bm

0
(b0 − b1) . . . (b0 − bm)(bm+1 − b0) + . . . +

bm
m+1 − bm

m

(bm − b0) . . . (bm − bm−1)(bm+1 − bm)

]
=

bn+1
m+1

[ bm
m+1

(b0 − b1) . . . (b0 − bm)(bm+1 − b0) + . . . +
bm

m+1
(bm − b0) . . . (bm − bm−1)(bm+1 − bm)+

bm
0

(b0 − b1) . . . (b0 − bm)(b0 − bm+1) + . . . +
bm

m
(bm − b0) . . . (bm − bm−1)(bm − bm+1)

]

It will be enough to show that

bm
m+1

(b0 − b1) . . . (b0 − bm)(bm+1 − b0) + . . . +
bm

m+1
(bm − b0) . . . (bm − bm−1)(bm+1 − bm)+

bm
0

(b0 − b1) . . . (b0 − bm)(b0 − bm+1) + . . . +
bm

m
(bm − b0) . . . (bm − bm−1)(bm − bm+1) = 0
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By Lemma 16 it will be enough to show that:

bm
m+1

(bm+1 − b0) . . . (bm+1 − bm) +
bm

0
(b0 − b1) . . . (b0 − bm)(b0 − bm+1)+

. . . +
bm

m
(bm − b0) . . . (bm − bm−1)(bm − bm+1) = 0

To see this multiply both sides by (bm+1 − b0) . . . (bm+1 − bm) and we will have

bm
m+1 −

(bm
0 (bm+1 − b1) . . . (bm+1 − bm)

(b0 − b1) . . . (b0 − bm) + . . . +
bm

m(bm+1 − b0) . . . (bm+1 − bm−1)
(bm − b0) . . . (bm − bm−1)

)

the above expression is a polynomial of degree m with respect to bm+1 which has m + 1
roots, namely {b0, . . . , bm} so it should be identical with zero. �

Claim 2 ∑

r0+...+rm=n

m∏

s=0
brs

tsts =

m∑

s=0
bn+m

tsts

∏

y,s
(btsts − btyty)−1.

Proof.
Proof by induction on m;

For the base case, where m = 0 we have

bn
t0t0 = bn

t0to

which is clearly true.

Suppose the result is true for m and we will prove it for m + 1 to simplify the notation
we will show btsts by bs etc.:

∑

r0+...+rm+rm+1=n

m+1∏

s=0
brs

s =

n∑

rm+1=0


∑

r0+...+rm=n−rm+1

brm+1
m+1

m∏

s=0
brs

s



=

n∑

rm+1=0

brm+1
m+1

m∑

s=0
bn+m−rm+1

s

∏

y,s
(bs − by)−1
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by induction hypothesis. Expanding the rightmost expression we will have:

b0
m+1bn+m

0
(b0 − b1) . . . (b0 − bm) +

b0
m+1bn+m

1
(b1 − b0) . . . (b1 − bm) + . . . +

b0
m+1bn+m

m

(bm − b0) . . . (bm − bm−1)+

b1
m+1bn+m−1

0
(b0 − b1) . . . (b0 − bm) +

b1
m+1bn+m−1

1
(b1 − b0) . . . (b1 − bm) + . . . +

b1
m+1bn+m−1

m

(bm − b0) . . . (bm − bm−1)+

.

.

.

bn
m+1bm

0
(b0 − b1) . . . (b0 − bm) +

bn
m+1bm

1
(b1 − b0) . . . (b1 − bm) + . . . +

bn
m+1bm

m

(bm − b0) . . . (bm − bm−1)

to the above expression we will add the following expression (the expression A that is
equal to zero by Lemma 17):

bn+1
m+1bm−1

0
(b0 − b1) . . . (b0 − bm) +

bn+1
m+1bm−1

1
(b1 − b0) . . . (b1 − bm) + . . . +

bn+1
m+1bm−1

m

(bm − b0) . . . (bm − bm−1)+

bn+2
m+1bm−2

0
(b0 − b1) . . . (b0 − bm) +

bn+2
m+1bm−2

1
(b1 − b0) . . . (b1 − bm) + . . . +

bn+2
m+1bm−2

m

(bm − b0) . . . (bm − bm−1)+

.

.

.

bn+m
m+1b0

0
(b0 − b1) . . . (b0 − bm) +

bn+m
m+1b0

1
(b1 − b0) . . . (b1 − bm) + . . . +

bn+m
m+1b0

m

(bm − b0) . . . (bm − bm−1)
So we will have

∑

r0+...+rm+rm+1=n

m+1∏

s=0
brs

s =
bn+m+1

0 − bn+m+1
m+1

(b0 − b1) . . . (b0 − bm)(b0 − bm+1)+
bn+m+1

1 − bn+m+1
m+1

(b1 − b0) . . . (b1 − bm)(b1 − bm+1)

+ . . . +
bn+m+1

m − bn+m+1
m+1

(bm − b0) . . . (bm − bm−1)(bm − bm+1)

=
bn+m+1

0
(b0 − b1) . . . (b0 − bm)(b0 − bm+1) + . . . +

bn+m+1
m

(bm − b0) . . . (bm − bm−1)(bm − bm+1)
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− bn+m+1
m+1

(b0 − b1) . . . (b0 − bm)(b0 − bm+1) − . . . −
bn+m+1

m+1
(bm − b0) . . . (bm − bm−1)(bm − bm+1) (3.2)

Using Lemma 16 and (3.2) we will have:

∑

r0+...+rm+rm+1=n

m+1∏

s=0
brs

s =
bn+m+1

0
(b0 − b1) . . . (b0 − bm)(b0 − bm+1)

+ . . . +
bn+m+1

m
(bm − b0) . . . (bm − bm−1)(bm − bm+1)

+
bn+m+1

m+1
(bm+1 − b0)(bm+1 − b1) . . . (bm+1 − bm) =

m+1∑

s=0
bn+m+1

s

∏

y,s
(bs − by)−1

and this completes the proof of Claim 2. �

Now using Claim 2 for the case when all btsts are distinct, we can see that the limit
in (3.1) clearly exists, if max{btsts} ≤ max{bgsgs} and is∞ otherwise.

For the second case where not all the btsts are distinct, suppose that the distinct val-
ues are a0, . . . , ap and let A j = {t | btt = a j}, d j = |A j| and r′j =

∑
btiti =a j ri then

∑

r0+...+rm=n

m∏

s=0
brs

tsts = lim
Ap→ap

. . . lim
A0→a0

∑

r0+...+rm=n

m∏

s=0
zrs

tsts

= lim
Ap→ap

. . . lim
A0→a0

m∑

s=0
zn+m

tsts

∏

y,s
(ztsts − ztyty)−1

where Ai → ai is intended as short for limztk tk→ai . . . limzt1 t1→ai where Ai = {t1, . . . , tk}.

Now we can rewrite this as

lim
Ap→ap

. . . lim
A0→a0

m∑

s=0
zn+m

tsts

∏

y,s
(ztsts − ztyty)−1 =

lim
Ap→ap

. . . lim
A0→a0

∑

ts∈A0

zn+m
tsts

∏

y,s
(ztsts − ztyty)−1 + . . .+ lim

Ap→ap
. . . lim

A0→a0

∑

ts∈Ap

zn+m
tsts

∏

y,s
(ztsts − ztyty)−1

= lim
A0→a0

∑

ts∈A0

zn+m
tsts∏p

j=1(ztsts − a j)d j

∏
y,s

ty∈A0

(ztsts − ztyty)−1 + . . .+
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lim
Ap→ap

∑

ts∈Ap

zn+m
tsts∏p−1

j=0 (ztsts − a j)d j

∏
y,s

ty∈Ap

(ztsts − ztyty)−1

Lemma 18 For an in�nitely differentiable function f ,

lim
z→x

(k!)−1 ∂
k

∂xk

(
f (x)
x − z −

f (z)
x − z

)
=

1
(k + 1)!

∂k+1

∂xk+1 f (x)

Proof.
Using the in�nite Taylor expansion

f (z) = f (x) + (z − x) ∂
∂x f (x) +

(z − x)2

2!
∂2

∂x2 f (x) + . . .

since f (x) is in�nitely differentiable we have:

f (x)
x − z −

f (z)
x − z =

∞∑

n=1

(z − x)n−1

n!
∂n

∂xn f (x)

and thus

1
k! lim

z→x

(
∂k

∂xk

(
f (x)
x − z −

f (z)
x − z

))
=

1
k! lim

z→x


∂k

∂xk


∞∑

n=1

(z − x)n−1

n!
∂n

∂xn f (x)

 (3.3)

any term in the right hand side with n > k + 1 will include a positive power of (z − x)
after k derivative and so will approach zero as z→ x. So from (3.3)

1
k! lim

z→x

(
∂k

∂xk

(
f (x)
x − z −

f (z)
x − z

))
=

1
k! lim

z→x


∂k

∂xk


k+1∑

n=1

(z − x)n−1

n!
∂n

∂xn f (x)



=
1
k! lim

z→x


k+1∑

n=1


k∑

i=0

(
k
i

)
∂i

∂xi

(
(z − x)n−1

n!

)
∂n+k−i

∂xn+k−i f (x)

 . (3.4)

Any terms in the inner sum of the rightmost expression with i ≥ n is zero because
∂i

∂xi

( (z−x)n−1

n!

)
= 0 for i ≥ n also for i < n − 1, ∂i

∂xi

( (z−x)n−1

n!

)
will include a positive power

of (z− x) and so for every term , say T , in the above expression with i < n− 1 we have

lim
z→x

T = 0
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so from 3.4 we have

1
k! lim

z→x

(
∂k

∂xk

(
f (x)
x − z −

f (z)
x − z

))
=

1
k! lim

z→x


k+1∑

n=1

(
k

n − 1

)
∂n−1

∂xn−1

(
(z − x)n−1

n!

)
∂k+1

∂xk+1 f (x)


=
1
k!

k+1∑

n=1

(−1)n−1

n

(
k

n − 1

)
∂k+1

∂xk+1 f (x) =
1
k!

k+1∑

n=1

(−1)n−1

n
k!

(n − 1)!(k + 1 − n)!
∂k+1

∂xk+1 f (x)

=
1

(k + 1)!

k+1∑

n=1
(−1)n−1 (k + 1)!

n!(k + 1 − n)!
∂k+1

∂xk+1 f (x) =
1

(k + 1)!

k+1∑

n=1
(−1)n−1

(
k + 1

n

)
∂k+1

∂xk+1 f (x)

=
1

(k + 1)!
∂k+1

∂xk+1 f (x)

�

Lemma 19 For an in�nitely differentiable g(x):

lim
xk→x1

lim
xk−1→x1

. . . lim
x2→x1

k∑

i=1
g(xi)

∏

i, j
(xi − x j)−1 =

(
(k − 1)!−1 ∂

k−1

∂xk−1 g(x)
)

x1

Proof. By induction on k. The result is obvious for k = 2. Suppose the lemma is true
for k and we will show it for k + 1.

lim
xk+1→x1

lim
xk→x1

. . . lim
x2→x1

k+1∑

i=1
g(xi)

∏

i, j
(xi−x j)−1 = lim

xk+1→x1

 lim
xk→x1

. . . lim
x2→x1

k∑

i=1
g(xi)

∏

i, j
(xi − x j)−1+

lim
xk→x1

. . . lim
x2→x1

g(xk+1)
∏

i,k+1
(xk+1 − xi)−1

 .

Notice that since g is in�nitely differentiable we have
(
(k − 1)!−1 ∂

k−1

∂xk−1 g(x)
)

x1

= lim
x→x1

(k − 1)!−1 ∂
k−1

∂xk−1 g(x).

Now using the induction hypothesis for g(x)
x−xk+1

we will have

lim
xk+1→x1

lim
xk→x1

. . . lim
x2→x1

k+1∑

i=1
g(xi)

∏

i, j
(xi − x j)−1

= lim
xk+1→x1

((
(k − 1)!−1 ∂

k−1

∂xk−1
g(x)

(x − xk+1)

)

x1

− (−1)k−1 g(xk+1)
(x1 − xk+1)k

)
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= lim
xk+1→x1

(
lim
x→x1

(
(k − 1)!−1 ∂

k−1

∂xk−1
g(x)

(x − xk+1)

)
− lim

x→x1

(
(−1)k−1 g(xk+1)

(x − xk+1)k

))

= lim
xk+1→x1

lim
x→x1

(
(k − 1)!−1 ∂

k−1

∂xk−1
g(x)

(x − xk+1) − (k − 1)!−1 ∂
k−1

∂xk−1
g(xk+1)

(x − xk+1)

)

= lim
x→x1

lim
xk+1→x

(k − 1)!−1 ∂
k−1

∂xk−1

(
g(x)

x − xk+1
− g(xk+1)

x − xk+1

)
. (3.5)

Now using Lemma 18 from (3.5) we have:

lim
xk+1→x1

lim
xk→x1

. . . lim
x2→x1

k+1∑

i=1
g(xi)

∏

i, j
(xi−x j)−1 = lim

x→x1
lim

xk+1→x
(k−1)!−1 ∂

k−1

∂xk−1

(
g(x)

x − xk+1
− g(xk+1)

x − xk+1

)

= lim
x→x1

1
(k)!

(
∂k

∂xk g(x)
)

=
1

(k)!

(
∂k

∂xk g(x)
)

x1

as required and this completes the proof of Lemma 19. �

Now we return to the second case of Claim 1 where not all btsts are different. Us-
ing Lemma 19 the expressions in the numerator and denominator of (3.1) will be in the
form

∑

r0+...+rm=n

m∏

s=0
brs

tsts = lim
A0→a0

∑

ts∈A0

zn+m
tsts∏p

j=1(ztsts − a j)d j

∏
y,s

ty∈A0

(ztsts − ztyty)−1 + . . .+

lim
Ap→ap

∑

ts∈Ap

zn+m
tsts∏p−1

j=0 (ztsts − a j)d j

∏
y,s

ty∈Ap

(ztsts − ztyty)−1 =
1

(d0 − 1)!


∂d0−1

∂zd0−1
tsts


zn+m

tsts∏p
j=1(ztsts − a j)d j




a0

+ . . . +
1

(dp − 1)!


∂dp−1

∂zdp−1
tsts


zn+m

tsts∏p−1
j=0 (ztsts − a j)d j




ap

Again in this case we can see that limit in 3.1 exists if max{btsts} ≤ max{bgsgs} and is
∞ otherwise. Now that we have established 3.1 we can see that for every two element
in the matrix Bn either the limit of the ratio of these elements is �nite or one of them
grow much faster than the other. In other words there are some b(n)

i1 j1 , . . . , b
(n)
iq jq such that

the ratio of any two of these tends to a �nite non-zero limit whilst for any other b(n)
ks in
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Bn

lim
n→∞

b(n)
ks

b(n)
i j

= 0.

Thus if we consider
lim
k→∞

< 1, 1, . . . , 1 > Bk T ~ei

< 1, 1, . . . , 1 > Bk T (~ei + ~eh)
the limit will be �nite if the ratio of every two elements has a �nite limit and if not all
of them have a �nite limit then the one that grows fastest will appear in the denomina-
tor and makes the overall limit zero or 1 and this completes the proof of Claim 1. �

Using Claim 1 we have that the required limit in Theorem 15 exists and this completes
the proof of Theorem 15. �

Remarks As noted earlier this result could have been derived directly by the tech-
niques in [6]. One reason for giving the alternative derivation however, is that it seems
that this approach may have other applications, and may possibly allow further im-
provements. The point is that, as given, the proof relies on two key facts:

• That there is a notion of the type of a state description such that there are only
�nitely many types and for these Lemma 14 holds;

• The number and types of state descriptions η′(a1, . . . , an+1)
(consistent with ∀x1, . . . , xq Θ(x1, . . . , xq)) extending a state description η(a1, . . . , an)
depends only on the type of this latter state description and not on n for large n;

and there are other situations in which these conditions hold, for example when the
knowledge base forces there to be just �nitely many distinguishable individuals.
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3.2 The BP-method And The General Polyadic Case
The BP-method as discussed above de�nes the application of an inference process on
a predicate language as the limiting case of its application on the �nite sublanguages.
Here a �nite sublanguage, as we discussed in Chapter 2, can be treated as a proposi-
tional language for which the inference process is well de�ned. The essence of de�ning
ME on a �nite sublanguage lies in the random structure method and the principle of in-
difference3. Here, given a sentence θ as our knowledge base we take the sample space
to be those structures that satisfy θ and by the principle of indifference all these struc-
tures (possible situations) are considered equally likely. Then to assign probability to
a sentence φ we take the proportion of structures that satisfy φ from the structures that
satisfy θ and hence de�ne the conditional probabilities. To assign a probability to φ on
the original language L this method will then take the limit of these proportions as the
size of these sub languages increase.

This method was proved to converge for the unary languages in [6] and we proved
in the previous section that the same holds for unary languages this time augmented
with equality. A natural question to ask here would be whether or not this method can
be used for predicate languages in general. Unfortunately however, the limit of these
conditional probabilities does not necessarily exist in the general case. In this section
we will present an example to demonstrate a situation where the limit of these condi-
tional probabilities does not exist and the BP-method does not converge, and this will
show that the attempt to use the BP-method to de�ne the Maximum Entropy solution
on a predicate language will fail in general. However an important point to notice is
that the example presented here is based on a Π2 knowledge base i.e. a knowledge base
equivalent to a Π2 sentence.

Example Let L be a �rst order language with a ternary relation symbol G, a binary
relation symbol R, and a unary predicate P and de�ne

x =G y↔ ∀u, t(G(x, u, t)↔ G(y, u, t)).4

3It is important to note that the BP-method is not in general the same as the random structure idea
however here we are dealing with knowledge bases of the form {w(θ) = 1} when they are the same.

4Notice that the underlying language is not assumed to include equality and with this de�nition we
intend to approximate the equality via the relation G.
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Let E be the conjunction of:

∀x, y, z(x =G y→ (R(x, z)→ R(y, z)))

∀x, y(R(x, y)↔ R(y, x))

∀x, y, z((R(x, y) ∧ R(x, z))→ (x =G y ∨ x =G z ∨ y =G z))

∀x∃y(x ,G y ∧ R(x, y))

∀x¬R(x, x)

and O be the conjunction of:

∀x, y, z(x =G y→ (R(x, z)→ R(y, z)))

∀x, y(R(x, y)↔ R(y, x))

∀x, y, z((R(x, y) ∧ R(x, z))→ (y =G z))

∀x, y, z, t((R(x, y) ∧ R(z, t) ∧ (x =G y) ∧ (z =G t))→ (x =G z))

∀x∃yR(x, y)

∃xR(x, x)

LetMn
E andMn

O denote the models of E and O of size n respectively 5.

To have an estimation of the number of models of E, #Mn
E, �rst let n be an even number.

Then, as we will shortly explain in details, there will be

n!2

2 n
2 ( n

2)!

(
2n2

n

)

many models for which we have

M � ai ,G a j 1 ≤ i < j ≤ n.

That is the number of models of E where the a1, . . . , an are different according to =G

5Notice that E and O are Π2



CHAPTER 3. MAXIMUM ENTROPY 65

and there will be at most
n2n

(
2n2

n − 2

)

many models where not all of a1, . . . , an are different according to =G.

To see this notice that n!
(
2n2

n

)
is the number of ways we can interpret G so that a1, . . . , an

are all different according to =G. Let P1(x), . . . , P2n2 (x) denote the sentences of the form

n∧

i=1

n∧

j=1
±G(x, ai, a j)

When G in interpreted on L(n) each ai 1 ≤ i ≤ n will satisfy one of the Pk(x) 1 ≤
k ≤ 2n2 . The fact that a1, . . . , an are different according to G means that each Pk(x) is
satis�ed by at most one ai or in other words for i , j, ai and a j will not satisfy the same
Pk(x). So the number of ways we can interpret G such that a1, . . . , an are all different in
respect to =G will be the number of ways we can choose Pi1(x), . . . , Pin(x) all different
among P1(x), . . . , P2n2 (x) each being intended for a different ai that will be

n!
(
2n2

n

)
.

After G is interpreted and a1, . . . , an are all chosen to be different in respect to =G, R
will put a1, . . . , an into groups of 2. To see this notice that in E, we have ∀x∃y(x ,G

y ∧ R(x, y). So each element is paired with at least one element and it cannot be paired
with more than one because if we have R(x, y) ∧ R(x, z) then we should have x =G y
or x =G z or y =G z but a1, . . . , an are chosen to be different according to =G. So the
number of different possibilities for R will be the number of ways we can put a1, . . . , an,
into groups of 2, that is n!

2
n
2

and this should be divided by ( n
2 )! because the order in which

these groups of 2 are chosen is not important and so the number of possibilities for R
will be

n!
2 n

2 ( n
2 )!
.

Thus the number of models of size n for even n where the ai's are mutually different in
respect to =G will be

n!2

2 n
2 ( n

2)!

(
2n2

n

)

For models where not all of ai's are different according to =G assume that n − 2k of
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them are different and then we will take the sum over k = 1, . . . , n
2 . Notice that it is

not possible to have an odd number of ai's mutually different with respect to =G, as we
will shortly explain in detail, because R is dividing those elements of the model that
are mutually different with respect to =G into groups of 2 and this will not be possible
if the number of these elements is odd.

The number of ways we can de�ne G such that n − 2k of ai's are different will be

(n − 2k)!
(

2n2

n − 2k

)

and the number of ways we can put these n − 2k many ai's into groups of 2 will be

(n − 2k)!
2 n−2k

2 (n−2k
2 )!

the same way as above whilst each of the remaining 2k elements, say an−2k+1, . . . , an,
can be equal with respect to =G to any of the n− 2k elements, a1, . . . , an−2k, and so will
belong to corresponding group of 2. So for each of these 2k elements there will be
(n − 2k)2k possibilities.

Thus the number of models of size even n where n − 2k elements are different ac-
cording to =G will be

(n − 2k)2k (n − 2k)!2

2 n−2k
2 (n−2k

2 )!

(
2n2

n − 2k

)
(3.6)

but we have

(n − 2k)2k (n − 2k)!2

2 n−2k
2 (n−2k

2 )!
≤ n2k.

n2n−4k−2

2 n−2k
2 ( n−2k

2 )!
≤ n2n−1

2 n−2k
2 ( n−2k

2 )!
≤ n2n−1

and also (
2n2

n − 2k

)
≤

(
2n2

n − 2

)

Hence for (3.6) we have

(n − 2k)2k (n − 2k)!2

2 n−2k
2 ( n−2k

2 )!

(
2n2

n − 2k

)
≤ n2n−1

(
2n2

n − 2

)
(3.7)
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and using (3.7) for the total number of models of E of size n where not all the ai's are
different with respect to =G we will have

n
2∑

k=1
(n − 2k)2k (n − 2k)!2

2 n−2k
2 (n−2k

2 )!

(
2n2

n − 2k

)
≤ n

2 .n
2n−1

(
2n2

n − 2

)
≤ n2n

(
2n2

n − 2

)
.

And this gives us an upper bound on the number of models in this case.

Hence for n even, we have

n!2

2 n
2 ( n

2 )!

(
2n2

n

)
≤ #Mn

E ≤
n!2

2 n
2 (n

2 )!

(
2n2

n

)
+ n2n

(
2n2

n − 2

)
.

We will now continue as before to �nd an estimation of #Mn
E where n is an odd number.

Notice that in this case there will be no model of E where a1, . . . , an are mutually
different with respect to =G. To see this we should remember that an interpretation of
R will be grouping the elements of the model such that each group contains at least 2
different elements with respect to =G (because of the conjunct ∀x∃y(x ,G y∧R(x, y))).
On the other hand if a group contains more than 2 elements, say 3, E will force the
third element to be equal according to =G with one of the other two. So when all the
elements of the model are different with each other according to =G, there cannot be
any group with more than 2 elements hence R will be dividing the elements of the
model into disjoint pairs and this is not possible when the number of elements is odd.

Thus the only models of E of size odd will be those in which some of the ai's are
equal according to =G. In exactly the same way as above we can show that the number
of models of size n for odd n, will be less than

n2n
(

2n2

n − 1

)

and this will be an upper bound on the number of models of E of size n where n is odd.

Comparing the upper bound calculated for models of size n for odd n with the lower
bound of models of size n for even n, we can see that E has signi�cantly more models
of even size than models of odd size.
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We will now try the same method to �nd an estimation of the number of models of
O. First consider n to be even.

According to O there should exists at least one element ai for which we have R(ai, ai).
This means that O cannot have models of size even where all the elements are different
with respect to =G. To see this assume that all the elements are different according to
=G and let ai be such that we have R(ai, ai). Then �rst of all we cannot have R(ai, a j)
for i , j because otherwise we will have R(ai, ai) ∧ R(ai, a j) and so we should have
ai =G a j which is a contradiction. So if we have R(ai, ai) then ¬R(ai, a j) for all j , i.
On the other hand ai will be the only element which is in the relation R with itself
because if there is another element ak for which we have R(ak, ak) then we should have
ai =G ak which is again a contradiction. So R will connect ai only to itself and then
will divide the rest of the elements into groups of two which is impossible as there will
be an odd number of elements left. Thus there will be no model of size n where the
elements are all different with respect to G.

For the number of models of size n where not all the elements are different with re-
spect to =G suppose �rst that there are n − 2k distinguishable elements. There will be
an element connected to itself through R which should be one of these n− 2k elements
but as above this cannot be the case because there can be at most one of them with this
property and if there exists one such element among them there will be an odd number
of them left and it will not be possible to interpret R in a way to put them into groups
of two. Hence there will be no model where n − 2k elements are different with respect
to =G.
Next will be the case where the models are of size even n and n − 2k + 1 elements are
different with respect to =G. In this case exactly one of these n − 2k + 1 elements will
be connected to itself and not any other of the remaining n−2k elements because there
should be an odd number of them that are connected to themselves so the remaining
will be of an even number and so can be divided into groups of two by R. So there
should be at least one and there cannot be more than one because they are different
with respect to =G and the other n − 2k will again be divided into groups of two. For
the remaining 2k − 1 elements each can be equal to one of the n − 2k + 1 elements.
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Hence the number of possibilities will be

n
2−1∑

k=1

(n − 2k)!
2 n−2k

2 (n−2k
2 )!

(
n − 2k + 1

1

)(
2n2

n − 2k + 1

)
(n − 2k + 1)2k−1(n − 2k + 1)! ≤

n
2−1∑

k=1

nn−2k−1

2 n−2k
2 ( n−2k

2 )!
nn(n − 2k + 1)

(
2n2

n − 2k + 1

)
≤

n
2−1∑

k=1
n2n−1

(
2n2

n − 1

)
≤

n2n
(

2n2

n − 1

)
.

Thus the number of models of size even n will be at most

n2n
(

2n2

n − 1

)
.

And this gives us an upper bound on the number of models of O of even size.

We should �nd an estimation for the number of models of O of odd size. For an
odd number n, O has

n!(n − 1)!
2 n−1

2 ( n−1
2 )!

.n.
(
2n2

n

)

many models where all the elements are different with respect to =G. This is because

we can choose n different elements with respect to =G in n!
(
2n2

n

)
many ways and among

them exactly one should be connected only to itself for which there are n possibilities
and then the remaining n − 1 should be divided into groups of two for which there are

(n−1)!
2

n−1
2 ( n−1

2 )!
possibilities. And there are at most

n2n
(

2n2

n − 1

)

many models where not all the elements are different according to =G in the same way
that it is calculated above. Hence

n!(n − 1)!
2 n−1

2 ( n−1
2 )!

.n.
(
2n2

n

)
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gives a lower bound on the number of models of O of odd size.

By the discussion above, for even n, we have

#Mn
O

#Mn
E
≤

n2n
(

2n2

n−1

)

n!2

2
n
2 ( n

2 )!

(
2n2

n

)

≤
n2n 2n2 !

(n−1)!(2n2−n+1)!
n!2

2
n
2 ( n

2 )!
2n2 !

n!(2n2−n)!

≤ n2n+12 n
2 ( n

2 )!
n!2(2n2 − n + 1)

≤ n2n+12 n
2

2n2 − n + 1
but we have

n2n+12 n
2 = 2(2n+1) log n+ n

2

and
2(2n+1) log n+ n

2 << 2n2

because for large enough n we have 3 log n + 1
2 << n. Thus

lim
n→∞n even

#Mn
O

#Mn
E

= 0.

Using the same pattern, for odd n, we have

#Mn
E

#Mn
O
≤

n2n
(

2n2

n−2

)

n!(n−1)!
2

n−1
2 ( n−1

2 )!
n
(

2n2

n

)

≤
n2n 2n2 !

(2n2−n+2)!(n−2)!
n!(n−1)!

2
n−1

2 ( n−1
2 )!

n 2n2 !
(2n2−n)!n!

≤ n2n(n − 1)2 n−1
2 (n−1

2 )!
n!(n − 2)!(2n2 − n + 2)(2n2 − n + 1)

≤ n2n+12 n−1
2

(2n2 − n + 2)(2n2 − n + 1)

≤ 2(2n+1) log n+ n−1
2

(2n2 − n + 2)(2n2 − n + 1)



CHAPTER 3. MAXIMUM ENTROPY 71

and so again we have
lim
n→∞
n odd

#Mn
E

#Mn
O

= 0.

Now let's consider the sentence φ as follow

(E ∧ ∀xP(x)) ∨ (O ∧ ∀x¬P(x))

and let the knowledge base be K = {w(φ) = 1 }. Then for a sentence like P(a1) and a
probability function w satisfying this knowledge base the limit

lim
n→∞

w(n)(P(a1))

does not exist.

This example shows that even in the case of a Π2 knowledge base over a language
L, we cannot in general de�ne the probability of a sentence φ, w(φ), as the limiting
case of probabilities assigned to it over the �nite sub languages L(n), wn(φ(n)), simply
because the relevant asymptotic limit does not necessarily exist even when we drop the
equality from language (the idea of using a relation symbol, here G, to 'approximate'
the equality via =G is due to Grove, Halpern and Koller [15] to my knowledge).

In the rest of this chapter we will thus turn our attention to knowledge bases of lower
complexity level. We will show that this method converges for Σ1 and for special cases
of Π1 knowledge bases. However as mentioned before we conjecture that this is true
for any Π1 knowledge base from a �nite �rst order language without function symbols
or constant symbols other that a′i s.

3.3 The BP-Method for Σ1 Knowledge Bases

Following our investigation of BP-method we will show in this section that this method
converges for knowledge bases of the form

K = {w(∃~xθ(~x)) = 1 }
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where θ(~x) is a quanti�er free consistent sentence. Here we consider θ(~x) to be from a
general predicate language without any restriction on the arity of relation symbols but
with no function symbols nor equality. As we shall shortly see, in this case our method
will provide the same answer independent of the sentence ∃~xθ(~x) in the knowledge
base!

In the case of an existential sentence as above one might expect that as the number of
constants increases, the Maximum Entropy solution gets closer to P=, that is de�ned
to be the completely independent solution over an empty knowledge base [see [24]].
This is by de�nition the probability function that for ∆(a1, . . . , ar), a state description
of L(r), we have

P=(∆(a1, . . . , ar)) =
1
qr
,

where qr is the number of state descriptions of L(r).

To see this notice that the ME(K(r)) divides the probability equally between the state
descriptions of L(r) that are models of K(r). But as r increases the proportion of state
descriptions that satis�es K(r) will also increase and the ME solution will look more
and more like the P=. We will show that this proportion will converge to 1.

Thus consider the knowledge base K as

K = {w(∃~xθ(~x)) = 1}

where θ is a quanti�er free consistent sentence.

Theorem 20 limr→∞ ME(K(r))(φ) = P=(φ) for any sentence φ in S L and K as above.

Proof. To see this let S (r) be the set of state descriptions over L(r) and S ′(r) be the sub-
set of S (r) that satis�es K(r) and for s(k)

i ∈ S (k) de�ne S (r)
k,i = { s(r)

j ∈ S (r) | s(r)
j � s(k)

i }. In
other words S (r)

k,i is the set of state description on L(r) that extend the state description
s(k)

i in L(k). Notice that |S (r)
k,i | = |S (r)

k, j| where s(k)
i , s(k)

j are both state descriptions of L(k)

because all state descriptions of L(k) will have the same number of extensions to state
descriptions of L(k+1).
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Now it is enough to show that for each si ∈ S (k),

lim
r→∞

ME(K(r))(si) = P=(si).

that is
∀ε > 0∃N ∀r > N |ME(K(r))(si) − P=(si)| < ε

We will discuss this in two cases,

Case 1 If si � K(r) then ME(K(r))(si) =
|S (r)

k,i |
|S ′(r) | and P=(si) = 1

|S (k) | so it is enough to
show that we can take N large enough such that for all r > N,

|
|S (r)

k,i |
|S ′(r)| −

1
|S (k)| | < ε.

To see this notice that

|S (r)
k,i |

|S ′(r)| −
1
|S (k)| ≤ 1 − |S

′(r)|
|S (r)|

because 1 − |S
′(r)|
|S (r)| =

|S ′(r)|
|S (r)

k,i |


|S (r)

k,i |
|S ′(r)| −

1
|S (k)|

 and |S (r)
k,i | ≤ |S ′(r)| as we have si � K(r) and

so every extension of si will also be a model of K(r), and notice that |S (k)|.|S (r)
k,i | = |S (r)|.

So it would be enough to show that we can take N large enough so that

1 − |S
′(r)|
|S (r)| < ε. (3.8)

Now if we de�ne the probability function Beln on S L(n) as

Beln(ψ) =
|{M ∈ T L(n) |M � ψ }|

|T L(n)|

where T L is the set of term models on L(n) and let Bel∞(ψ) = limn→∞ Beln(ψ) then by a
theorem due to Fagin [10], we know that Bel∞ agrees with P=.

Lemma 21 Let φ ∈ S L be of the form ∃x1, . . . , xtψ(~x) where ψ is quanti�er free. If φ
is satis�able then P=(φ) = 1.
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Proof. To show this we will show that for a universal sentence φ′ of the form ∀x1, . . . , xtψ
′(~x)

that is not a tautology we have P=(φ′) = 0.

Let Qi(x1, . . . , xt), i ∈ I enumerate formulae of the form
∧

i1 ,...,i j≤t
R j−ary

R∈RL, j∈N+

±R(xi1 , . . . , xi j).

Since ∀x1, . . . , xtψ
′(~x) is not a tautology then there is some strict subset J of I such that

` ψ′(~x)↔
∨

j∈J
Q j(~x).

For i1 < i2 < . . . < it < q the number of extensions of Qi(ai1 , . . . , ait) is the same for
each i so

P=(Qi(ai1 , . . . , ait)) =
1
|I|

and for disjoint ~a1, . . . , ~ar,

P=(Qn1(~a1) ∧ . . . ∧ Qnr (~ar)) =
1
|I|r .

So
P=(∀x1, . . . , xtψ

′(~x)) ≤ P=(ψ′(~a1) ∧ . . . ∧ ψ′(~ar))

=
∑

n1,...,nr∈J
P=(Qn1(~a1) ∧ . . . ∧ Qnr (~ar))

=

( |J|
|I|

)r

→ 0 as r → ∞.

So for every non tautology universal sentence φ′ we will have P=(φ′) = 0 and so every
satis�able existential sentence will get value 1 and this completes the proof of Lemma
21. �

Now we have 1 = P=(∃~xθ(~x)) = Bel∞(∃~xθ(~x)) = limr→∞ Belr(∃~xθ(~x)) = limr→∞
|S ′(r) |
|S (r) |

and this will give (3.8).

Case 2 If si 2 K(r) then ME(K(r))(si) =
|S ′(r)

k,i |
|S ′(r) | and P=(si) = 1

|S (k) | where S ′(r)
k,i is the

set of state descriptions of L(r) satisfying K(r) that extends the state description si ∈ S (k)
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so it is enough to show that we can take N2 large enough such that for all r > N2,

|
|S ′(r)

k,i |
|S ′(r)| −

1
|S (k)| | < ε (3.9)

Now we have:

|
|S ′(r)

k,i |
|S ′(r)| −

1
|S (k)| | =

1
|S (k)| −

|S ′(r)
k,i |
|S ′(r)| ≤ 1 −

|S ′(r)
k,i ||S (k)|
|S ′(r)|

So to show (3.9) it will be enough to show that

lim
r→∞

|S ′(r)
k,i ||S (k)|
|S ′(r)| = 1 (3.10)

Lemma 22 Let S ′(r)
k,i and S (r)

k,i be as de�ned above then

lim
r→∞

|S ′(r)
k,i |
|S (r)

k,i |
= 1.

Proof. Notice that | S
′(r)
k,i

S (r)
k,i
| is the probability that a random extension of s(k)

i to a state de-
scription in L(r) will satisfy the K(r). Remember that K consists of a single existential
sentence ∃x1, . . . , xtθ(x1, . . . , xt) and let's calculate this probability.

Take the state description s(k)
i ∈ S (k) and let's consider its extensions to state descrip-

tions of L(k+t). Let Lak+1,...,ak+t be language L with only individuals ak+1, . . . , ak+t and let
ui i = 1, . . . , M enumerate the state descriptions of Lak+1,...,ak+t . Then state descriptions
of L(k+t) that are extension of s(k)

i will be of the form

s(k+t)
i,l = s(k)

i ∧ u j ∧ Vh(a1, . . . , ak+t)

l = 1, . . . , |S (k+t)
k,i |, j = 1, . . . , M, h = 1, . . . ,

|S (k+t)
k,i |
M .

At least one of the u j's satis�es θ(ak+1, . . . , ak+t) and will hence satis�es K(k+t).

The probability that an arbitrary s(k+t)
i,l satis�es K(k+t) will be the number of s(k+t)

i,l 's that
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satis�es K(k+t) divided by the total number of s(k+t)
i,l 's that is at least

|S (k+t)
k,i |
M

|S (k+t)
k,i |

=
1
M

and so the probability that a random s(k+t)
i,l does not satisfy K(k+t) will be at most as

much as the maximum probability that u j does not satisfy θ(ak+1, . . . , ak+t) that is 1− 1
M .

Now consider the extension of s(k)
i to a state description on Lk+pt. We have

s(k+pt)
i,l = s(k)

i ∧ u1
j1 ∧ u2

j2 ∧ . . . ∧ up
jp
∧ V ′h(a1, . . . , ak+pt)

l = 1, . . . , |S (k+pt)
k,i |, j1, . . . , jp = 1, . . . , M, h = 1, . . . ,

|S (k+pt)
k,i |
Mp

where us
j enumerate the state description of Lak+(s−1)t+1,...,ak+st .

The probability that a random s(k+pt)
i,l does not satisfy K(k+pt) is at most as high as the

probability that

u1
j 2 θ(ak+1, . . . , ak+t), . . . , up

j 2 θ(ak+(p−1)t+1, . . . , ak+pt)

so

0 ≤ 1 −
|S ′(k+pt)

k,i |
|S (k+pt)

k,i |
≤ (1 − 1

M )p

Since we can have p→ ∞ as r → ∞

0 ≤ lim
r→∞

1 −
|S ′(r)

k,i |
|S (r)

k,i |
≤ lim

r→∞
(1 − 1

M )p = 0

Hence,

lim
r→∞

1 −
|S ′(r)

k,i |
|S (r)

k,i |
= 0

and

lim
r→∞

|S ′(r)
k,i |
|S (r)

k,i |
= 1

as required and this completes the proof of Lemma 22. �

To continue to show (3.10) we will show that
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lim
r→∞

|S ′(r)|
|S ′(r)

k,i ||S (k)|
= 1.

But
lim
r→∞

|S ′(r)|
|S ′(r)

k,i ||S (k)|
= 1. lim

r→∞
|S ′(r)|
|S ′(r)

k,i ||S (k)|

= lim
r→∞

|S ′(r)
k,i |
|S (r)

k,i |
. lim

r→∞
|S ′(r)|
|S ′(r)

k,i ||S (k)|

= lim
r→∞

|S ′(r)
k,i |
|S (r)

k,i |
.
|S ′(r)|
|S ′(r)

k,i ||S (k)|

= lim
r→∞

|S ′(r)|
|S (r)

k,i |.|S (k)|

= lim
r→∞
|S ′(r)|
|S (r)|

and so to show (3.10) it will be enough to show that limr→∞
|S ′(r) |
|S (r) | = 1, which we have

already proved in case 1. This completes case 2.
�

Thus the BP-method is well de�ned and converges on the general predicate language
where the knowledge base is equivalent to a Σ1 sentence. We will study another special
polyadic case in the next section.
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3.4 BP-Method And Slow Formulae
So far we have investigated the BP-method for Π1 knowledge bases from unary lan-
guages with equality as well as the Σ1 knowledge bases on polyadic languages and we
have seen that it converges and, as we shall see in the next chapter, the answer agrees
with the one obtained through the W-method, an alternative generalization of Maxi-
mum Entropy to �rst order languages. However as we have shown in section 3.2 this
method is not well de�ned in the general case.

In this section we will �rst investigate this method on the next simplest case, for a
language with a single binary relation symbol and a Π1 knowledge base. We will then
introduce the notion of slow formulae and consider the application of BP-method to
knowledge bases consisting of slow formulae.

Let K = {w(∀x1, . . . , xqθ(x1, . . . , xq)) = 1} be a knowledge base on a language L with
a single binary relation R and let Θ

(l)
j run through the state descriptions of L(l). The

maximum entropy solution ME(K), by the BP-method, will be de�ned as the limit-
ing case of ME(K(r)) as r increases. As the maximum entropy satis�es the renaming
principle, on the language L(r) all the state descriptions consistent with K(r) will get the
same probability. Thus for a state description Θ

(r)
i of L(r) we have

ME(K)(Θ(r)
i ) = lim

m→∞

|{Θ(m) | Θ(m)extendsΘ(r)
i

Θ(m)consistent with K(m) }|
|{Θ(m) |Θ(m)consistent with K(m)}| (3.11)

To study this we will �rst introduce some de�nitions and results in graph theory which
would seem to throw some light on this problem.

De�nition 2 A graph property is an in�nite class of graphs closed under isomorphism.
A property is called hereditary if it is closed under taking induced subgraphs. For a
property P we will denote by |Pm| the number of graphs of size m in P .

The hereditary properties and the speed of growth of |Pm| where P is a hereditary
property has been studied in graph theory and we shall consider those results to study
the limit in (3.11).

Scheinerman and Zito proved the following result in [32],

Theorem 23 Let P be a hereditary property of graphs. Then one of the following
holds.
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1. For all m sufficiently large |Pm| is identically zero, one or two.

2. |Pm| = Θ(1)mk for some positive integer k ( i.e. c1mk < |Pm| < c2mk for some
c1, c2 > 0).

3. For some positive c1, c2, cm
1 < |Pm| < cm

2 .

4. For some c > 0, mcm ≤ |Pm|.

They also proved in [32], that for the �rst case, for sufficiently large m, Pm = ∅ or
{Km} or {Km} or {Km,Km}, where Km is the complete graph on m vertices and Km is the
graph on m vertices with no edges.

We will now consider the other three cases.

De�nition 3 Let G be a graph and x ∈ V(G), the set of vertices of G, and let N(x)
denote the neighborhood of x that is the set of y such that { x, y } ∈ E(G), the edge
set of G. For x, y ∈ V(G) we will write x ∼ y if N(x) − {y} = N(y) − {x}. This is an
equivalence relation and we will call the equivalence classes of ∼, homogeneous sets.
If x ∼ y in G we will say that x and y are G-equivalent.

Balogh, Bollobas and Weinreich proved in [3] that if |Pm| has polynomial growth then
every G ∈ P has a bounded number of homogeneous sets (more precisely, at most
k + 1 if |Pm| = O(mk)) and only one of them can have unbounded order.

For a hereditary property Q, let lQ be the maximal number of homogeneous sets of
any graph G ∈ Q. It was shown in [3] that lQ < ∞ if and only if |Qm| = O(km)
for some k. Let kQ be the maximal number of unbounded homogeneous sets for any
graph G ∈ Q and tQ be a bound on the size of bounded homogeneous sets. As was
mentioned above when kQ = 1, |Qm| is polynomial (of order at most t(lQ − 1)).

In [3] Balogh et al. also proved a �ner result than the one in Theorem 23 for the
case when |Qm| has an exponential growth as well as the following results for the cases
when the order of growth is above exponential.

Theorem 24 Let Q be a hereditary property for which lQ < ∞. Then there exists
k, t ∈ N such that |Qm| = O(mtkm). In particular, there exists polynomials {pi}ki=1 such
that, for sufficiently large m, we have: |Qm| =

∑k
i=1 pi(m)im, where k is the maximal

number of unbounded homogeneous sets in Q.
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Lemma 25 If there are graphs in P with an arbitrary large number of homogeneous
classes, then |Pm| ≥ m( 1

2−o(1))m.

Theorem 26 Assume |Qm| = Ω(km) (that is, there is c > 0 such that |Qm| > ckm for all
m). Then either |Qm| ≥ m(1+o(1))m or |Qm| = m(1− 1

k +o(1))m for some k.

Thus if |Qm| grows faster than exponential then either |Qm| ≥ m(1+o(1))m or |Qm| =

m(1− 1
k +o(1))m.

For the cases where |Qm| ≥ m(1+o(1))m they divide this into two cases. The �rst case
is when mm ≤ |Qm| ≤ 2o(m2). This will be the problematic case. Scheinerman and Zito,
in [32] asked the question wether for a property Q, with |Qm| in this range, the limits

lim
m→∞

log |Qm|
m log m and lim

m→∞
log log |Qm|

log m

always exists. In [4] Balogh et al. show that these limits do not necessarily exist and
properties in this range can oscillate in�nitely often which means that there can be
large difference between lim in fm( |Qm |

m log m ) and lim supm( |Qm |
m log m ).

However above this range, that is where |Qm| > 2o(n2), |Qm| will again become well
behaved. In [5], Ballobas and Thomason proved the following result.

Theorem 27 If lim supm→∞
log |Qm |

m2 > 0 and Q is not the trivial class of all graphs, then
there is an integer k ≥ 2 such that |Qm| = 2(1− 1

k +o(1)) m2
2 .

The results on the speed of hereditary properties do not immediately apply to our gen-
eral problem because they assume equality and ai , a j for i , j and more ever they
are concerned with undirected graphs.6 Nevertheless the results obtained in that study
suggest some lines of inquiry in our more general case. It is in that direction that we
now turn.

We will now see how we can relate our problem to this setting.

6The presence of equality itself is not a problem for us provided we allow the possibility that ai = a j
even though i , j.
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Notice that for the language L, with only one binary relation symbol, the state de-
scriptions of L(m) are of the form

m∧

j=1

m∧

k=1
Rε jk(a j, ak).

These can be identi�ed with all the possible directed graphs on the set of vertices
{a1, . . . , am}. We shall use this identi�cation in what follows.

A state description Θ
(m)
k is consistent with K(m) if and only if for every ai1 , . . . , aiq ∈

{ a1, . . . , am } we have θ(ai1 , . . . , aiq). Let Θ
(q)
j , j = 1, . . . , J be the state descriptions of

L(q) and let
Γ = {Θ(q)

j |Θ(q)
j � ¬

q∧

l1,...,ln=1
θ(al1 , . . . , alq) }.

So Γ will be the set of state description on {a1, . . . , aq} or equivalently the set of di-
rected graphs with {a1, . . . , aq} as the vertex set that are inconsistent with K(q). Thus
considering the state descriptions as graphs, a state description Θ

(m)
k is consistent with

K(m) if and only if the graph with vertices {a1, . . . , am} associated with it does not have
any induced subgraph of size q isomorphic to any graph in Γ.

By the discussion above the denominator in (3.11), |{Θ(m) |Θ(m)consistent with K(m)}|,
will be the number of graphs of size m with no induced subgraph of size n isomorphic
to any graph in Γ.

Let ∆ be a set of �nite graphs and de�ne P∆ to be the property of having no induced
subgraph isomorphic to a graph in ∆. The property P∆ de�ned in this way will then
be a hereditary property.

Thus for the denominator in (3.11) and Γ de�ned above, we will have

|{Θ(m) |Θ(m)consistent with K(m)}| = |Pm
Γ |.

As usual let L be a language with constants a1, a2, a3, . . . and �nitely many relation
symbols but no functions nor equality. In what follows b1, . . . , bn will denote some
distinct constants ai.
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De�nition 4 For Θ(b1, . . . , bn), a state description (in L), we say bi, b j are indistin-
guishable mode Θ(~b), denoted bi ∼Θ(~b) b j, if

Θ(b1, . . . , bn) ∧ bi = b j

is consistent with the axioms of equality for the language L plus =7.

The relation ∼
Θ(~b) is an equivalence relation. The spectrum of Θ(~b) [see [30]] is the

multiset of sizes of its equivalence classes. Let length of its spectrum, denoted ||Θ(~b)||,
be the number of non-empty equivalence classes.

De�nition 5 We say that a quanti�er free formula θ(x1, x2, . . . , xn) is slow if there are
some constants c, d such that for all r the number of models of ∀~xθ(~x) with universe
{a1, . . . , ar} is at most dcr.

Theorem 28 If θ(x1, x2, . . . , xn) is slow, with bound d(k − 1)r then there is a �nite set
A of state descriptions Θ(a1, a2, . . . , ak) of spectrum length at most k − 1 such that

k∧

i1,...,in=1
θ(aii , . . . , ain) ≡

∨

Θ(a1,...,ak)∈A
Θ(a1, . . . , ak). (3.12)

Proof. Suppose that θ(x1, . . . , xn) is slow, with bound d(k − 1)r but there is a state
description Θ(a1, . . . , ap) which determines a model of ∀~xθ(x1, . . . , xn) (equivalently
consistent with this sentence) with

||Θ(a1, . . . , ap)|| > k − 1.

Then we can extend this state description to one with q individuals, a1, a2, . . . , aq, q > p
by making the new elements clones of existing elements. In other words we just add
the new elements to the equivalence classes of existing elements. Furthermore we can
do this in ||Θ(a1, . . . , ap)||q−p ways. Thus we will have at least ||Θ(a1, . . . , ap)||q−p many
models of ∀~xθ(x1, . . . , xn) of size q. But this clearly exceeds d(k − 1)q for sufficiently
large q, and this is a contradiction.

Thus if we represent
k∧

i1,...,in=1
θ(ai1 , . . . , ain)

7This is the analogy to the equivalence in De�nition 3.
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as a logically equivalent disjunction of state descriptions Θ j(a1, . . . , ak), j = 1, . . . , t
because we have

||Θ j(a1, . . . , ak)|| ≤ k − 1

for j = 1, . . . , t we will have the required representation.

In other words if θ(x1, . . . , xn) is slow then there is a number k such that for each state
descriptions over a1, . . . , ak that logically imply ∧k

i1,...,in=1 θ(ai1 , . . . , ain) has at most k−1
distinguishable elements (or equivalently has spectrum of size at most k − 1).

�

Let the knowledge base K be given by

{w(∀~xθ(~x)) = 1}

where θ is slow with bound d(k − 1)m. So there is a �nite set A of state descriptions of
L(k) with spectrum length at most k − 1 such that,

k∧

i1,...,in=1
θ(aii , . . . , ain) ≡

∨

Θ(a1,...,ak)∈A
Θ(a1, . . . , ak). (3.13)

We will next show that the BP-method converges for the knowledge bases consisting of
slow formula. To show this we have to show that for a state description Ξ(r)(a1, . . . , ar)
the limit

lim
m→∞

ME(K(m))(Ξ(r)) = lim
m→∞

|{Φ(m) | Φ(m)extendsΞ(r)
i

Φ(m)consistent with K(m) }|
|{Φ(m) |Φ(m)consistent with K(m)}| (3.14)

exists and then by BP-method we can de�ne

ME(K)(Ξ(r)) = lim
m→∞

ME(K(m))(Ξ(r)).

To show this we will �rst �nd the number of state descriptions of L(m) consistent with

K(m).

Let Φ(a1, . . . , am) be a state description consistent with K, say with equivalence classes
S 1, S 2, . . . , S q such that if it is minimal with ait ∈ S t then i1 < i2 < . . . < iq.
Notice that by the discussion in the proof of Theorem 28 q < k.
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Let Ψ(ai1 , . . . , aiq) be the state description of ai1 , . . . , aiq logically implied by Φ(a1, . . . , am).
Then Ψ(a1, . . . , aq) has spectrum {1, . . . , 1} with length q < k. Notice that we can
recover Φ(a1, . . . , am) from Ψ(a1, . . . , aq) and S 1, . . . , S q. So the number of state de-
scriptions Φ(a1, . . . , am) is the number of choices of Ψ(a1, . . . , aq) and the choices of
S 1, . . . , S q.

The number of state descriptions Ψ(a1, . . . , aq) above is the number of state descrip-
tions on a1, . . . , aq consistent with K(q) with spectrum length q, say dq. The only con-
dition on the equivalence classes S 's is that they should be non-empty and form a
partition of { 1, 2, . . . ,m }, (their subscripts being determined by their least elements)
so the number of choices of S 1, . . . , S q will be the Stirling number of second kind,

S (q)
m =


m
q

. So the number of choices for the Φ(a1, . . . , am) above will be

dq.S (q)
m =

dq

q!

q∑

j=0
(−1)q− j

(
q
j

)
jm =

dq

q!

(
qm − q(q − 1)m +

q(q − 1)
q (q − 2)m − . . . + (−1)q

)
.

Hence the number of state descriptions of L(m) consistent with K(m) is

dq1

q1!

(
qm

1 − q1(q1 − 1)m +
q1(q1 − 1)

q1
(q1 − 2)m − . . . + (−1)q1

)
+

dq2

q2!

(
qm

2 − q2(q2 − 1)m +
q2(q2 − 1)

q2
(q2 − 2)m − . . . + (−1)q2

)
+ . . .+

dqs

qs!

(
qm

s − qs(qs − 1)m +
qs(qs − 1)

qs
(qs − 2)m − . . . + (−1)qs

)

where qs < qs−1 < . . . < q1 < k are the distinct spectrum lengths of the state descrip-
tions on L(k) consistent with ∧k

i1,...,in=1 θ(ai1 , . . . , ain). Hence the proportion of these state
descriptions as m→ ∞ with spectrum length q1 will be

lim
m→∞

(dq1

q1!
(qm

1 − . . . + (−1)q1
)

+ . . .+

dqs

qs!
(qm

s − . . . + (−1)qs
)) (dq1

q1!
(qm

1 − . . . + (−1)q1
))−1

=
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lim
m→∞

(dq1

q1!
(qm

1 − . . . + (−1)q1
)

+ . . . +
dqs

qs!
(qm

s − . . . + (−1)qs
)) (dq1

q1!qm
1

)−1

= 1.

Thus as m→ ∞ the number of these state descriptions will be asymptotically

dq1

q1!qm
1 .

Next we �x a state description Ξ(a1, . . . , ar) and look at the number of models of ∀~xθ(~x)
extending this state description. Let Φ(a1, . . . , am) be a state description on L(m) ex-
tending Ξ(a1, . . . , ar) that is a model of ∀~xθ(~x). Again by the discussion in the proof
of Theorem 28, Φ(a1, . . . , am) will have spectrum of length at most k − 1, say with
equivalence classes spectrum S 1, . . . , S q′ , q′ < k, again ordered so that if it is minimal
such that ait ∈ S t then i1 < i2 < . . . < iq. Let h be maximal such that ih ≤ r.

Let Ψ(a1, a2, . . . , ar, aih+1 , aih+2 , . . . , aiq′ ) be the state description on a1, a2, . . . , ar, aih+1

, . . . , aiq′ determined by Φ(a1, . . . , am). Again Φ(a1, . . . , am) can be recovered from
Ψ(a1, a2, . . . , ar, ar+1, . . . , ar+q′−h) and the classes S 1, S 2, . . . , S q′ , their order being de-
termined as before by i1 < i2 < . . . < iq′ where it is minimal such that ait ∈ S t. The
only difference now from the previous case (when effectively Ξ(a1, . . . , ar) = >) is that
we no longer have an essentially free choice of partition S 1, S 2, . . . , S q′ because the
non-empty members of

S 1 ∩ {1, 2, . . . , r}, S 2 ∩ {1, 2, . . . , r}, . . . , S q′ ∩ {1, 2, . . . , r} (3.15)

form a re�nement of the partition of the equivalence classes T1,T2, . . . , Tg of Ξ(a1, . . . , ar)
which is determined by Ψ. Notice that there are �nitely many of such possible Ψ's for
all the possible spectrum lengths, say Ψ1, . . . ,Ψs and all the state descriptions in the
nominator of (3.14) will be recovered from one of these Ψ's. Hence to show that the
limit in (3.14) exists it will be enough to show that

lim
m→∞

|{Φ(m) |
Φ(m)extendsΞ(r)

i
Φ(m)consistent with K(m)

Φ(m)recovered fromΨ j
}|

|{Φ(m) |Φ(m)consistent with K(m)}| (3.16)
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exists for j = 1, . . . , s because

lim
m→∞

|{Φ(m) | Φ(m)extendsΞ(r)
i

Φ(m)consistent with K(m) }|
|{Φ(m) |Φ(m)consistent with K(m)}| = lim

m→∞

s∑

j=1

|{Φ(m) |
Φ(m)extendsΞ(r)

i
Φ(m)consistent with K(m)

Φ(m)recovered fromΨ j
}|

|{Φ(m) |Φ(m)consistent with K(m)}| .

For a �xed Ψ let R1,R2, . . . ,Rp denote this re�nement as in (3.15) and let q′ be the spec-
trum length. Then for this particular re�nement the number of choices of S 1, S 2, . . . , S q′

for which the non-empty members of (3.15) are R1,R2, . . . ,Rp is

∑
U⊆{r+1,...,m}
|U |≥q′−p

pm−r−|U |
{ |U |

q′ − p

}

Thus the number of state descriptions corresponding to this Ψ with spectrum length q′

that extend Ξ(a1, . . . , ar) and are consistent with K(m) will be

∑
U⊆{r+1,...,m}
|U |≥q′−p

pm−r−|U |
{ |U |

q′ − p

}
.

If we expand this we will have

m−r∑

n=q′−p

pm−r−n

(q′ − p)!


q′−p∑

j=0
(−1)q′−p− j

(
q′ − p

j

)
jn


(
m − r

n

)
.

Thus for (3.16) we will have

lim
m→∞

|{Φ(m) |
Φ(m)extendsΞ(r)

i
Φ(m)consistent with K(m)

Φ(m)recovered fromΨi
}|

|{Φ(m) |Φ(m)consistent with K(m)}| =

lim
m→∞

1
(q′−p)!

∑m−r
n=q′−p pm−r−n

(∑q′−p
j=0 (−1)q′−p− j

(
q′−p

j

)
jn
) (

m−r
n

)

dq1
q1! qm

1

=

lim
m→∞

1
(q′−p)!

∑q′−p
j=0 (−1)q′−p− j

(
q′−p

j

)∑m−r
n=q′−p pm−r−n jn

(
m−r

n

)

dq1
q1! qm

1

. (3.17)

Notice that as there are �nitely many j in the nominator of (3.17), to show that the
limit in (3.17) exists it will be enough to show that it exists for each particular j.
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Since ∑m−r
n=q′−p pm−r−n jn

(
m−r

n

)
is asymptotic with ∑m−r

n=0 pm−r−n jn
(

m−r
n

)
= (p + j)m−r it is

enough to show that

lim
m→∞

(−1)q′−p− j
(

q′−p
j

)
(p + j)m−r

dq1
q1! qm

1

exists for j = 0, . . . , q′ − p.

But since p + j ≤ q′ ≤ q1 this is clearly zero unless p + j = q′ = q1, in which
case it exists. Hence the limit in (3.16) exists and so the BP-method will be well de-
�ned and converges on the knowledge bases consisting of slow formula.

Although we started our investigation in this section from a language with a single bi-
nary relation symbol and hence used the ideas from graph theory, which seems rather
related in the obvious way, the de�nition of slow formulae and the proof of theorem
28 and the discussion for the existence of the limit following it does not rely in any
way on the underlying language. Thus the results of the discussion above holds for
any polyadic language in general as long as we are dealing with Π1 knowledge bases
consisting of slow formulae.

Thus the BP-method will converge for the Π1 knowledge bases of the form {w(∀~xθ(~x)) =

1} where θ is slow without any restrictions on the language. The case where θ is not
slow remains a problem of course, though perhaps the graph theory analysis will even-
tually provide some clues here.



Chapter 4

An Alternative Generalization Of
Maximum Entropy

In this chapter we will investigate an alternative de�nition introduced by Jon Williamson
for extending the Maximum Entropy inference process to a �rst order language, and
try to study some of its properties to provide a comparison between this and the BP-
method.

As part of studying Objective Baysianism for countably in�nite domains, in [34] Jon
Williamson investigates the generalization of the equivocation principle to �rst order
languages. In [34] the equivocation principle is presented as follows:

Equivocation: The agent's degrees of belief should otherwise [beyond what is
enforced by the knowledge base] be as equivocal as possible.

Here again when we are interested in choosing a probability function to represent an
agent's degree of belief based on a knowledge base K, the equivocation principle will
require our inference process to be justi�ed by the amount of information included in
the resulting probability function. In other words the equivocation principle is forc-
ing the inference process to choose the probability function with the least amount of
information beyond our knowledge base K where the amount of information is mea-
sured by how close the chosen probability function is to the one called the equivocator.

In the case of a �rst order predicate language L, let L(r) be the restriction of L to the
�rst r constants as before and let ∆1, . . . ,∆qr be the state descriptions for L(r). Then

88
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the equivocator probability function, P=, is de�ned to be the probability function for
which

P=(∆i) =
1
qr

i = 1, . . . , qr

where qr is the number of state descriptions of L(r).

The equivocation principle will then require the candidate probability function to be
as close as possible to P= where the distance is measured by the cross entropy. This
forces the inference process to be information theoretically as close as possible to P=

i.e. the point of total ignorance.

To be more precise, Williamson de�nes the r-distance between two probability func-
tion to be

dr(P,Q) =

qr∑

i=1
P(∆(r)

i ) log(
P(∆(r)

i )
Q(∆(r)

i )
)

where the qr is the number of state descriptions on the �rst r individuals and ∆
(r)
i runs

through the state descriptions of L(r).

Then for probability functions P,Q and R, P is said to be closer to R than Q if there
is some N such that for all r ≥ N , dr(P,R) < dr(Q,R). Similarly the r-entropy of a
probability function P is de�ned to be

Hr(P) = −
qr∑

i=1
P(∆(r)

i ) log(P(∆(r)
i )).

Then P is said to have greater entropy than Q, written P � Q, if there is some N such
that for all r ≥ N , Hr(P) > Hr(Q). Using these de�nitions the equivocation principle
can be rephrased as follow:

An agent's degrees of belief should be representable by a probability function that
satis�es the knowledge base and is maximal with respect to�.

Thus Williamson de�nes the Maximum Entropy solution to a knowledge base K,
ME(K) as follow:

De�nition 6 Let K be a set of linear constraint as before. The Maximum Entropy
solution for K, ME(K), is the probability function satisfying K such that for any other
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probability function w that satis�es K there will be an N such that for all r > N we
have

dr(ME(K), P=) < dr(w, P=).

This is the de�nition referred to as the W-method.

Notice that this de�nition will satisfy the equivocation principle above since,

dr(w, P=) = −Hr(w) − log(qr).

Corollary 1 Let K be a knowledge base equivalent to a consistent Σ1 sentence. Then
P= is the Maximum Entropy solution for K chosen by W-method.

Proof. By Lemma 21, P= is itself a solution for a knowledge base K of this form. �

4.1 The W-Method And The Finite Model Problem
An advantage of this de�nition that seems rather immediate is that it does not suffer
from the �nite model problem. Notice that in the BP-method to de�ne ME(K) we take
the limit as r → ∞ of ME(K(r)) that is the probability function de�ned on L(r) that
satis�es K(r) and has the maximum entropy, where L(r) is the �nite sub language of L
described above. Thus the BP-method will fail when dealing with knowledge bases
without any �nite models while for the W-method the probability functions are all de-
�ned on L itself and the method will not suffer from the non existence of �nite models.
To see this consider the following example.

Example Consider the knowledge base K de�ned on the language L with a single
binary relation symbol R and equality. 1

K = { ∀x¬R(x, x), ∀x, y(¬(x = y)→ (R(x, y) ∨ R(y, x)),

∀x, y, z((R(x, y) ∧ R(y, z))→ R(x, z)),

∀x∃yR(x, y)}
1We could use the same idea as in the previous chapter to use a ternary relation symbol G to approx-

imate equality via =G to achieve the same result for a language without equality.
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As one can easily check K de�nes a strict linear order without an endpoint and thus K
does not have a �nite model of any cardinality. Hence the attempt to de�ne the ME(K)
on L as the limr→∞ ME(K(r)) will fail. However as we will now show, one can still �nd
a probability function that is closest to the equivocator in the sense of the W-method.

To see this let W be the probability function de�ned on L as follow, Let

Υr = {~ε =< εi, j > | 1 ≤ i, j, k ≤ r, εi, j ∈ {0, 1}, εi,i = 0,

((εi, j = ε j,k = 1)→ (εi,k = 1)),

((εi, j = 1) ∨ (ε j,i = 1) f or i , j) }.

Then for
Θ~ε =

r∧

i, j=1
Rεi j(ai, a j)

let,

W(Θ~ε) =


1
r! i f ~ε ∈ Υr

0 otherwise

Notice that this is well de�ned because if ~ε ∈ Υr+1 then ~ε �1≤i, j≤r∈ Υr. An explana-
tion here is that W on L(r) divides the whole probability equally between those state
description that correspond to a strict linear ordering of {a1, . . . , ar}.

We will now show that this is the closest probability function to P= that satis�es K.

W obviously satis�es K. Let w be another probability function satisfying K and let
w(r) be the restriction of w to L(r) as usual. First notice that for

Θ~ε =

r∧

i, j=1
Rεi j(ai, a j)

where ~ε < Υr we should have,
w(Θ~ε) = 0.

To see this notice that, if ~ε < Υr, Θ~ε does not correspond to a strict linear ordering of
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{a1, . . . , ar} and this means that we should have,

Θ~ε |=


r∨

i=1
R(ai, ai)∨

r∨

i, j=1

(
¬(ai = a j) ∧ ¬R(ai, a j) ∧ ¬R(a j, ai)

)
∨

r∨

i, j,k=1

(
R(ai, a j) ∧ R(a j, ak) ∧ ¬R(ai, ak)

)

Now if we have w(Θ~ε) > 0 then we will have

w


r∨

i=1
R(ai, ai)∨

r∨

i, j=1

(
¬(ai = a j) ∧ ¬R(ai, a j) ∧ ¬R(a j, ai)

)
∨

r∨

i, j, k=1

(
R(ai, a j) ∧ R(a j, ak) ∧ ¬R(ai, ak)

) > 0.

which means,
w (∀x¬R(x, x)∧

∀x, y((¬(x = y))→ (R(x, y) ∨ R(y, x)))∧

∀x, y, z(R(x, y) ∧ R(y, z))→ R(x, z))) < 1.

Hence w will not satisfy K which is a contradiction.

So if w satis�es K then w(r) can only assign non zero probability to those state de-
scriptions Θ~ε in L(r) for which ~ε ∈ Υr which is at most r! many state descriptions.

We can now show that for each r,

dr(W, P=) ≤ dr(w, P=),

that is ∑

~ε

W(Θ~ε) log( W(Θ~ε)
P=(Θ~ε)

) ≤
∑

~ε

w(Θ~ε) log( w(Θ~ε)
P=(Θ~ε)

).
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For this it will be enough to show that
∑

~ε

W(Θ~ε) log(W(Θ~ε)) ≤
∑

~ε

w(Θ~ε) log(w(Θ~ε)),

or equivalently ∑

~ε∈Υr

1
r! log( 1

r!) ≤
∑
~ε∈Υr

w(Θ~ε )>0

w(Θ~ε) log(w(Θ~ε)),

that is
log( 1

r!) ≤
∑
~ε∈Υr

w(Θ~ε )>0

w(Θ~ε) log(w(Θ~ε)).

To see that this inequality holds notice that ∑r!
i=1 w(Θi) = 1 and that x log(x) is a convex

function and for a convex function f we have,

m. f
(∑m

i=1 xi

m

)
≤

m∑

i=1
f (xi).

Also the inequality should be strict for at least one r otherwise we will have W = w.
Thus we will have

log( 1
r!) <

∑
~ε∈Υr

w(Θ~ε )>0

w(Θ~ε) log(w(Θ~ε)).

and so
dr(W, P=) < dr(w, P=),

for r large enough eventually, as required.

As shown by this example there are situations where the non-existence of �nite models
will make the application of BP-method impossible whilst the W-method can still be
applied without a problem to �nd the least informative probability function satisfying
the knowledge base.

Although the W-method does not suffer from the �nite model problem it still fails to
provide a universally well de�ned method to make the choice of probability function as
we shall shortly see in an example of these situations for a Σ2 knowledge base [see 4.3].

In the next section we will show that the W-method is well de�ned for unary lan-
guages and furthermore it will give the same answer as the BP-method independent of
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the quanti�er complexity of the knowledge base. The same is true for polyadic lan-
guages and Σ1 knowledge bases as seen in Theorem 20 and Corollary 1. As mentioned
in the previous chapter we conjecture that the same holds for Π1 knowledge bases.

4.2 The W-method On A Unary Language
In this section we will investigate the W-method for a knowledge base K from a unary
language. We will show that, as for the BP-method, the W-method is well de�ned for
this case and furthermore, the two methods give the same answer in this case.

It has been shown in [6] that the BP-method is well de�ned and converges when ap-
plied to a unary language for any knowledge base K. Here we will show that the
same probability function chosen by BP-method will serve as the right answer for the
W-method too. In other words, we will show that the probability function chosen by
the BP-method will be the closest (in the sense de�ned by the W-method) probability
function to P= that satis�es K.

As mentioned in Chapter 1 there is a one to one correspondence between the probabil-
ity functions on L(r) satisfying K(r) and the points in the convex set VL(K(r)). In other
words the probability functions on L(r) can be identi�ed with the vectors < x1, . . . , xm >

where xi ≥ 0 and ∑m
i=1 xi = 1 and m is the number of state descriptions on the �rst r

individuals. We shall use this identi�cation in what follows.

As in Chapter 2 let L be a language with only the unary predicate P1, . . . , Pt and
the constants a1, a2, . . .. Let Q1, . . . ,QJ, J = 2t be an enumeration of the formulae
±P1 ∧ ±P2 ∧ . . . ∧ ±Pt in some �xed order and as before let φi,~ε run through the sen-
tences of the form

αi ∧
J∧

j=1
(∃xQ j(x))ε j

where αi for i = 1, . . . , Jk enumerate the exhaustive and exclusive set of sentences of
the form

k∧

i=1
Qmi(ai)

and ~ε =< ε1, . . . , εJ > is a sequence of 0's and 1's. Notice that � ¬(φi,~ε ∧ φ j,~δ) when
< i, ~ε >,< j, ~δ >.
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By Lemma 4, any sentence θ ∈ L(k) is equivalent to a disjunction of some sentences φi,~ε

de�ned as above. Remember that

φ(r)
i,~ε = αi ∧

J∧

j=1
(

r∨

k=1
Q j(ak))ε j

that is equivalent to

∨

m j ∈ P
φi,~ε
~ε

for j = k+1,...,r

P
φi,~ε
i,~ε ⊂{m j | k+1≤ j≤ r }

αi ∧
r∧

j=k+1
Qm j(a j)

 (4.1)

where Pφi,~ε
~ε

= { j | ε j = 1 } and Pφi,~ε
i,~ε = { j | j ∈ Pφi,~ε

~ε
and j < Ai } and Ai = {m j | j =

1, . . . , k }.

This is the disjunction of those atoms of L(r) that logically imply φ(r)
i,~ε and each atom

implies precisely one of the sentences φ(r)
i,~ε and the number of disjuncts in (4.1) is

p
φi,~ε
i,~ε∑

j=0
(−1) j

(pφi,~ε
i,~ε
j

)
(pφi,~ε

~ε
− j)r−k

where pφi,~ε
i,~ε = |Pφi,~ε

i,~ε | and pφi,~ε
~ε

= |Pφi,~ε
~ε
|. If W is the probability chosen through BP-method

then for the state description s j on a1, . . . , ar we have

W(s j) =
W(φ(r)

i,~ε )
∑p

φi,~ε
i,~ε

j=0 (−1) j
(p

φi,~ε
i,~ε
j

)
(pφi,~ε r−k

~ε
− j)

where s j � φ
(r)
i,~ε as we will shortly discuss [see [6] for further discussions on these].

We will now return to our main question in this section.

Theorem 29 Let L be a language with only �nitely many unary predicates and the
universe a1, a2, . . . and let K be a �nite set of linear constraints. Then the W-method is
well de�ned for K and gives the same answer as the BP-method2.

2It should be noted that Jon Williamson has mentioned in a private conversation that he has proved
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Proof. We will show that the solution from the BP-method, that is W = limr→∞ ME(K(r))
satis�es the condition in the W-method. That is

(∀w � K) ((w , W)⇒ ∃N∀r ≥ N dr(W, P=) < dr(w, P=)) .

Suppose not and let w , W be a probability function satisfying K such that for in-
�nitely many r,

dr(w(r), P=) ≤ dr(W (r), P=) (4.2)

where as usual w(r) is the restriction of w to L(r).

Since w , W we can pick a large i and ~τ such that w(φi,~τ) , W(φi,~τ). From the
characterization of W given in [6] we have that for large r,

∑

i,~ε
W(φi~ε) log W(φi~ε) − (r − k)

∑

i,~ε
W(φi~ε) log pφi,~ε

~ε
+ δ(W, r) ≤

∑

i,~ε
w(φi~ε) log w(φi~ε) − (r − k)

∑

i,~ε
w(φi~ε) log pφi,~ε

~ε
+ δ(w, r)

where

δ(w, r) =
∑

i,~ε
w(φi,~ε) log



P
φi,~ε
i,~ε∑

j=1
(−1) j

(Pφi,~ε
i,~ε
j

)
(1 − j

pφi,~ε
~ε

)r−k



and we have
δ(W, r), δ(w, r)→ 0

as r → ∞, in consequence we have
∑

i,~ε
W(φi~ε) log W(φi~ε) − (r − k)

∑

i,~ε
W(φi~ε) log pφi,~ε

~ε

<
∑

i,~ε
w(φi~ε) log w(φi~ε) − (r − k)

∑

i,~ε
w(φi~ε) log pφi,~ε

~ε
(4.3)

Notice that

w(φi,~ε) = lim
r→∞

w(φ(r)
i,~ε ) (4.4)

W(φi,~ε) = lim
r→∞

W(φ(r)
i,~ε ) (4.5)

the equivalence of the two methods in the unary languages too.
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To see this notice that for a probability function v and distinct Qi,Q j

v(∃xQi(x)) = lim
r→∞

v


r∨

k=1
Qi(ak)

 = lim
r→∞

v(
∨

Γ
(r)
Qi

),

where Γ
(r)
Qi

are those state descriptions of L(r) containing as a conjunct Qi(ai) for some
1 ≤ i ≤ r. Similarly [see [24]-Chapter 11]

v(∃xQi(x) ∧ ∃xQ j(x)) = v(∃x, yQi(x) ∧ Q j(y)) (4.6)
= lim

r→∞
v
(∨

Γ
(r)
Qi,Q j

)
. (4.7)

So,

v(∃xQi(x) ∧ ¬∃xQ j(x)) = v(∃xQi(x)) − v(∃xQi(x) ∧ ∃xQ j(x)) (4.8)
= lim

r→∞
v(

∨
Γ

(r)
Qi

) − lim
r→∞

v
(∨

Γ
(r)
Qi,Q j

)
(4.9)

= lim
r→∞

v
(∨

(Γ(r)
Qi
− Γ

(r)
Qi,Q j

)
)

(4.10)

= lim
r→∞

v
(
Γ

(r)
Qi,¬Q j

)
(4.11)

where Γ
(r)
Qi,¬Q j

are those atoms of L(r) which contain Qi(ak) as a conjunct for some
1 ≤ k ≤ r but do not contain as a conjunct Q j(ak) for any k.

We will now show that

v


m∧

k=1
∃xQk(x) ∧

J∧

l=m+1
¬∃xQl(x)

 =

lim
r→∞

v
(∨

Γ
(r)
Q1,...,Qm,¬Qm+1,...,¬QJ

)
(4.12)

by induction on J − m.

The result for J − m = 0 is given by the following theorem proved in [24].

Theorem 30 For v : S L→ [0 , 1] satisfying (P1-3) from Chapter 1 and ψ(x) ∈ S L,

v(∃xψ(x)) = suprv


r∨

i=1
ψ(ai)

 .
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So we will have

v


m∧

k=1
∃xQk(x)

 = lim
r→∞

v


m∧

k=1

r∨

i=1
Qk(ai)

 = lim
r→∞

v
(∨

Γ
(r)
Q1,...,Qm

)
.

Assume that (4.12) is true for J − m. Then

v


m∧

k=1
∃xQk(x) ∧

J+1∧

k=m+1
¬∃xQk(x)



= v


m∧

k=1
∃xQk(x) ∧

J∧

k=m+1
¬∃xQk(x)

 − v


m∧

k=1
∃xQk(x) ∧

J∧

k=m+1
¬∃xQk(x) ∧ ∃xQJ+1(x)



= lim
r→∞

v
(∨

Γ
(r)
Q1,...,Qm,¬Qm+1,...,¬QJ

)
− lim

r→∞
v
(∨

Γ
(r)
Q1,...,Qm,QJ+1,¬Qm+1,...,¬QJ

)

= lim
r→∞

v
(∨

Γ
(r)
Q1,...,Qm,¬Qm+1,...,¬QJ ,¬QJ+1

)

as required.

Now we have

w(φi,~ε) = w(αi ∧
J∧

j=1

(
∃xQ j(x)

)ε j)

= lim
r→∞

w
(∨

Γ
(r)
αi,Q j1 ,...,Q jm ,¬Q jm+1 ,...,¬QJ

)

= lim
r→∞

w
αi ∧

J∧

j=1


r∨

l=1
Q j(al)


ε j


= lim
r→∞

w(φ(r)
i,~ε )

where ε j1 , . . . , ε jm = 1 and ε jm+1 , . . . , ε jJ = 0 and similarly for W.
Now take r large and satisfying (4.2). Then we have that

∑

s
w(s) log w(s) ≤

∑

s
W(s) log W(s)

where the s range over the atoms of L(r). Hence
∑

i,~ε

∑

s�φ(r)
i,~ε

w(s) log w(s) ≤
∑

i,~ε

∑

s�φ(r)
i,~ε

W(s) log W(s). (4.13)
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In this inequality the left hand side is, by convexity, at least

∑

i,~ε
w(φ(r)

i,~ε ) log



w(φ(r)
i,~ε )

pφi,~ε r−k
~ε

∑p
φi,~ε
i~ε

j=0 (−1) j
(p

φi,~ε
i~ε
j

)
(1 − j

p
φi,~ε
~ε

)r−k


.

Now notice that if su, sv are atoms of L(r) that logically imply the same φ(r)
i,~ε then for

any m ≥ r the number of extensions of su to an atom of L(m) logically implying φ(m)
i,~δ

is
the same as the number for sv and hence W(sv) = W(su) since by renaming we should
have ME(K(r))(sv) = ME(K(r))(su) and we have W = limr→∞ ME(K(r)). So the right
hand side of (4.13) is equal to

∑

i,~ε
W(φ(r)

i,~ε ) log



W(φ(r)
i,~ε )

pφi,~ε r−k
~ε

∑p
φi,~ε
i~ε

j=0 (−1) j
(p

φi,~ε
i~ε
j

)
(1 − j

p
φi,~ε r−k
~ε

)


.

Simplifying now gives that
∑

i,~ε
w(φ(r)

i,~ε ) log
(
w(φ(r)

i,~ε )
)
− (r − k)

∑

i,~ε
w(φ(r)

i,~ε ) log pφi,~ε
~ε

+ δ(~w, r)

≤
∑

i,~ε
W(φ(r)

i,~ε ) log
(
W(φ(r)

i,~ε )
)
− (r − k)

∑

i,~ε
W(φ(r)

i,~ε ) log pφi,~ε
~ε

+ δ( ~W, r) (4.14)

where δ(~w, r), δ( ~W, r)→ 0 as r → ∞. Hence, using (4.4), (4.5), we must have
∑

i,~ε
W(φi,~ε) log pφi,~ε

~ε
≤

∑

i,~ε
w(φi,~ε) log pφi,~ε

~ε
.

It is proved in [6] that W is such that ∑
i,~ε W(φi,~ε) log pφi,~ε

~ε
is maximal among those

probability functions that satisfy K. Hence we should have
∑

i,~ε
W(φi,~ε) log pφi,~ε

~ε
=

∑

i,~ε
w(φi,~ε) log pφi,~ε

~ε
.

Hence, again using (4.4), (4.5) and (4.14) it must be the case that
∑

i,~ε
w(φi,~ε) log (w(φi,~ε)

) ≤
∑

i,~ε
W(φi,~ε) log (W(φi,~ε)

)
,
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which contradicts (4.3) and this completes the proof of Theorem 29. �

So for a unary language the W-method is well de�ned and gives the same answer as
BP-method.

When working with a Σ1 knowledge base (possibly from a language with relation sym-
bols of higher arrities) P= itself will be a solution for the knowledge base as we have
proved before. Thus in this case the P= itself will be the chosen probability function
by the W-method which agrees with the answer from the BP-method.

In the following sections we will investigate some situations where the W-method will
not be well de�ned and study some of its properties.

4.3 The W-method And The General Polyadic Case
As discussed before by Williamson's de�nition a probability function w satisfying a
set of constraints K is closest to P=, with respect to d, if

(∀W � K)[W , w⇒ ∃N ∀n ≥ N dn(w, P=) < dn(W, P=)].

An important issue here will be the existence of such a probability function satisfying
this condition in general. Here we will show, by an example, that it is not always
possible to �nd a probability function closest to the equivocator in the above sense and
thus the W-method will not in general be viable. To see this consider the following
example. Here we are dealing with a Σ2 sentence and the idea is that we can get closer
and closer to P= by making the x from ∃x scarcer and scarcer and thus increasing the
entropy of our probability function.
Example Let

K = {w(∃x∀y, R(x, y)) = 1 }.

Assume that the W-method gives a solution w in this case. So w is a probability func-
tion on L and

w(∃x∀y, R(x, y)) = 1.

The plan is to show that there is some W on L also satisfying K such that for each N
there will be some r > N such that dr(W (r), P=) < dr(w(r), P=).
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Let
ei = w(∀y R(ai, y)).

Pick k such that ek > 0 and let r be large so in particular ek > 2−r. Let w(r) be w
restricted to L(r) and de�ne W (r) also on L(r) as follows:

For a state description

Θ~ε =

r∧

i, j=1
Rεi j(ai, a j)

set

W (r)(Θ~ε) = 2−rw(r)


∧

1≤i, j≤r
i,k

Rεi j(ai, a j)

 .

Claim 3 dr(W (r), P=) < dr(w(r), P=).

Proof It is enough to show that

−
∑

~ε

W (r)(Θ~ε) log W (r)(Θ~ε) > −
∑

~ε

w(r)(Θ~ε) log w(r)(Θ~ε). (4.15)

Let δ and τ respectively range over the maps from

{ 〈i, j〉 | 1 ≤ i, j ≤ r, i , k } → {0, 1}

and
{ 〈k, j〉 | 1 ≤ j ≤ r, } → {0, 1}

Then (4.15) will be

−
∑

~δ∪~τ
W (r)(Θ~δ∪~τ) log W (r)(Θ~δ∪~τ) > −

∑

~δ∪~τ
w(r)(Θ~δ∪~τ) log w(r)(Θ~δ∪~τ).

To show this we will show that for each ~δ,

−
∑

~τ

W (r)(Θ~δ∪~τ) log W (r)(Θ~δ∪~τ) ≥ −
∑

~τ

w(r)(Θ~δ∪~τ) log w(r)(Θ~δ∪~τ) (4.16)

and that the inequality should be strict for some ~δ.
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For two state descriptions Θ~δ∪ ~τ1
and Θ~δ∪ ~τ2

we have , by de�nition,

W (r)(Θ~δ∪ ~τ1
) = W (r)(Θ~δ∪ ~τ2

) = 2−rw(r)(
∨

~τ

Θ~δ∪~τ). (4.17)

Using this (4.16) will be

−2rW (r)(Θ~δ∪~τ) log W (r)(Θ~δ∪~τ) ≥ −
∑

~τ

w(r)(Θ~δ∪~τ) log w(r)(Θ~δ∪~τ). (4.18)

which by (4.17) will be

−w(r)(
∨

~τ

Θ~δ∪~τ) log(2−rw(r)(
∨

~τ

Θ~δ∪~τ)) ≥ −
∑

~τ

w(r)(Θ~δ∪~τ) log w(r)(Θ~δ∪~τ)

The state descriptions are pairwise disjoint and so this will be

−
∑

~τ

w(r)(Θ~δ∪~τ) log(2−r
∑

~τ

w(r)(Θ~δ∪~τ)) ≥ −
∑

~τ

w(r)(Θ~δ∪~τ) log w(r)(Θ~δ∪~τ) (4.19)

But x log x, is a convex function and for a convex function f , we have

f
(∑n

i=1 xi

n

)
≤

∑n
i=1 f (xi)

n .

The number of possible ~τ's in (4.19) is 2r and so for the convex function x log x we
should have

2−r
∑

~τ

w(r)(Θ~δ∪~τ) log(2−r
∑

~τ

w(r)(Θ~δ∪~τ)) ≤ 2−r


∑

~τ

w(r)(Θ~δ∪~τ) log w(r)(Θ~δ∪~τ)


that is (4.19).

Furthermore the inequality in (4.15) is strict because if we had equality for all such
~δ then we would have W (r) = w(r). To see that we have this, let ν be the map from
{ 〈k, j〉 | 1 ≤ j ≤ r, } → {0, 1} taking everything to 1. Then we will have

W (r)(
r∧

j=1
R(ak, a j)) = W (r)(

∨

~δ

Θ~δ∪~ν) =
∑

~δ

W (r)(Θ~δ∪~ν) =

2−r
∑

~δ

w(r)(
∨

~τ

Θ~δ∪~τ) = 2−r
∑

~δ

∑

~τ

w(r)(Θ~δ∪~τ) =
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2−r
∑

~ε

w(r)(Θ~ε) = 2−r

This will mean that

ek = w(∀xR(ak, x)) ≤ w(r)(
r∧

j=1
R(ak, a j)) = 2−r. (4.20)

But this is a contradiction because r has been chosen large, so 2−r < ek, This �nishes
the proof of Claim 3.

To construct our required W we now consider two cases:

Case 1 There are arbitrarily large k such that ek > 0.

In this case pick an in�nite sequence k0 < k1 < k2 < . . . of such k and de�ne W on L(rs)

where, rs = ks − 1, s ≥ 2

W (rs)


rs∧

i, j=1
Rεi j(ai, a j)

 = 2−rsw


rs∧

i, j=1
i,km ,0≤m<s

Rεi j(ai, a j) ∧
s−1∧

m=1

rs∧

j=1
Rεkm−1 j(akm , a j)

 .

An explanation here is that in forming W we use w but replace ak0 by a `random ele-
ment' as in the above construction, replace ak1 in w by ak0 , ak2 in w by ak1 and so on.
The net effect of these constructions is that for W

W


rs∨

i=1
∀y R(ai, y)

 ≥ w


rs−1∨

i=1
∀y R(ai, y)

 .

To see this notice that

W


rs∨

i=1

n∧

j=1
R(ai, a j)

 ≥ W


rs−1∨
i=1

i,k0,...,ks−2

n∧

j=1
R(ai, a j) ∨

s−1∨

m=1

n∧

j=1
R(akm , a j)



= w


rs−1∨

i=1

n∧

j=1
R(ai, a j)



Taking the limit as n→ ∞ here gives

W(
rs∨

i=1
∀yR(ai, y)) ≥ w(

rs−1∨

i=1
∀yR(ai, y))
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and hence by taking the limit as s→ ∞,

W(∃x∀yR(x, y)) ≥ w(∃x∀yR(x, y)).

Hence we have W(∃x∀yR(x, y)) = 1.

Let w′ be de�ned as follow:

w′(rs)


rs∧

i, j=1
Rεi j(ai, a j)

 = 2−rsw


rs∧

i, j=1
i,ks−1

Rεi j(ai, a j)

 .

then we will have

∑

~ε

Wrs


rs∧

i, j=1
Rεi j(ai, a j)

 log Wrs


rs∧

i, j=1
Rεi j(ai, a j)

 =

∑

~ε

w′rs


rs∧

i, j=1
Rεi j(ai, a j)

 log w′rs


rs∧

i, j=1
Rεi j(ai, a j)



and so drs(Wrs , P=) = drs(w′rs , P=).

Now using the Claim proved above we have that by choosing the rs sufficiently large,

drs(w′(rs), P=) < drs(w(rs), P=).

and so
drs(W (rs), P=) < drs(w(rs), P=).

The rs's are an in�nite increasing sequence so for each N we can �nd N < rs and we
will have

drs(W (rs), P=) < drs(w(rs), P=).

as required.

Case 2 There is some g such that ek = 0 for k ≥ g.

In this case pick an 0 < j such that e j > 0 and a permutation σ of N+ such that for
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i , j, g + 1, σ(i) = i and σ( j) = g + 1 and σ(g + 1) = j. For r ∈ N+ let

W


r∧

i, j=1
Rεi j(ai, a j)

 = 2−1

w


r∧

i, j=1
Rεi j(ai, a j)

 + w


r∧

i, j=1
Rεi j(aσ(i), aσ( j))


 .

Then for n > g,

W(
g+1∨

i=1

n∧

k=1
R(ai, ak))

= 2−1

w(
g+1∨

i=1

n∧

k=1
R(ai, ak)) + w(

g+1∨

i=1

n∧

k=1
R(aσ(i), aσ(k)))



Since {1, 2, . . . , g + 1} = {σ(1), σ(2), . . . , σ(g + 1)} we will have

W(
g+1∨

i=1

n∧

k=1
R(ai, ak)) = w(

g+1∨

i=1

n∧

k=1
R(ai, ak)).

Taking the limit as n→ ∞ gives

W(
g+1∨

i=1
∀yR(ai, y)) = w(

g+1∨

i=1
∀yR(ai, y)) = w(∃x∀yR(x, y)) = 1,

since w(∀yR(ai, y)) = 0 for i > g + 1, so

W(∃x∀yR(x, y)) = 1.

To show that

dr(W (r), P=) < dr(w(r), P=)

it is enough to show that

−
∑

~ε

W (r)(Θ~ε) log W (r)(Θ~ε) > −
∑

~ε

w(r)(Θ~ε) log w(r)(Θ~ε). (4.21)

Now notice that the permutation σ can be also considered as a permutation of state
descriptions and let σ(Θ~ε) have the obvious meaning. Now if σ(Θ~ε1) = Θ~ε2 then
σ(Θ~ε2) = Θ~ε1 . So to show (4.21) it will be enough to show that for each ~ε,
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W (r)(Θ~ε) log W (r)(Θ~ε)+W (r)(Θ~ε′) log W (r)(Θ~ε′) ≤ w(r)(Θ~ε) log w(r)(Θ~ε)+w(r)(Θ~ε′) log w(r)(Θ~ε′)
(4.22)

where Θ~ε′ = σ(Θ~ε) and that this inequality is strict for some Θ~ε eventually.
But (4.22) is:

w(r)(Θ~ε) + w(r)(Θ~ε′)
2 log(

w(r)(Θ~ε) + w(r)(Θ~ε′)
2 )+

w(r)(Θ~ε′) + w(r)(Θ~ε)
2 log(

w(r)(Θ~ε′) + w(r)(Θ~ε)
2 )

≤ w(r)(Θ~ε) log w(r)(Θ~ε) + w(r)(Θ~ε′) log w(r)(Θ~ε′)

that is

(
w(r)(Θ~ε) + w(r)(Θ~ε′)

)
log(

w(r)(Θ~ε) + w(r)(Θ~ε′)
2 ) ≤ w(r)(Θ~ε) log w(r)(Θ~ε)+w(r)(Θ~ε′) log w(r)(Θ~ε′)

(4.23)
and this is obvious by the convexity of the function x log x. Furthermore this inequality
will eventually be strict for some Θ~ε because otherwise we will have W (r) = w(r) but
we have

W(∀yR(ag+1, y)) = 2−1w(∀yR(a j, y)) = 2−1e j > 0

and
w(∀yR(ag+1, y)) = 0

so
0 = w(∀yR(ag+1, y)) < 1

2w(∀yR(a j, y)) = W(∀yR(ag+1, y))

and w , W and so w(r) , W (r) for all r eventually that is a contradiction, and so the
inequality in 4.23 must be strict.

As seen by the above example there can be situations where the closest probability
function in the sense of W-method does not exist and thus the method can not be ap-
plied.

We will complete this chapter by investigating some properties of the W-method.
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4.4 The W-method And Cloned State Descriptions
In this section we will study some properties of the W-method or more precisely some
properties of the probability function chosen by the W-method for a knowledge base K.

Here we will �rst prove that the W-method is invariant under the permutation of those
individuals that do not explicitly appear in the knowledge base K. The idea here is that
for a permutation σ, that permutes say ai,a j not appearing in K, and a state description
Θ we should have

w(Θ) = w(σ(Θ)) (4.24)

where σ(Θ) will be the result of transposing ai and a j in Θ. The reason for this is that
if (4.24) does not hold we can improve the probability function w by setting

w′(Θ) = w′(σ(Θ)) =
w(Θ) + w(σ(Θ))

2

which will result in increasing the entropy because of the convexity of negative entropy
function.

We will then introduce the notion of cloned state descriptions, that is an idea along
the same lines as the notion of slow formulae in the previous chapter.

Here the idea of cloning a state description is to extend that state description to in-
clude a larger number of individuals where the new individuals are indistinguishable
from the ones which have already appeared. In other words we extend a state descrip-
tion by adding new individuals that look exactly like the ones we already have.

We will show that when possible (in accordance with the knowledge base K) the W-
method will not put any weight on cloned state descriptions and will divide all the
probability amongst those structures that have in�nitely many mutually distinguish-
able individuals.
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4.4.1 The W-Method And Permutation of constants
Let σ be a permutation of a1, a2, . . . that transposes ai and a j, that is, σ(ai) = a j,
σ(a j) = ai and σ(ak) = ak for k , i, j.

Theorem 31 Let K be a linear knowledge base consisting of linear constraints in the
w(φi), i = 1, . . . , n, that is

K = {
n∑

j=1
c jiw(φ j) = bi | i = 1, . . . ,m}

such that the constant ai and a j do not appear in K and let w0 be the Maximum Entropy
solution for K obtained by the W-method. Then

w0(σ(ψ)) = w0(ψ)

where σ(ψ) is the result of transposing ai and a j throughout ψ.

Proof. Let's assume w0 does not have this property, that is w0(σ(ψ)) , w0(ψ) for some
state description ψ and de�ne the probability function w′ as follow,

w′(n)(Θ(n)) = 2−1(w(n)
0 (Θ(n)) + w(n)

0 (σ(Θ(n)))),

where Θ(n) are the state descriptions over the �rst n individuals and σ(Θ(n)) is the result
of transposing ai and a j throughout Θ(n) for n ≥ i, j.

First of all w′ will still satisfy K. To see this notice that since ai and a j do not ap-
pear in K we have σ(φi) = φi and so

w′(φi) =
1
2(w0(φi) + w0(σ(φi)))

=
1
2(w0(φi) + w0(φi)) since σ(φi) = φi

= w0(φi).

Hence w′ satis�es K.
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Claim 4 dn(w′, P=) < dn(w0, P=) for large n eventually.

Proof. It is enough to show that for n ≥ i, j
∑

Θi

w′(n)(Θi) log(w′(n)(Θi)) <
∑

Θi

w(n)
0 (Θi) log(w(n)

0 (Θi)). (4.25)

But we have
∑

Θi

w′(n)(Θi) log(w′(n)(Θi)) =
∑

Θi

2−1
(
w(n)

0 (Θk) + wn
0(σ(Θk))

)
log(2−1(w(n)

0 (Θk)+wn
0(σ(Θk))))

For each Θi there is exactly one Θ j such that Θ j = σ(Θi) and we will have Θi = σ(Θ j)
too. Thus to show (4.25) it is enough to show that

2−1
(
w(n)

0 (Θi) + wn
0(σ(Θi))

)
log(2−1(w(n)

0 (Θi) + wn
0(σ(Θi)))+

2−1
(
w(n)

0 (Θ j) + wn
0(σ(Θ j))

)
log(2−1(w(n)

0 (Θ j) + wn
0(σ(Θ j)))

≤ w(n)
0 (Θi) log(w(n)

0 (Θi)) + w(n)
0 (Θ j) log(w(n)

0 (Θ j)) (4.26)

with strict inequality for at least one Θi.

That is
2.


w(n)

0 (Θi) + wn
0(Θ j)

2 log(
w(n)

0 (Θi) + wn
0(Θ j)

2 )
 ≤

w(n)
0 (Θi) log(w(n)

0 (Θi)) + w(n)
0 (Θ j) log(w(n)

0 (Θ j))

But x log(x) is a convex function so

2.

w(n)

0 (Θi) + wn
0(Θ j)

2 log(
w(n)

0 (Θi) + wn
0(Θ j)

2 )
 ≤

w(n)
0 (Θi) log(w(n)

0 (Θi)) + w(n)
0 (Θ j) log(w(n)

0 (Θ j))

and thus ∑

Θi

w′(n)(Θi) log(w′(n)(Θi)) ≤
∑

Θi

w(n)
0 (Θi) log(w(n)

0 (Θi))
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This inequality should be strict eventually otherwise we will have w′ = w0 which is
a contradiction because we have w0(ψ) , w0(σ(ψ)) while w′(ψ) = w′(σ(ψ)) and this
completes the proof of the Claim 4. �

Claim 4 gives the required contradiction because we assumed w0 to be the closest
probability function to P= that satis�es K. Hence we should have

w0(ψ) = w0(σ(ψ))

and this completes the proof of Theorem 31. �

Thus the W-method remains invariant under the permutations that permute those indi-
viduals that do not appear explicitly in K.

We will next study the behavior of the W-method on cloned state descriptions.

4.4.2 W-Method And Cloned State Descriptions
Take a knowledge base of the form K = {w(Θ) = 1 }, where Θ ∈ S L is a consistent Π1

sentence.

De�nition 7 For m ≤ p and Φ,Ψ both consistent with Θ, we say that the state de-
scription Φ(a1, . . . , ap) is a clone of the state description Ψ(a1, . . . , am) if there is a
function τ from p to m such that

Φ(aτ(1), . . . , aτ(p)) ≡ Ψ(a1, . . . , am).

Assuming it exists, let w be the probability function chosen for K by the W-method
and set ∨

βp to be the disjunction of those state descriptions Φ(a1, . . . , ap) which are
clones of some state description on a1, . . . , am.

Claim 5 If there is a state description on a1, a2, . . . , am+1 that is consistent with Θ

which is not clone of any state description on a1, . . . , am then

lim
p→∞

w(
∨

βp) = 0.
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Proof. Suppose there is a > 0 such that w(∨ βp) ≥ a, for all p eventually where a is
the largest number with this property. We shall show that for p > m any state descrip-
tion ∆(a1, . . . , ap) that is consistent with Θ must be clone of some state description on
a1, . . . , am.

Suppose on the contrary that a state description ∆(a1, . . . , an) (where n > m) did exist
and was consistent with Θ but was not clone of any state description on a1, . . . , am.

We may assume that a1, . . . , an are all distinguishable in ∆, in other words replac-
ing any ai in ∆(a1, . . . , an) by a j, 1 ≤ j ≤ n, i , j gives a contradiction. [For oth-
erwise if say an and an−1 were indistinguishable we could replace ∆(a1, . . . , an) with
∆(a1, . . . , an−1, an−1), etc.]

De�ne for the state description Φ(a1, . . . , ap) with p ≥ m,

wc(Φ(a1, . . . , ap)) = lim
r→∞

w(
∨

βr)

where ∨
βr is the disjunction of those state descriptions which extend Φ(a1, . . . , ap)

and are clones of some state description on a1, . . . , am. Notice that this limit exists and
for p > m ∑

βp

wc(βp) = a > 0

where this time βp range over the state descriptions on a1, . . . , ap.

We de�ne the probability function w as follows. For a state description Λ(a1, . . . , ar)
where r ≥ n:

If Λ(a1, . . . , ar) extends ∆(a1, . . . , an) and is a clone of ∆(a1, . . . , an) set

w(Λ(a1, . . . , ar)) = w(Λ(a1, . . . , ar)) + Q−1
r a

where Qr is the number of clones of ∆(a1, . . . , an) on a1, . . . , ar;

If Λ(a1, . . . , ar) is a clone of some state description Ψ(a1, . . . , am) set

w(Λ(a1, . . . , ar)) = w(Λ(a1, . . . , ar)) − wc(Λ(a1, . . . , ar));
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Otherwise set
w(Λ(a1, . . . , ar)) = w(Λ(a1, . . . , ar)).

Claim 6 w extends to a probability function on L and is closer to P= than w in the
sense de�ned in the W-method, that is

dn(w, P=) < dn(w, P=)

for all n eventually.

This provides the required contradiction (by the choice of w), so such a ∆(a1, . . . , an)
cannot exist and thus for p > m any state description ∆(a1, . . . , ap) that is consistent
with Θ will be a clone of some state description Ψ(a1, . . . , am).

Before we proceed to prove Claim 6 it might be helpful to mention that the idea here
is that because ∆(a1, . . . , an) is not a clone of any state description Ψ(a1, . . . , am), for
large r > n, ∆(a1, . . . , an) has far more clones extending it than there are clones of
state descriptions on a1, . . . , am. In the long run then it will be more advantageous in
terms of entropy to spread measure uniformly onto these clones of ∆(a1, . . . , an) than
(possibly non-uniformly) on the clones of state descriptions on a1, . . . , am.

Proof. We will �rst show that w extends to a probability function on L. To show
this it will be enough to show that

∑

Λi

w(Λi) = 1 (4.27)

where Λi range over the set of state descriptions on a1, . . . , ar, say Γr, and that

w(Λ(a1, . . . , ar)) =
∑

Λ j∈Γr+1
Λ j�Λ

w(Λ j(a1, . . . , ar+1)). (4.28)

To see (4.27) let Γ1
r be those state descriptions in Γr that extend ∆(a1, . . . , an) and are

clones of ∆(a1, . . . , an) and Γ2
r be those that are clones of some state descriptions on

a1, . . . , am. Set Γ3
r = Γr − (Γ1

r ∪ Γ2
r ). Thus

∑

Λi

w(Λi) =
∑

Λi∈Γ1
r

w(Λi) +
∑

Λi∈Γ2
r

w(Λi) +
∑

Λi∈Γ3
r

w(Λi)
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=
∑

Λi∈Γ1
r

(
w(Λi) + Q−1

r a
)

+
∑

Λi∈Γ2
r

(w(Λi) − wc(Λi)) +
∑

Λi∈Γ3
r

w(Λi)

=
∑

Λ∈Γr

w(Λ) −
∑

Λ∈Γ2
r

wc(Λ) + a

= 1 + a −
∑

Λ∈Γ2
r

wc(Λ).

So to show (4.27) it will be enough to show that
∑

Λ∈Γ2
r

wc(Λ) = a. (4.29)

To see this notice that wc(Λ(a1, . . . , ar)) = 0 for Λ(a1, . . . , ar) ∈ Γ1
r ∪ Γ3

r so
∑

Λ∈Γ2
r

wc(Λ) =
∑

Λ∈Γr

wc(Λ) = a.

To see that w extends correctly to a probability function on L, as in (4.28), we will
consider each case separately. For the �rst case, that is when Λ(a1, . . . , ar) extends
∆(a1, . . . , an) and is a clone of ∆(a1, . . . , an),

w(Λ(a1, . . . , ar)) = w(Λ(a1, . . . , ar)) + Q−1
r a

=


∑

Λ j∈Γr+1
Λ j�Λ

w(Λ j(a1, . . . , ar+1))


+ Q−1

r a. (4.30)

Let Γr+1 = Γ∆
r+1 ∪ Γ∆

r+1 where Γ∆
r+1 are those state descriptions in Γr+1 that are clones of

∆(a1, . . . , an).

Notice that state descriptions in Γ∆
r+1 that extend Λ(a1, . . . , ar) are not clones of any state

description on a1, . . . , am and thus for Λ(a1, . . . , ar+1) ∈ Γ∆
r+1, such that Λ(a1, . . . , ar+1) �

Λ(a1, . . . , ar),
w(Λ(a1, . . . , ar+1)) = w(Λ(a1, . . . , ar+1))

and Qr+1 = |Γ∆
r+1| = n.|Γ∆

r | = n.Qr as every state description in Γ∆
k has exactly n exten-

sions to state descriptions Γ∆
k+1

3. So for (4.30) we have,
3Notice that here we are using the fact that a1, . . . , an are all distinguishable in ∆(a1, . . . , an) as

mentioned earlier.
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w(Λ(a1, . . . , ar)) = Q−1
r a +

∑
Λ j∈Γr+1

Λ j�Λ

w(Λ j(a1, . . . , ar+1))

= Q−1
r a +

∑

Λ j∈Γ∆
r+1

Λ j�Λ

w(Λ j(a1, . . . , ar+1)) +
∑

Λ j∈Γ∆
r+1

Λ j�Λ

w(Λ j(a1, . . . , ar+1))

=
∑

Λ j∈Γ∆
r+1

Λ j�Λ

(
w(Λ j(a1, . . . , ar+1)) + Q−1

r+1a
)

+
∑

Λ j∈Γ∆
r+1

Λ j�Λ

w(Λ j(a1, . . . , ar+1))

=
∑

Λ j∈Γ∆
r+1

Λ j�Λ

w(Λ j(a1, . . . , ar+1)) +
∑

Λ j∈Γ∆
r+1

Λ j�Λ

w(Λ j(a1, . . . , ar+1))

=
∑

Λ j∈Γr+1
Λ j�Λ

w(Λ j(aa, . . . , ar+1)). (4.31)

We shall now show that w will do better than w in terms of entropy.

To show that w is closer to P= than w in the sense of W-method it will be enough
to show that for r large enough

∑

Λ∈Γr

w(Λ) log(w(Λ)) <
∑

Λ∈Γr

w(Λ) log(w(Λ))

that is
∑

Λ∈Γ1
r

w(Λ) log(w(Λ))+
∑

Λ∈Γ2
r

w(Λ) log(w(Λ))+
∑

Λ∈Γ3
r

w(Λ) log(w(Λ)) <
∑

Λ∈Γr

w(Λ) log(w(Λ)).

Expanding the left hand side we have
∑

Λ∈Γ1
r

(w(Λ) + Q−1
r a) log(w(Λ) + Q−1

r a) +
∑

Λ∈Γ2
r

(w(Λ) − wc(Λ)) log(w(Λ) − wc(Λ))

+
∑

Λ∈Γ3
r

w(Λ) log(w(Λ)) <
∑

Λ∈Γr

w(Λ) log(w(Λ)).
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Notice that 0 < w(Λ) − wc(Λ) ≤ 1 and so log(w(Λ) − wc(Λ)) ≤ 0 and ∑
Λ∈Γ2

r (w(Λ) −
wc(Λ)) log(w(Λ) − wc(Λ)) ≤ 0 so it will be enough to show that

∑

Λ∈Γ1
r

(w(Λ) + Q−1
r a) log(w(Λ) + Q−1

r a) <
∑

Λ∈Γ1
r

w(Λ) log(w(Λ)) +
∑

Λ∈Γ2
r

w(Λ) log(w(Λ)).

(4.32)
Expanding the left hand side we have

∑

Λ∈Γ1
r

w(Λ) log(w(Λ) + Q−1
r a) + Q−1

r a
∑

Λ∈Γ1
r

log(w(Λ) + Q−1
r a) <

∑

Λ∈Γ1
r

w(Λ) log(w(Λ)) +
∑

Λ∈Γ2
r

w(Λ) log(w(Λ))

Rearranging this we will have
∑

Λ∈Γ1
r

w(Λ) log(1+
a

Qrw(Λ) )+Q−1
r a

∑

Λ∈Γ1
r

log(w(Λ)+Q−1
r a) <

∑

Λ∈Γ2
r

w(Λ) log(w(Λ)) (4.33)

The �rst thing to notice here is that if Λ1,Λ2 ∈ Γ1
r then we can assume that w gives

them the same probability, otherwise we can de�ne a bijection σs between the ∆ ∈ Γ1
s

extending Λ1 and the ∆ ∈ Γ1
s that extend Λ2 for s ≥ r such that if ∆′ ∈ Γ1

s+1 extends
∆ ∈ Γ1

s then σs+1(∆′) ∈ Γ1
s+1 extends σs(∆) ∈ Γ1

s . Now de�ning

w′(∆) = 2−1(w(∆) + w(σs(∆)))

for ∆ ∈ Γ1
s extending Λ1 or Λ2 and identity on other state descriptions gives a proba-

bility function satisfying K that is nearer to P= than w.

Let b
Qr

be the common value for w(Λ) for Λ ∈ Γ1
r . Then (4.33) will become

(a + b) log
(
a + b

Qr

)
− b log

(
b

Qr

)
<

∑

Λ∈Γ2
r

w(Λ) log(w(Λ)).

Let ∑Λ∈Γ2
r w(Λ) = dr, so dr → a as r → ∞, and notice that since any Λ ∈ Γ2

r is a clone
of some state description on L(m) then |Γ2

r | ≤ D.(m)r−m ≤ D.(n − 1)r where D is the
number of atoms of L(m) consistent with K. On the other hand

∑

Λ∈Γ2
r

w(Λ) log(w(Λ)) ≥ |Γ2
r |

dr

|Γ2
r |

log
(

dr

|Γ2
r |
)
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≥ dr log
(

dr

D.(n − 1)r

)

whilst the left hand side is at most

c − a log(Qr) = c′ − a log(nr)

for some constants c and c′ and it will be enough to show that

c′ − a log(nr) < dr log( dr

D.(n − 1)r ),

for r large enough, that is

c′ − a log(nr) < dr log(dr) − dr log(D) − dr log((n − 1)r)

or
c′ + dr(log(D) − log(dr)) < a.r log(n) − dr.r log(n − 1). (4.34)

We have limr→∞ dr(log(D) − log(dr)) = a(log(D) − log(a)) so we can choose r large
enough such that

|(c′ + dr(log(D) − log(dr))) − (c′ + a(log(D) − log(a)))| < ε

2 ,

and so it will be enough to show that for r large enough

c′′ + ε < r(a log(n) − dr log(n − 1))

which holds because as r → ∞,

a log(n) − dr log(n − 1)→ a log( n
n − 1) > 0

and this completes the proof of Claim 6. �

Thus if there is an m and a > 0 such that limr→∞ w(∨ βr) = a, where ∨
βr is the

disjunction of state descriptions on a1, . . . , ar that are clones of some state description
on a1, . . . , am, then eventually every state description consistent with Θ should be clone
of some state description a1, . . . , am which is a contradiction as we have assumed the
existence of a state description on a1, . . . , am+1 consistent with Θ that is not a clone of
any state description on a1, . . . , am. �
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So where K allows it, for any m the limit as p → ∞ of the probability of the state
descriptions on a1, . . . , ap that are clones of state descriptions on a1, . . . , am will tend
to zero. In other words w will in the limit put all the probability on the structures in
which there are in�nitely many explicitly distinct individuals.



Chapter 5

Conclusions

In this thesis we set out to investigate inference processes on �rst order languages as
a means to provide a satisfactory answer to the main question introduced in Chapter 1
-that is assigning probabilities (beliefs) to sentences of a languages on the basis of a
set of linear knowledge base.

In Chapter 2 we adopted the BP-method, introduced by Paris and Barnett in [6], to
generalize the Minimum Distance and Limiting Centre of Mass inference processes to
unary �rst order languages. Although the results were explicitly stated for MD and
CM∞1, the same method will work for the spectrum of inference process based on the
generalized Renyi Entropies. In particular we argued that in the special case where the
knowledge base is equivalent to a �nite, consistent set of axioms T that hold categori-
cally, i.e.

K = {w(φ) = 1 | φ ∈ T }

all the above inference processes and in fact any inference process satisfying renaming
principle will be well de�ned and will always give the same answer.

In Chapter 3 we focused our attention on the Maximum Entropy inference process
as the most commonly accepted inference process. We proved that the BP-method can
be applied to generalize the ME inference process to unary �rst order languages with
equality on Π1 knowledge bases and for this we presented a different machinery to
work with the BP-method than the one introduced in [6]. Although we later showed
that the BP-method is not applicable in the most general case by providing an example

1The same results have been proved for Maximum Entropy inference process in [6].
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of a Π2 knowledge base, we proved that the method is well de�ned and converges for
Σ1 knowledge bases on general polyadic languages. We conjecture that the same holds
for Π1 knowledge bases and in an attempt to investigate this conjecture, we introduced
the notion of slow formulae to categorize a subset of Π1 formulae for which there is a
bound on the number of models of any �nite size. We proved that the BP-method is
well de�ned and converges for knowledge bases consisting of slow formulae.

In Chapter 4 we studied an alternative generalization of Maximum Entropy to �rst
order languages, the W-method, introduced by Jon Williamson in [34].

Although we showed that the W-method is not a universally well de�ned method ei-
ther, we proved that it is well de�ned on the unary �rst order languages and for the
general polyadic languages with Σ1 knowledge bases. Furthermore we proved that the
two methods give the same answer in these cases. We conjecture that the W-method is
also well de�ned for Π1 knowledge bases and that the two methods give the same an-
swer in this case too. In the second half of Chapter 4 we investigated some properties
of the W-method and in particular we de�ned the notion of cloned state descriptions as
an analogy to the notion of slow formulae to investigate the behavior of the W-method.

The question of �nding a suitable generalization of Maximum Entropy that is well
de�ned on a general polyadic language independent of the quanti�er complexity of the
knowledge base will still remain open. There is still a lot of work needed to settle the
case of a Π1 knowledge base, as mentioned in Chapter 3.
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[27] Paris, J.B. and Vencovská, A note on the inevitability of maximum entropy,
International Journal of Approximate Reasoning, 1990, 4(3), 183-224.
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