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Abstract

We consider one possible interpretation of the ‘least informative model’
of a relational and finite theory and show that it is well defined for a
particular class of Iy theories. We conjecture that it is always defined for
II; theories.
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Introduction

Let ¥ be a consistent sentence of a first order language L and let 6(z1, z2, ..., zy)
be a formula of L. Then given a structure M for L with universe {a;|i € N* }
about which we know only that M is a model of ¥ a natural question one might
ask is how likely, or probable, is it that M = 0(ay,as,...,a,)?

In this short note we consider one (limited) approach to answering this question
which was originally (see [6]) based on adapting methods of uncertain reason-
ing developed for propositional probabilistic knowledge bases, in particular the
Maximum Entropy Inference Process, though for the purposes of this paper we
will not need to recall that history.

Notation

From now on we assume of L that it is a finite relational first order language
without functions or constants. We shall also assume for the present that L
does not contain equality. Let 7 be the set of structures for L with universe
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{a;|i € NT} and let L, be L augmented with constants a; for i € N, which
of course are interpreted in the structures M € 7 by the elements a; of M. Let
T be the (finite) set of structures for L with universe {a;|1 < i < n} and

let Lt(ln) be L augmented with the constants a; for 1 <i < n.

As above let ¥ be a consistent sentence in L. Then provided
(MeT™W | MET} 40

we can define a probability function! w,, on the quantifier free sentences of SL{™
by

_H{MeTW M E0)
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Provided the limit is well defined we now set w to be the probability function
on the quantifier free sentences of SL, which is the limit of the w,,, so in this
case w satisfies

(P1) O = w(d) =1,
(P2) E=(0Ad) = w(OV ) =w(l)+w(e),
on the quantifier free 0, ¢ of SL,. By a theorem of Gaifman, see [11], w has

a unique extension to a probability function on SL,, meaning that it satisfies
(P1),(P2) for any sentences 0, ¢ and for Jx(x) € SL,,

(PR (Er () = lim w(b(ar) v las) V...V (an)).

Then provided w is well defined and w(¥) = 1 we putatively propose w(), for
0 € SLa, as the probability that M = 6 for M € T an otherwise unknown
model of ¥.

The first thing to say about this proposal is that the w,, may not be well defined
simply because ¥ has no finite models. So suppose from now on that ¥ does
have a finite model, say of cardinality n. Then by just making ‘clones’ of some
element in that model we can construct models of any finite cardinality greater
than n so all the subsequent w,, will be defined. Still however the limit need
not be well defined.

As an obvious example here let L have relations G, R and P of arities 3,2,1
respectively, let x =4 y abbreviate

vua t (G(‘Ts u, t) A G(ya U, t))

and let ¥y be the conjunction of:

!Meaning that wy, is a map from the set SLEln) of sentences of szn) to [0,1] such that for
0,6, 34 (x) € SLG",
(P1) E O = wp(0) =1,
(P2) = =(0Ad) = wn(0V @) =wn(0) + wn(d),
(P3) wn(Fz9(2)) = wn((ar) Vi(az) V...V id(an)).



Vr,y,z (v =¢ y — (R(z,2) — R(y,2)))
v,y (R(z,y) < Ry, z))
Va,y,z ((R(z,y) AN R(z,2)) = (x =g yVa=¢zVy=g2))
Yoy (x #c y A R(z,y))
Vo —=R(z, )

and ¥y be the conjunction of:

Vo,y, 2 (z =¢ y — (R(z,2) — R(y,2)))
v,y (R(z,y) < Ry, z))
Va,y,z ((R(z,y) A R(z,2)) — (y =¢ 2))
Va,y, 2t (R(z,y) NR(z, 1) AN =g y) ANz =c t)) = (¥ =¢ 2))
Vady R(z,y)
Jz R(x, x)

Then = —(¥; A ¥y) and for n even the proportion of M € T satisfying
M = ¥, v Uy which also satisfy ¥y tends to zero as even n — oo whereas for n
odd it is the proportion which satisfy W5 which tend to zero. Hence if we take
U = U, V Uy then w,(¥;) bobs backwards and forwards between being close
to 1 and close to 0 as n — oo and no overall limit exists. [For fuller details see
[19])

A second problem with this approach is that whilst the w, may have a limit
w this probability function, once extended to all sentences of L, via Gaifman’s
Theorem, may no longer give w(W) probability 1. This happens for example
in the case when L has a single binary relation R and ¥ is 3aVy R(z,y). The
informal explanation of why this happens is that the overriding majority of
structures in 7™ which model this ¥ will have just one a; satisfying Vy R(x, ).
Thus as n — oo the probability that any one a; satisfies this tends to zero with
the result that in the limit none of them have non-zero probability of satisfying
it. Again details can be found in [19].

On a more optimistic note however the limit w does exist for (consistent) ¥
when L is purely unary, see for example [1], [2], [6], (and also the developments
in [13], [14], [15]). So from now on we shall assume that L has at least one
non-unary relation.



The Conjecture

A feature of these two failures relevant to this paper is that in the first ¥ is of
quantifier complexity II; whilst in the second it is 35.2 On the other hand it is
not difficult to check that if ¥ is 37 then the limit w exists and w(¥) = 1, see
[19]. This leaves open the question of what happens when W is II;.

We would conjecture that in the case W is II; and consistent then the limit w
always exists and furthermore satisfies w(¥) = 1.

The main contribution of this paper towards confirming this conjecture is to
show that it is true for such ¥ when

(M eT™|M v
is polynomially bounded.

There is some evidence that confirming the conjecture in general when we also
allow in equality may not be very easy. This comes from results in Graph
Theory concerned with what is there called the ‘speed of hereditary classes’. A
class of graphs F is said to be hereditary if it is closed under isomorphisms and
subgraphs, in other words whenever a graph G is in F and H is the subgraph
of G formed by restricting the edges to some subset of the vertices of G then
H € F. Given a hereditary class F of graphs let f,, be the number of graphs in
F with vertices {a;|1 < ¢ <n}. A prominent question in Graph Theory over
the last 15 years (see for example [3], [4], [5], [20]) is what f,, may look like as
a function of n. From results obtained to date it would appear that f, must
fall into one of 4 bands. The lowest of these, which is well understood, is when
fn is bounded by a polynomial. After that however the bands are much wider
and within them there seems, as far as is currently known, to be scope for f,
to behave uncommonly badly.

The reason these results, or lack of, are relevant to our conjecture here is that if L
has a single binary relation R then the models in 7(") of a IT; sentence ¥ which
implies that R is symmetric are just the graphs with vertices {a; |1 < i <n}
in some hereditary class F. From this then it would seem that understanding
the behavior of the w, may not come so easily.

The reader familiar with the 0-1 laws of Fagin [10] and Glebskii et al [12] and
subsequent developments (see for example [7], [8], [9], [16], [23]) concerning the
asymptotic frequency of models of ¥ in 7(™) may wonder if everything that
we are conjecturing has not already been answered in the course of that body
research. As far as we have been able to discover it seems that it has not. The
problem here is that unless U is a tautology (assuming as we are that it does
not mention any constants) then in the limit the frequency of its models in 7™
will drop to zero. Thus the obvious idea that the limit of the w, (f) will be the
ration of the limiting frequencies of ¥ A 6 and ¥ gets us nowhere because this
amounts to just 0/0 !

2Note however that in the case that W is the (necessarily) TTz sentence asserting that R(z,y)
defines a linear order without end points the limit does exist and give W probability 1.



Slow sentences

In this section we shall confirm the above conjecture in the case that ¥ is slow,

meaning that

{MeTW|M v}
is polynomially bounded. First however we introduce some notation and give a
syntactic characterization of ‘slowness’.

Suppose L has relations Ry, ..., R, of arities hy,...,hq. Let by, bo, ..., b, stand
for some distinct choices from the constants a; (a convention we adopt through-

out). Then a state description for by, ..., b, is a sentence of the form
q
Ob1,ba, ... bm) = N A LRy (b, biys- b ) (1)
s=1 dy,ia,...,0n,€{1,...,m}

where £ R stands for R or =R respectively. In other words a state description for
b1, ..., by, determines a structure for L whose universe is the set {b1,...,b;}.

Given such a state description we say that b; and b; are indistinguishable with
respect to O(by, ..., by,) if

O(by, ... by) Ab; =b;

is consistent (with the axioms of equality) and in this case write b; ~g b;.
Clearly ~¢ is an equivalence relation. Let ||©(by,...,by)|| be the number of
equivalence classes with respect to ~g.

For ©(by,...,bny) a state description and i1, ...,i; € {1,2,...,m}, set
Olbiy, ..., b;,] to be the (unique) state description for b;, , ..., b;, consistent with
O(br,. .., bm).

The following rather technical lemma will be useful in what follows.

Lemma 1 Let r be at least the largest arity of any relation in L, letp >k >r
and let ®(a,...,an) be a state description (of L) with ||®(a1,...,an)| = p.
Then there is some k < s < k+7r and 1 < i3 <iy < ... <1is < m such that
[®[ai, @iy, - - -y ai ]| = s.

Proof If p < k +r taking a;,,a;,, ..., a;, to be representatives from the equiv-
alence classes of ~¢ will give || ®(a;,, as,,. .., a;,)|| = p so assume

k+r < p. Suppose we have picked a;,, a;,, ..., a;, with | ®[a;,, asy, ..., a3,]]| =t.
It is enough to show that we can find some ji, js, ..., js < m distinct from the
such that 1 <s <7 and || ®[a;,, @iy, - .-, A5y, .-, 05,]]| =t + 5.

iy yevey Ay,

To this end let aj, be inequivalent to each of the a;,,as,, ..., a;, modulo ~g. If
|®[ai,, @iy, - -5 a4,,a5]] = t+ 1 we are done. Otherwise, according to this
state description ®[a;,,ai,,...,a;,,a;] aj; and a;, are indistinguishable for
some 1 < g < t. Then since they are distinguishable modulo ~¢ and r is
the largest arity of any relation in L we can find j»,. .., j; with ¢ < r such that



aj, and a;, are distinguishable according to ®a;,,a;,,a;,,a;;,...,a;, ]. Indeed
we may further assume that none of these ay,,a;,, ..., a;, are indistinguishable
in ®[a;,,ai,,...,a,,a;,a;,...,a;] from any of these other constants men-
tioned there, otherwise we could simply remove them. It follows then that
®lai,, @iys -y @i,y a5y, aj,, .-, a5, ]| =t + q, as required. |

In the case r = 2 it can be shown, see [21], that we can take s = k in this
Lemma. However we cannot hope to have this result for s = k when r > 2. For
example let L have just the ternary relation R and let ®(aq,asq,as,aq,as,ag)
imply R(a;,aj,ar) just if {i,j,k} is one of {1,2,3} or {4,5,6} (so it implies
-R(a;, aj,ar) otherwise). In this case

||(I)(a17a27a37a47a57a6)” =6

=9.

but we cannot find a;,, a;,, @iy, @iy, i, such that ||®la;,, as,, @iy, @iy, @i

The next theorem gives a characterization of the slow II; sentences.

Theorem 2 Let r be at least the largest arity of any relation in L and ¥ a
consistent I sentence of L. Then

{MeT™|ME U} =o(n")

iff for some state descriptions ®;(a1,az,...,ax4r), ¢ =1,..., h, with
|®;i(ar,az,...,ak)] <k,
h
v = V.’L‘l,...,l‘k+r \/<I>j(m1,x2,...7xk+r). (2)
j=1

Proof Let the ®;(ay,...,ars,) for ¢ = 1.... h list all state descriptions with

|®i(a1,as,...,ak+r)|| < k which are consistent with ¥. If
h
WAV, .oy Thotr \/‘I)j(dfl,$2,...,$k+r) (3)
j=1

was consistent it would have a model M in 7 and hence there would be a state
description ©(a;,, a4, .., a;,,,) true in M with ||©(a;,, @iy, ..., a4, )| > k.
Clearly by permuting these constants we may assume a;; is just a; for j =
1,...,k+r. In this case take n large and let Z(a1,as, ..., QGktr, QGktri1y---,0n)
be a state description which implies (equivalently extends) O(ay,ag, ..., agtr)
such that each of the agyr41,...,a, is equivalent according to ~z to some a;
with ¢ < k 4 r. In other words no new equivalence classes are created in going
from ~g to ~z, they just enlarge. Then just as the structure Mg € T #+7)
determined by © is a model of ¥ so also is M= € 7). However since ~g has
at least k equivalence classes such a Z can be formed in at least k"%~ ways,
contradicting the given bound.




From (3) then

h

FU — Vo, ..., Teqr \/ Q;(z1, 22, ... Thotr). (4)
j=1

For the provability of the other direction here suppose on the contrary that

h

WAV, . T \/ Q(z1, 22, ..., Thopr)
i=1

was consistent, so had a model M € 7. Then since ¥ is II; there is some
large m such that the state description ®(aq,...,a,) determined by M is
inconsistent with ¥. If ||®(a1,...,am)|| > k then by Lemma 1 we could
find some i1,1i2,...,4s < m with s < k 4 r such that |®[a;,,...,a: ]l > k.
Since we can permute the elements of M we may suppose that i; = j for
j=1,...,s. But in that case since M is a model of the second conjunct of (4),
®lay,...,as, G541, .. -, akqr) would have to be one of the ®;(ay,. .., ar4r) which
is a contradiction because it has too many equivalence classes.

Hence || ®(aq,...,am)|| < k and without loss of generality we may assume that
ai,as,...,a+, contains representatives of all the equivalence classes of ~g. In
that case ®[ay, as, . .., ap4,] must again, as above, be one of the ®; (a1, ..., aptr).
But then ®[aj,as, ..., a+r] must be consistent with ¥, indeed it determines a
model of ¥ in 7"+ so ®(ay,as, ..., an) will also be consistent with ¥ since
it is formed by simply duplicating a; in ®[ay,as, ..., agi.].

Turning now to the other direction of the equivalence stated in the Theorem

assume that (2) holds and let the state description ®(aq,as, ..., ;) determine
a model of ¥ in 7. Then as above if ||®(a1,az,...,an)| > k we could cut
this down to a ®ay,, ..., a;,. ] satisfying || ®[a;, , ..., a;,,. ]| > &k and this would

still be consistent with . But clearly this is not consistent with the right hand
side of (2), contradiction.

We conclude that ||®(a1,as,...,an,)| < k and in turn that if a;,, ..
tain representative from all the equivalence classes of ~¢ then
®lag,,. .., a4,,] is one of the ®;(a;,,...,a;,,). Hence ®(a1,az,...,ay) is de-
termined by this j € {1,2,...,h}, the choice of i1,...,i,4s and the choice of
which of the (at most) k — 1 equivalence classes contain the remaining a; for
1<i<m,i#i,...,Iikrr, which overall amounts to just o(nk) choices.

<5 @y, CON-

We are now in a position to prove the main result of this paper.

Theorem 3 Let ¥ be a consistent 111 slow sentence of L. Then the limit w of
the w,, exists and satisfies w(¥) = 1.

Proof It is clear that if the limit w exists then it satisfies w(¥) = 1 so we only
need to show that the limit exists. Let m be large and let O(aq,...,a,,) be a



state description consistent with U, so this sentence defines a model in 7 (™). We
want to count the number of state descriptions ®(aq,as, .. ., a,) consistent with
U and extending O(as, ..., an). Since ¥ is slow let the ®;(a1,...,artr) etc. be
as in Theorem 2. Let a;,,a;,,...,a;, be the first (viz-a-viz the indices) elements
of the distinct equivalence classes of ~g, so || ®[a;,, sy, ..., a; ]| = s, which is
less than k as in the arguments above. Let r be minimal such that i,, > m. Then

®(a1,asz,...,ay,)is determined by a;,, a;,, ..., a;,, ®lar, a2, ..., am,ai, i, ...

(which determines a;,,...,a;,_,) and the assignment of the remaining a, for
1 <4 < n not amongst the a1, as,...,am, a;,.,a;.,,,...,a;, to the equivalence
classes determined by a;,, ai,, ..., a;,.

In order to count these ®(a1, as, ..., ay) notice that if we choose a;, , ai, ., ..., a;,
(s < k) first then there are only a fixed (independent of n) finite number of possi-
ble ®(a1,as,...,am,a;,,a;,,,,-..,a;) (this determines s) and for each of these
there are s ™ *t"1 ways to assign the remaining a; to classes. Altogether
then this gives us dc¢™(1 + o) possible ®(ay, as, ..., a,) for some constant d and
c<k.

The Theorem now follows by noticing that |7 ()| is just the sum of these dc™ (14
o) over the finite number of possible O(ay, ..., am). |

Discussion

Jon Williamson in [22] has suggested an alternative approach to the problem
of what probability v(#) to give to a sentence 6 of L, being true in M € T
when all we know about M is that it is a model of ¥. The idea is that given a
probability function on SL, we let v,, be the restriction of v to SLgn) and define
a partial ordering on such v by

v =< iff for all n eventually E(v,) < E(v),)

where E(v,), the negative entropy of v,,, is the sum over the state descriptions ©
of SL,(In) of v,(0)log(v,(0)). Since negative entropy is generally accepted as a
measure of ‘lack of information’, one might argue that in our current context of
knowing only ¥ one should assign 6 probability v(6) for that probability function
v which satisfies v(¥) = 1 and is <-minimal amongst all such functions.

As with the approach discussed in this paper this minimal choice exists (and
gives the same answers) in the cases of unary languages and in the cases of
U being 7 but can fail to be defined for ¥y and IIx ¥ (see [19]). We would
conjecture that the method also succeeds for slow II; sentences, and indeed
more generally that both approaches are defined and give the same answers for
all II; ¥. However that is not always the case for higher quantifier complexity,
Williamson’s method can work even when ¥ has no finite models, for example
when W defines a dense linear ordering.

The results given in this paper suffer the obvious weakness that the language
and structures do not include equality. Of course we could include in the II;

’a’is)



sentence ¥ the (finite) IT; axiomatization of the equality axioms appropriate to
L and carry on as before. However in that case our structures would be what
Mendelson refers to in [17] as ‘non-normal’ structures rather than structures
in which = is interpreted as real equality, so this is not much help. Given the
results from Graph Theory (which do allow equality) we would conjecture that
Theorem 77 also holds when we properly allow equality into the language.

We finally mention that these method of this paper and Williamson’s were
originally introduced to address the more general problem of inference from
predicate probabilistic knowledge bases as in [6] and [18]. However it would
seem that the special case problem considered here is really the obstacle to be
overcome in this endeavor.
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